

Frustrated Triangular Magnetic Structures of MnZnN: Applications in Thermal Expansion

Sihao Deng, Ying Sun, Lei Wang, Zaixing Shi, Hui Wu, Qing-Zhen Huang, Jun Yan, Kewen Shi, Pengwei Hu, Ali Zaoui, and Cong Wang

J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.5b07225 • Publication Date (Web): 07 Oct 2015

Downloaded from <http://pubs.acs.org> on October 13, 2015

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

The Journal of Physical Chemistry C is published by the American Chemical Society.

1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1
2
3
4 **Frustrated Triangular Magnetic Structures of Mn₃ZnN:**
5
6 **Applications in Thermal Expansion**
7
8
9
10
11

12 Sihao Deng,¹ Ying Sun,^{1,*} Lei Wang,¹ Zaixing Shi,¹ Hui Wu,² Qingzhen Huang,²
13
14 Jun Yan,¹ Kewen Shi,¹ Pengwei Hu,¹ Ali Zaoui,³ Cong Wang,^{1,*}
15
16
17

18 ¹ *Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University,*
19
20 *Beijing 100191, People's Republic of China*
21

22 ² *NIST Center for Neutron Research, National Institute of Standards and Technology,*
23
24 *Gaithersburg, Maryland 20899-6102, United States*
25

26 ³ *LGCgE-Lille Nord de France, Polytech'Lille, Université de Lille1 Sciences et Technologies,*
27
28 *59655 Villeneuve d'Ascq, France*
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 * Corresponding author. E-mail: sunying@buaa.edu.cn.

54
55 E-mail: congwang@buaa.edu.cn.
56
57
58
59
60

ABSTRACT:

One of the specific subjects in frustrated magnetic systems is the phenomenon coupled with noncollinear magnetism, such as zero or negative thermal expansion (ZTE or NTE) in antiperovskite compounds. The first-principles calculations and neutron powder diffraction (NPD) are used to reveal the control of the noncollinear Γ^{5g} antiferromagnetic (AFM) structure and corresponding thermal expansion properties in $Mn_3Zn_{0.875}X_{0.125}N$ ($X = Mn, Ge, and Sn$). Based on the optimal exchange-correlation functional, our results demonstrate that X ($X = Mn, Ge, and Sn$) doping at Zn site could stabilize the noncollinear Γ^{5g} AFM structure and produce magnetovolume effect (MVE). The predictions of Γ^{5g} AFM ground state and MVE is further verified by the NPD results of $Mn_3Zn_{0.83}Mn_{0.15}N_{0.99}$. Intriguingly, this special magnetic structure with strong spin-lattice coupling can be tunable to achieve ZTE behavior. On the basis of these results we suggest that frustrated magnetic systems with noncollinear Γ^{5g} AFM structure of Mn atoms in Mn_3ZnN series of compounds are favorable candidates for a new class of ZTE material.

KEYWORDS: noncollinear magnetism, thermal expansion, spin-lattice coupling, antiperovskite

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1. INTRODUCTION

Recent years, frustrated magnetic systems, in which competing interactions between spins preclude simple magnetic orders, have become a stimulating research topic because of the presence of extraordinary magnetic properties such as highly degenerate ground states, novel phase transitions, and noncollinear ordering.¹⁻⁷ One of the specific subjects in this field is the phenomenon coupled to noncollinear magnetism. For example, the multiferroic behaviors, caused by an incommensurate cycloidal order combined with spin-orbit coupling, was found in manganite perovskites $RMnO_3$ (such as $R = Tb$ and Dy).^{8, 9} Also, colossal magnetoresistance and quantum anomalous Hall effects were observed due to the effect of unusual noncollinear and even noncoplanar spin textures.¹⁰⁻¹² Owing to such diversity of phenomena associated with noncollinear ordering, the exploration in models, materials, and artificial structures related to noncollinear ordering has developed into a very spirited field of investigation.^{10, 13-15}

The triangular magnetic lattice is the most obvious example of geometrically frustrated magnetic system.¹⁶ Notably, Mn-based antiperovskite compounds with triangular magnetic lattice show a variety of magnetic structures accompanied with fascinating physical properties. A large magnetic entropy change was observed near magnetic transition from paramagnetic (PM) to unusual magnetic state, such as $P1$ symmetry noncollinear ferrimagnetism (FIM) in $Mn_3Cu_{0.89}N_{0.96}$ and a canted ferromagnetic state in Mn_3GaC .¹⁷⁻¹⁹ Giant magnetostriction was reported in the tetragonally distorted ferromagnetic phase of antiperovskite Mn_3SbN and Mn_3CuN .²⁰ Besides, unusual magnetic hysteresis in $Mn_3Sb_{1-x}Sn_xN$ and giant magnetoresistance in Mn_3GaC were found.^{22, 23} More importantly, the antiperovskite compounds with noncollinear Γ^{5g} antiferromagnetic (AFM) structure where the Mn local magnetic moments on the (111) plane form clockwise or counterclockwise configuration show attractive behaviors, including giant barocaloric, flexomagnetic, piezomagnetic, Invar-like, and negative thermal expansion (NTE) etc.²⁴⁻²⁹

1
2
3 Among these manganese antiperovskites, Mn_3ZnN with Γ^{5g} AFM phase, which
4 has the strong spin-lattice coupling, is one of the most promising material as a single
5 compound displaying zero thermal expansion (ZTE) from the perspective of
6 functionality and cost.^{27, 30} Fruchart et al. reported that Mn_3ZnN was characterized by
7 two distinct magnetic transitions: at 183 K, a high-temperature (high-T) PM state
8 changes to an intermediate-T Γ^{5g} AFM state with a sudden lattice expansion upon
9 cooling; with further cooling, another magnetic transition from Γ^{5g} AFM to low-T
10 collinear AFM phases occurs at 140 K, accompanied with a sharp lattice contraction.^{19,}
11
12 ³¹ Moreover, from the current neutron powder diffraction (NPD) result of $Mn_3Zn_{0.99}N$
13 reported by our group, the coexistence of Γ^{5g} AFM and low-T collinear AFM phases
14 was observed in the intermediate-T region.²⁷ Recently, intermediate-T Γ^{5g} AFM phase
15 that controls ZTE and has a larger volume (compared with PM phase) was found to be
16 tunable by chemical substitution at Zn site, such as Ge or Sn.^{27, 32, 33} On the other
17 hand, reliable methods of the unconstrained noncollinear first-principles study was
18 well established³⁴⁻³⁶ and widely adopted for explaining and predicting physical
19 properties of materials.^{25, 34, 37} In this study, the first-principles study based on
20 various exchange-correlation (EC) functionals has been developed in order to get the
21 reasonable ground state of Mn_3ZnN . Based on the preferred EC functional PW91,
22 both Γ^{5g} AFM ground state and magnetovolume effect (MVE) are confirmed in X
23 doped $Mn_3Zn_{0.875}X_{0.125}N$ (X = Ge or Sn), which qualitatively agrees to the
24 experimental results. The prediction that Mn doping at Zn site could induced the Γ^{5g}
25 AFM ground state is verified from our NPD results of $Mn_3Zn_{0.83}Mn_{0.15}N_{0.99}$.
26 Additionally, the observed ZTE behavior originated from spin-lattice coupling in
27 Mn_3ZnN series of compounds with Γ^{5g} AFM phase provides a new feasible way to
28 obtain ZTE materials.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2. COMPUTATIONAL AND EXPERIMENTAL METHODS

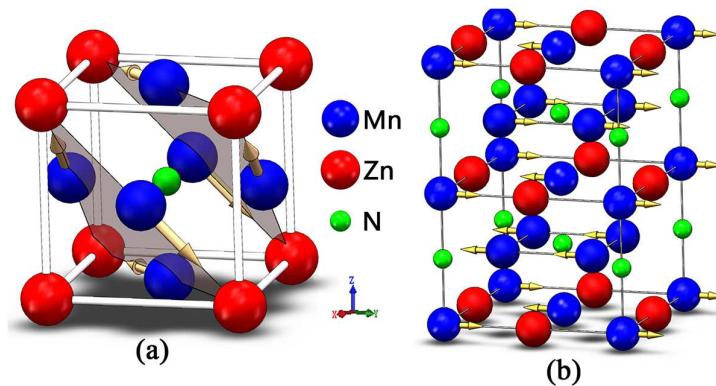


Figure 1. Crystal and magnetic phases of Mn_3ZnN for (a) antiperovskite crystal structure and noncollinear Γ^{5g} AFM and (b) collinear AFM structures.

Computational methods

Density functional theory (DFT) was performed here using the projector augmented-wave (PAW) method initially proposed by Blöchl.³⁸ For fully unconstrained noncollinear magnetic structures we used the execution of Kresse and Joubert³⁹ in Vienna *Ab-initio* Simulation Package (VASP) code within local density approximation (LDA)³⁷ and generalized gradient approximation (GGA)²⁵. Among the available GGA functionals, we selected two commonly used and popular standard functionals PW91⁴⁰ and PBE⁴¹, respectively. Besides, as specially developed functionals for calculations on solids and solid surfaces, AM05⁴² and PBEsol⁴³ were also employed. The cutoff energy of 500 eV and Gamma-centered k points with a $3\times 3\times 3$ grid were used. The noncollinear Γ^{5g} magnetic structure with the spins on the (111)-plane was applied. The nonmagnetic supercell with total magnetic moment being zero was adopted to mimic a high-temperature paramagnetic (PM) phase.²⁶ Based on the unit cell of Mn_3ZnN shown in Figure 1(a), a supercell containing $2\times 2\times 2$ primitive unit cells was adopted. Furthermore, in order to get the composition of $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ ($\text{X} = \text{Mn, Ge, and Sn}$), the chemical formula $\text{Mn}_{40}\text{Zn}_7\text{XN}_8$ supercell was used in our calculations by the substitution of X for Zn .

1
2
3 atom at the site (0.5, 0.5, 0.5).
4

5 The radial distribution function (RDF), $g(r)$, is very important for studying the
6 structure of $Mn_{40}Zn_7XN_8$. The RDF can be expressed as:
7
8

9
$$g(r) = \frac{N_n(r)V_n}{4\pi r^2 dr N} \quad (1)$$

10
11

12 where $N_n(r)$ and V_n are the mean numbers and mean volume of atoms between r to
13 $r+dr$ around an atom, N is the numbers of atoms.⁴⁴ For $Mn_{40}Zn_7XN_8$, after optimizing
14 the structure using VASP code, the RDF (Zn/X-Mn around X) is calculated by the
15 VMD software.⁴⁵
16
17

18 **Experimental methods**
19

20 Polycrystalline sample of the nominal composition $Mn_3Zn_{0.80}N$ was prepared by
21 solid-state reaction in vacuum (10^{-5} Pa) using Mn_2N and Zn (3N) as the starting
22 materials.²⁷ The real composition determined by Rietveld analysis of NPD data at
23 room temperature is $Mn_3Zn_{0.83}Mn_{0.15}N_{0.99}$. NPD data at 10 K to 250 K were collected
24 using the BT-1 high-resolution neutron powder diffractometer at NIST Center for
25 Neutron Research (NCNR). A Cu (311) monochromator was used to produce
26 monochromatic neutron beam with wavelength of 1.5403 Å. The intensities were
27 measured with a step of 0.05° in the 2θ range of 5°-162° to determine the crystal and
28 magnetic structures and reveal thermal expansion properties. The crystal and
29 magnetic structures were refined by Rietveld method with the General Structure
30 Analysis System (GSAS) program.⁴⁶ The neutron scattering lengths used in the
31 refinement were -0.375, 0.568, and 0.936 ($\times 10^{-12}$ cm) for Mn, Zn, and N, respectively.
32 The crystal and magnetic structures of Mn_3ZnN are shown in Figure 1.²⁷
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51 **3. RESULTS AND DISCUSSION**
52

53 As shown in Figure 1(a), Mn_3ZnN possesses an antiperovskite crystal structure.¹⁹
54
55 ²⁷ The noncollinear Γ^5g AFM magnetic structure clarified by Fruchart¹⁹ [see Figure
56 1(a)] was adopted for the simulation of Mn_3ZnN .⁴⁷ Table 1 lists the structural and
57
58
59
60

1
2
3 magnetic parameters of antiperovskite Mn_3ZnN obtained using different EC
4 functionals with Γ^{5g} AFM magnetic structure. The calculated equilibrium lattice
5 constants a_0 correspond to 3.702, 3.781 and 3.790 Å for the EC functionals LDA,
6 AM05 and PBEsol, respectively, which are underestimated compared with the
7 experimental value of 3.912 Å at 151 K in the literature.²⁷ Moreover, our calculated
8 a_0 value is 3.860 Å for the case of PW91 and 3.871 Å for PBE functional, which is in
9 good agreement with previously reported results, i.e., 3.912 Å. Similarly, the
10 reasonable magnetic moments m of the Mn atoms, 2.60 μ_B /atom for PBE and 2.51
11 μ_B /atom for PW91, are close to the experimental value of 2.61 μ_B /atom at 151 K.²⁷ In
12 particular, the values of a_0 and m using PBE are close to the previously calculated
13 results 3.870 Å and 2.63 μ_B /atom.⁴⁷ These characteristics with diverse EC functionals
14 indicate that PBE and PW91 are better than others for the current study of Mn_3ZnN .
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29 Table 1. Results of the calculated equilibrium lattice constants a_0 and magnetic moment m
30 with different EC functionals compared with experimental data.

	LDA	AM05	PBEsol	PBE	PW91	Experiment
a_0 (Å)	3.702	3.781	3.790	3.871, 3.870 ⁴⁴	3.860	3.912 ²⁷
m (μ_B)	2.21	2.10	2.16	2.60, 2.63 ⁴⁴	2.51	2.61 ²⁷

43 As referred above, Mn_3ZnN shows phase separation behavior [collinear AFM
44 shown in Figure 1(b) and Γ^{5g} AFM phases] from 140 K to 177 K.⁴⁸ Herein, the
45 collinear AFM phase is marked as M_{PTE} in Figure 1(b) as the positive thermal
46 expansion (PTE) behavior was observed within this magnetic structure.²⁷ Next, we
47 will focus on the discussion of both Γ^{5g} and M_{PTE} AFM phases using the PBE and
48 PW91 EC functionals. It was found that the cases of PW91 and PBE EC functional
49 show different ground states. The total energy of the Mn_3ZnN as a function of the
50 lattice constant for Γ^{5g} and M_{PTE} AFM phases are shown in Figure 2. As seen from
51
52
53
54
55
56
57
58
59
60

Figure 2(a), the total energy of the Γ^{5g} magnetic structure is 0.008 eV/f.u. (f.u. is the abbreviation of formula unit) lower than that of the M_{PTE} state at their optimal lattices using PBE, which is qualitatively in agreement with the previously calculated results.⁴⁷ This indicates that magnetic ground state is Γ^{5g} AFM structure in the case of PBE EC functional. However, instead of Γ^{5g} AFM phase, the M_{PTE} ground state should be observed because this phase was confirmed below 140 K from NPD result.^{27,48} Importantly, as shown in Figure 2(b), the M_{PTE} ground state is obtained in the case of PW91, indicating the PW91 EC functional should be selected for the simulation of Mn_3ZnN .

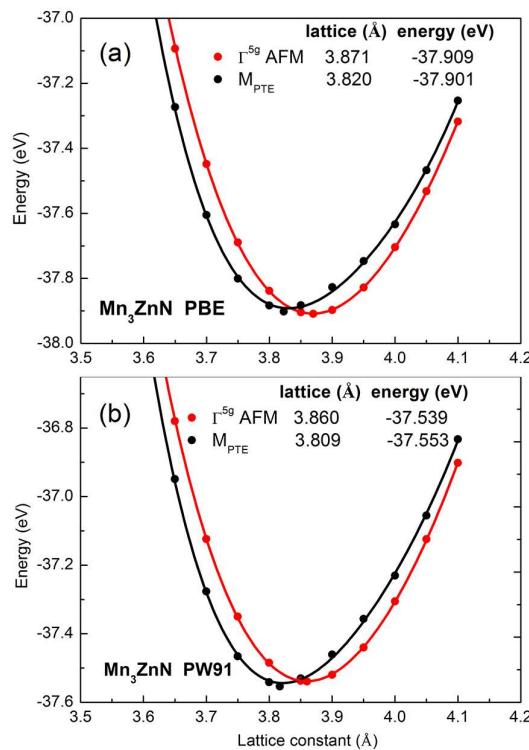


Figure 2. Total energy of the Mn_3ZnN as a function of the lattice constant for Γ^{5g} AFM and M_{PTE} phases using (a) PBE and (b) PW91 EC functionals.

Based on the calculated results by PW91 EC functional, the total energy of the M_{PTE} 0.014 eV/f.u. is lower than that of Γ^{5g} AFM state at their optimal lattices. Generally, phase separation behavior can be resulted from the thermodynamic competition between phases with nearly identical free energies.^{48, 49} For Mn_3ZnN ,

the total energy of Γ^{5g} AFM phase and that of M_{PTE} phase is close, and the energy difference 0.014 eV/f.u. is far less than those (similar energy difference) in other antiperovskite compounds (0.463 eV/f.u. for $\text{Mn}_{3.25}\text{Ni}_{0.75}\text{N}$ ²⁶ and 0.22 eV/f.u. for Mn_3GaN ²⁵) without phase separation phenomenon. Therefore, the phase separation observed between 140 K and 177 K might be attributed to the competition between Γ^{5g} AFM and M_{PTE} phases due to the nearly identical energy of both phases. On the other hand, the equilibrium lattice constant of the M_{PTE} state is 3.809 Å in the case of PW91, which implies a lattice contraction of 0.051 Å ($\Delta a/a = 0.013$) from the Γ^{5g} to M_{PTE} AFM state. This qualitatively agrees with the observed $\Gamma^{5g} \rightarrow M_{\text{PTE}}$ first-order phase transition in Mn_3ZnN with a $\Delta a/a$ of ~ 0.006 .²⁷ The calculated value of $\Delta a/a$ is slightly greater than the observed values. However, it does not affect the qualitative analysis of phase transition because such disagreement always exists in the current density functional theory calculation of antiperovskite compounds.^{25, 26}

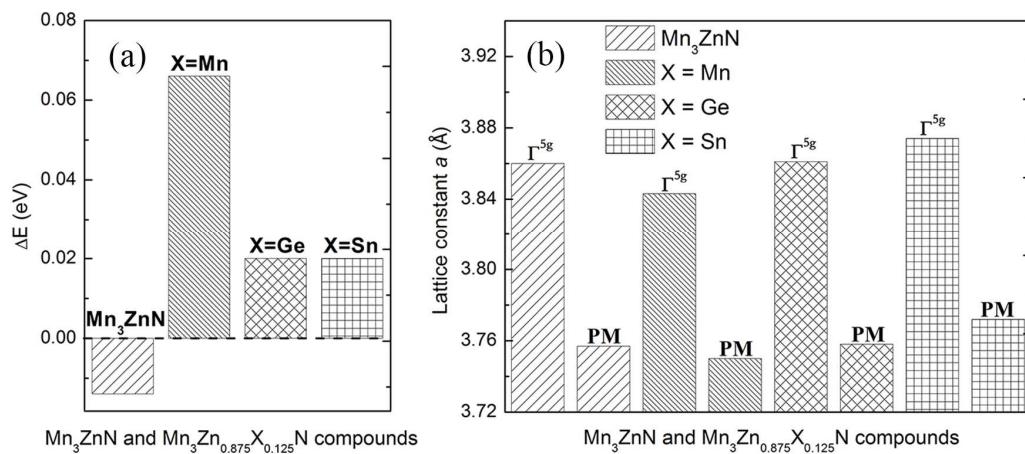


Figure 3. (a) The energy difference ΔE between $E_{M_{\text{PTE}}}$ and $E_{\Gamma^{5g}}$ ($E_{M_{\text{PTE}}}-E_{\Gamma^{5g}}$) and (b) the equilibrium lattice constant a of Γ^{5g} AFM and PM phases for Mn_3ZnN and $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ ($X = \text{Mn}$, Ge, and Sn) compounds using PW91 EC functional.

To further study the control of these two magnetic structures, the X doping at Zn site is adopted as $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ (X = Mn, Ge, and Sn). Based on the results of total energy at equilibrium lattice displayed in Figure S1, Figure 3(a) shows the

1
2
3 energy difference ΔE between $E_{M_{\text{PTE}}}$ and $E_{\Gamma^5\text{g}}$ for Mn_3ZnN and $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ ($\text{X} = \text{Mn, Ge, and Sn}$) using PW91 EC functional. Negative ΔE indicates that the M_{PTE}
4 AFM phase is favorable; otherwise $\Gamma^5\text{g}$ AFM structure should be stable. It can be seen
5 that the ΔE values change from negative to positive with X doping at Zn sites,
6 corresponding to -0.014, 0.066, 0.02, and 0.02 eV for Mn_3ZnN , $\text{Mn}_3\text{Zn}_{0.875}\text{Mn}_{0.125}\text{N}$,
7 $\text{Mn}_3\text{Zn}_{0.875}\text{Ge}_{0.125}\text{N}$, and $\text{Mn}_3\text{Zn}_{0.875}\text{Sn}_{0.125}\text{N}$, respectively. This suggests that X doping
8 could stabilize the special $\Gamma^5\text{g}$ AFM phase as the ground state in $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$.
9 Moreover, as shown in Figure 3(b), the equilibrium lattice constants of $\Gamma^5\text{g}$ AFM
10 phase are 3.861 Å and 3.874 Å for Ge doped and Sn doped compounds, respectively,
11 which are comparable to the experimental values of 3.909 Å for $\text{Mn}_3\text{Zn}_{0.9}\text{Ge}_{0.1}\text{N}$ at
12 202 K³² and 3.930 Å for $\text{Mn}_3\text{Zn}_{0.8}\text{Sn}_{0.2}\text{N}$ at 265 K³³. The calculated lattice constants
13 of the PM phase become 3.758 Å for $\text{Mn}_3\text{Zn}_{0.875}\text{Ge}_{0.125}\text{N}$ and 3.772 Å for
14 $\text{Mn}_3\text{Zn}_{0.875}\text{Sn}_{0.125}\text{N}$, signifying that the lattice contraction ($\Delta a/a$) 0.027 for Ge doping
15 and 0.026 for Sn doping could be observed with magnetic transition from $\Gamma^5\text{g}$ AFM to
16 PM phase. These characteristics qualitatively agrees to the experimental results, e.g.,
17 antiperovskite compounds $\text{Mn}_3\text{Zn}_{1-x}\text{X}_x\text{N}$ with X ($\text{X} = \text{Ge and Sn}$) doping have been
18 found to contain $\Gamma^5\text{g}$ AFM ground state and exhibit NTE (ZTE) behavior that caused
19 by MVE effect.^{27, 32, 33} This suggests that we could make a prediction on the
20 antiperovskite compounds with $\Gamma^5\text{g}$ AFM ground state using PW91 EC functional. On
21 the other hand, for Mn doped $\text{Mn}_3\text{Zn}_{0.875}\text{Mn}_{0.125}\text{N}$, the $\Gamma^5\text{g}$ AFM ground state and
22 MVE effect are also predicted, which will be discussed in the following experimental
23 section.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 4. (a) Crystal structure showing the first (1st) and second (2nd) nearest shells (Zn/X-Mn) around X atom for Mn_3ZnN and $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ (X= Mn, Ge, and Sn). (b) Corresponding radial distribution function and (c) magnetic moment per Mn atom for 1st and 2nd shells.

The $\text{M}_{\text{PTE}}\text{-}\Gamma^{5g}$ AFM (collinear-noncollinear) phase transition induced by X doping at Zn positions inspires us to explore the influence of doping on the structural changes in $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ (X = Mn, Ge, and Sn) because the magnetic phase transitions led by degenerating spin states around the ground state might be found due to the local lattice distortion.^{16, 50} The RDF of the first (1st) and the second (2nd) nearest shells (Zn-Mn, Mn-Mn, Ge-Mn, and Sn-Mn) around X atom for Mn_3ZnN and $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ (X= Mn, Ge, and Sn) are shown in Figure 4(b). For the 1st shell, the peaks are weakened and the shift of peak position occurs with X doping in Mn_3ZnN . These characteristics indicate that the geometrical distortion could be produced by X doping at Zn sites. However, only the tiny change is found with X doping for the 2nd shell, implying that the geometrical distortion induced by doping could mainly locate near the doped site. On the other hand, the magnetic moment per Mn atom for the 1st and 2nd shells is shown in Figure 4(c). It can be seen that the X doping has more

1
2
3 influence on Mn magnetic moment in the 1st shell compared with those in the 2nd shell.
4
5 For the 1st shell, the values of Mn magnetic moment m_{Mn} are 2.13, 2.42 and 2.49
6 μ_{B}/Mn for X = Mn, Ge, and Sn, respectively, smaller than 2.51 μ_{B}/Mn in Mn_3ZnN .
7 However, slightly larger values of 2.58, 2.56, and 2.52 μ_{B}/Mn are observed for
8 $\text{Mn}_3\text{Zn}_{0.875}\text{Mn}_{0.125}\text{N}$, $\text{Mn}_3\text{Zn}_{0.875}\text{Ge}_{0.125}\text{N}$, and $\text{Mn}_3\text{Zn}_{0.875}\text{Sn}_{0.125}\text{N}$, respectively, in the
9 2nd shell. Notably, in antiperovskite compounds, the spin-lattice coupling of the Γ^{5g}
10 AFM phase was confirmed by NPD results.^{26, 27} Moreover, a decrease in the Mn
11 magnetic moment (unpaired Mn 3d electrons) was found with Ge doping due to Ge 4p
12 - Mn 3d orbital hybridization.⁵¹ For the compounds with Mn doping, the contraction
13 (relative expansion) of the 1st (2nd) shell caused by geometrical distortion may be
14 coupled to Mn magnetic moment, resulting in the decrease (increase) of m_{Mn} . For
15 $\text{Mn}_3\text{Zn}_{0.875}\text{Ge}_{0.125}\text{N}$ and $\text{Mn}_3\text{Zn}_{0.875}\text{Sn}_{0.125}\text{N}$, the tiny variation of m_{Mn} in the 2nd shell is
16 observed with insignificant geometrical distortion, while the deceasing m_{Mn} in the 1st
17 shell might be produced by the contribution from *p-d* (Ge 4p - Mn 3d, Sn 5p - Mn 3d)
18 orbital hybridization and the spin-lattice coupling. However, details of these
19 complicated contributions still need further investigations. Furthermore, combined
20 with the discussions of the magnetic moment changes induced by X doping, some
21 detailed analyses for the geometrical distortion of $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$ are shown in the
22 Support Information.

23
24 The $\text{M}_{\text{PTE}}-\Gamma^{5g}$ AFM phase transition with X doping will be studied based on local
25 lattice distortion. Firstly, we will focus on the nature of M_{PTE} in Mn_3ZnN . Generally,
26 the simply collinear antiferromagnetic ordering is impossible in a two-dimensional
27 triangular lattice.⁵² We suggest that the M_{PTE} , which AFM lays are perpendicular to c
28 axis, might be formed by the effect of the anisotropy energy in Mn_3ZnN . Similarly, as
29 a typical material of triangular lattice antiferromagnet, CuFeO_2 forms an Ising-like
30 4-sublattice ($\uparrow\uparrow\downarrow\downarrow$) collinear AFM ordering due to the effect of the anisotropy energy
31 when the easy-axis anisotropy is sufficiently large.^{1, 7, 10, 16, 52, 53} Noticeably, these
32 collinear AFM orderings are contrary to the typical noncollinear ordered structure of
33

triangular lattice antiferromagnet where the three spins align at 120° from each other in the basal plane, such as the Γ^{5g} AFM phase in Mn_3ZnN .^{1, 54} Moreover, the spin-wave softening may be found as the collinear-noncollinear magnetic phase transition occurs in triangular lattice antiferromagnet. For the typical material CuFeO_2 , The spin-wave gap is observed to decrease by substituting Al^{3+} ions for Fe^{3+} . When the Al concentration is greater than 1.6%, the collinear AFM phase becomes unstable and a noncollinear phase appears.^{52, 55, 56} Additionally, it is clear that the local lattice distortion caused by the difference of ionic radii between the doped element (e.g. Al^{3+}) and Fe^{3+} significantly affects the spin states in $\text{CuFe}_{1-x}\text{Ga}_x\text{O}_2$.⁵⁰ Therefore, it is proposed that, for geometrically frustrated $\text{Mn}_3\text{Zn}_{0.875}\text{X}_{0.125}\text{N}$, a similar spin-wave softening accompanied by local lattice distortion might be observed due to X doping, which could lead to the collinear-noncollinear magnetic phase transition.

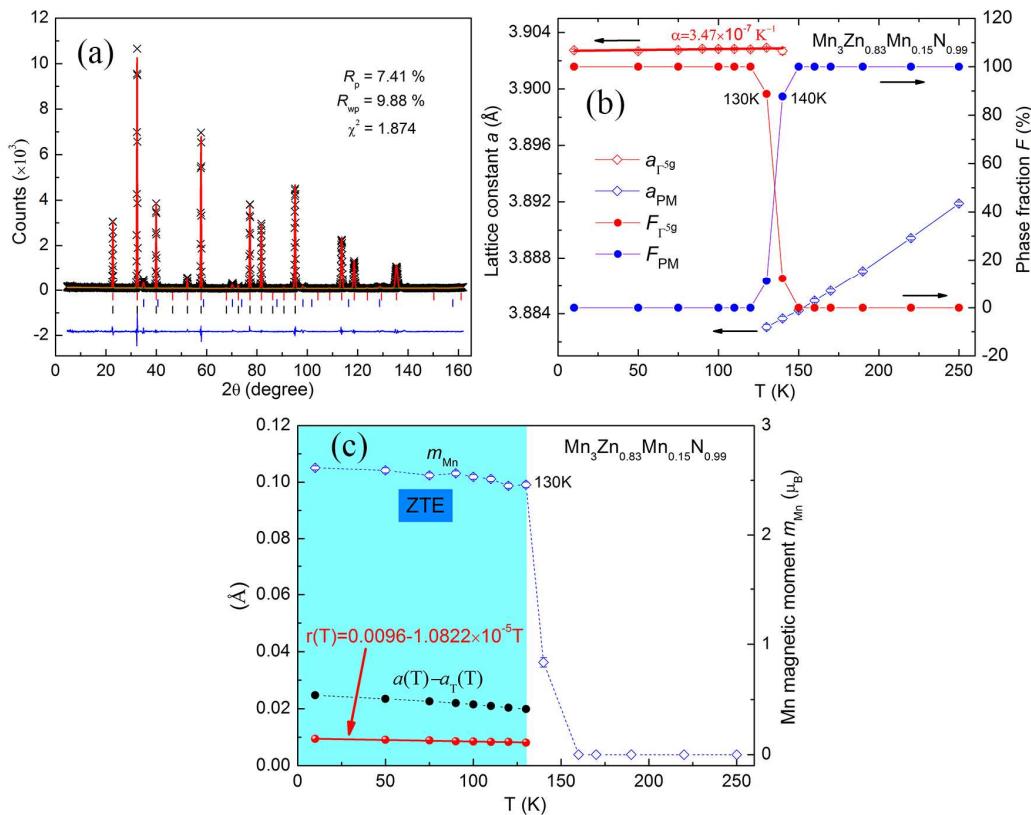


Figure 5. (a) Neutron powder diffraction patterns of $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$ at 10 K. The crosses

1
2
3 show the experimental intensities (I_{obs}), the upper solid line shows the calculated intensities (I_{calc}),
4 and the lower solid line is the difference between the observed and calculated intensities ($I_{\text{obs}} - I_{\text{calc}}$).
5 The vertical lines indicate the angular positions of the nuclear (top row), MnO (second row), and
6 the magnetic (third row) Bragg reflections. (b) Relationship between the lattice variation and
7 phase fractions for the sample $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$. Solid symbols represent phase fractions and
8 open symbols depict lattice constants. Curves are guides to the eye. (c) Temperature dependence
9 of the lattice variation $a(T) - a_0(T)$, ordered magnetic moments (m_{Mn}) of the Γ^{5g} AFM structure, and
10 r(T) for $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$.
11
12
13
14
15
16
17
18
19
20

21 In order to verify the prediction that Mn doping at Zn site could induce the Γ^{5g}
22 AFM ground state, the sample with refined compositions of $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$ was
23 synthesized and analyzed by NPD method. Figure 5(a) shows the NPD pattern of
24 $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$ at 10 K. The NPD pattern could be fitted well with a structural
25 model of cubic symmetry and the Γ^{5g} AFM model, as shown in Figure 1(a). For
26 Mn_3ZnN , it has been investigated previously, with a M_{PTE} magnetic ground state and a
27 combination of Γ^{5g} and M_{PTE} AFM phases between 140 K and 177 K. Noticeably, our
28 NPD study indicates that the ground state phase becomes Γ^{5g} symmetry in
29 $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$, suggesting that we could stabilize the Γ^{5g} AFM phase by Mn
30 doping at Zn site. Moreover, the refined lattice constant a and AFM moment of Mn
31 are 3.90274 Å and 2.60 μ_{B}/Mn , respectively, in $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$, which are less
32 than the values 3.912 Å and 2.61 μ_{B}/Mn in $\text{Mn}_3\text{Zn}_{0.99}\text{N}$.²⁷ This is in qualitative
33 agreement with the calculated results that Mn doping could induce the decreasing of a
34 and m_{Mn} in $\text{Mn}_3\text{Zn}_{0.875}\text{Mn}_{0.125}\text{N}$. On the other hand, the evolution of lattice constant
35 and phase fractions with temperature is taken into consideration, as shown in Figure
36 5(b). Table S1 gives more details for the refined structural parameters of
37 $\text{Mn}_3\text{Zn}_{0.83}\text{Mn}_{0.15}\text{N}_{0.99}$ compound at some representative temperature. For the phase
38 fractions, the transition from Γ^{5g} AFM to PM is incomplete, and the Γ^{5g} phase fraction
39 decreases gradually upon further heating and coexists with the PM phase between 130
40 and 170 K. The evolution of lattice constant a with temperature is shown in Figure 5(c).
41 The lattice constant a decreases with increasing temperature, which is consistent with the
42 calculated results. The ordered magnetic moment m_{Mn} decreases with increasing temperature,
43 which is consistent with the calculated results. The evolution of lattice constant a and ordered
44 magnetic moment m_{Mn} with temperature is shown in Figure 5(d). The lattice constant a and ordered
45 magnetic moment m_{Mn} decrease with increasing temperature, which is consistent with the
46 calculated results. The evolution of lattice constant a and ordered magnetic moment m_{Mn} with
47 temperature is shown in Figure 5(e). The lattice constant a and ordered magnetic moment m_{Mn}
48 decrease with increasing temperature, which is consistent with the calculated results. The
49 evolution of lattice constant a and ordered magnetic moment m_{Mn} with temperature is shown in
50 Figure 5(f). The lattice constant a and ordered magnetic moment m_{Mn} decrease with increasing
51 temperature, which is consistent with the calculated results. The evolution of lattice constant
52 a and ordered magnetic moment m_{Mn} with temperature is shown in Figure 5(g). The lattice constant
53 a and ordered magnetic moment m_{Mn} decrease with increasing temperature, which is consistent
54 with the calculated results. The evolution of lattice constant a and ordered magnetic moment
55 m_{Mn} with temperature is shown in Figure 5(h). The lattice constant a and ordered magnetic
56 moment m_{Mn} decrease with increasing temperature, which is consistent with the calculated
57 results. The evolution of lattice constant a and ordered magnetic moment m_{Mn} with
58 temperature is shown in Figure 5(i). The lattice constant a and ordered magnetic moment
59 m_{Mn} decrease with increasing temperature, which is consistent with the calculated
60 results.

1
2
3 and 140 K. Figure S3 provides supplementary details about the evolution of the NPD
4 pattern with temperature. In addition, the MVE effect with magnetic transition from
5 Γ^{5g} AFM (large volume) to PM (small volume) phases is observed as the previously
6 calculated prediction. More importantly, the ZTE behavior is observed below 140 K
7 within Γ^{5g} AFM phase, corresponding to the coefficient of linear thermal expansion α
8 = 3.47×10^{-7} K⁻¹. This demonstrates that the ZTE behavior can be obtained by
9 achieving the Γ^{5g} AFM phase in antiperovskite compounds.^{26, 27}
10
11
12
13
14
15
16

17 Figure 5(c) gives the temperature dependence of the ordered magnetic moments
18 (m_{Mn}) of Γ^{5g} AFM structure. The abrupt contraction in the volume is observed when
19 m_{Mn} suddenly drops rapidly. This indicates a close correlation between the anomalous
20 volume variation and the magnetic ordering, confirming the lattice is coupled to the
21 Mn magnetic ordering.²⁶ Additionally, more details for the correlation between
22 thermal expansion behaviors and intensities of the magnetic peak are shown in Figure
23 S4 in the Supporting Information. In order to further investigate the spin-lattice
24 coupling in the Γ^{5g} AFM phase, we assume that $\alpha_T(T) = \alpha_{PTE}(T)$ where $\alpha_T(T)$ and
25 $\alpha_{PTE}(T)$ are defined as the coefficient of the usual thermal expansion contributed by
26 the lattice vibration in the ZTE (below 140 K) and PTE region (above 140 K),
27 respectively. And the lattice constant $a_T(T)$ can be obtained from the fitting curve of
28 PTE constants above 140 K using the cubic function (shown in the equation (1) of
29 Supporting Information).^{26, 27} Indicating $a(T)$ as the observed lattice constant, we take
30 the difference $\Delta a_m(T) = a(T) - a_T(T)$ to isolate the effect of the NTE. As shown in the
31 Figure 5(c), it can be seen that $\Delta a_m(T)$ of $Mn_3Zn_{0.83}Mn_{0.15}N_{0.99}$ at ZTE region
32 decreases modestly with increasing temperature, but approximately at the same rate as
33 the ordered moment decreasing. Therefore we define a ratio $r(T) = \Delta a_m(T)/m_{Mn}(T)$ as
34 the extent of the NTE effect connected with the magnitude of the ordered moment
35 $m_{Mn}(T)$. For $Mn_3Zn_{0.83}Mn_{0.15}N_{0.99}$, the ratio $r(T)$, which is found to be a linear
36 function with an extremely low coefficient value of -1.0822×10^{-5} , is approximately
37 independent of T at the ZTE region. This reveals a strong spin-lattice coupling
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

phenomenon for Γ^5g AFM phase in $Mn_3Zn_{0.83}Mn_{0.15}N_{0.99}$, which has also been confirmed in Mn_3Zn_xN , $Mn_3Zn_{0.41}Ag_{0.41}N$ and $Mn_{3+x}Ni_{1-x}N$ antiperovskite compounds with Γ^5g AFM phase.^{26, 27} This spin-lattice coupling could balance the contribution of the lattice vibration, and then produce ZTE behavior.

4. CONCLUSION

In summary, we have theoretically demonstrated that X doping at Zn site in $Mn_3Zn_{0.875}X_{0.125}N$ (X = Mn, Ge, and Sn) could stabilize the noncollinear Γ^5g AFM structure, and experimentally verify the prediction of Γ^5g AFM ground state (with Mn doping) that can be tunable to achieve ZTE behavior. Our calculated results with diverse EC functionals indicate that PW91 is the best one compared with others for the current study of Mn_3ZnN . Moreover, Γ^5g AFM ground state and NTE behavior that caused by MVE effect are confirmed in X (X = Ge, Sn, and Mn) doped $Mn_3Zn_{0.875}X_{0.125}N$. The reasons for collinear-noncollinear magnetic phase transition induced by doping are discussed based on local lattice distortion. In addition, from the NPD results of $Mn_3Zn_{0.83}Mn_{0.15}N_{0.99}$, the predicted Γ^5g AFM ground state and the ZTE caused by strong spin-lattice coupling are observed. The present study suggests that frustrated triangular magnetic systems with noncollinear Γ^5g AFM ground state are promising candidates for ZTE material with strong spin-lattice coupling in antiperovskite compounds.

■ ASSOCIATED CONTENT

Supporting Information

The total energies as a function of the lattice constant, some detailed analyses for the geometrical distortion, NPD patterns, cubic function of fitting curve, and refined structural parameters. The Supporting Information is available free of charge on the

1
2
3 ACS Publications website.
4
5
6
7
8
9

10 ■ AUTHOR INFORMATION 11

12 Corresponding Authors 13

14 *E-mail: sunying@buaa.edu.cn.
15

16 *E-mail: congwang@buaa.edu.cn.
17

18 Notes 19

20 The authors declare no competing financial interest.
21
22
23
24

25 ■ ACKNOWLEDGMENTS 26

27 This work is financially supported by the National Natural Science Foundation of
28 China (NSFC) (Nos. 51172012 and 51472017), the Fundamental Research Funds for
29 the Central Universities, and State Key Lab of Advanced Metals and Materials
30 (2014-ZD03). The authors also acknowledge the support of Foundation of Beijing
31 Municipal Science & Technology Commission (Z141109004414063).
32
33
34
35
36
37
38
39
40

41 ■ REFERENCES 42

43
44
45 ¹ Ye, F.; Fernandez-Baca, J. A.; Fishman, R. S.; Ren, Y.; Kang, H. J.; Qiu, Y.; Kimura,
46 T. Magnetic Interactions in the Geometrically Frustrated Triangular Lattice
47 Antiferromagnet CuFeO₂. *Phys. Rev. Lett.* **2007**, 99, 157201.
48
49

50 ² Ramirez, A. P.; Hayashi, A.; Cava, R. J.; Siddharthan, R.; Shastry, B. S. Zero-Point
51 Entropy in ‘Spin Ice’. *Nature (London)* **1999**, 399, 333-335.
52
53

54 ³ Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Magnetic
55 Control of Ferroelectric Polarization. *Nature (London)* **2003**, 426, 55-58.
56
57

58 ⁴ Hur, N.; Park, S.; Sharma, P. A.; Ahn, J. S.; Guha, S.; Cheong, S-W. Electric
59
60

1
2
3
4
5
6 Polarization Reversal and Memory in a Multiferroic Material Induced by Magnetic
7 Fields. *Nature (London)* **2004**, 429, 392-395.

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
5 Lottermoser, T.; Lonkai, T.; Amann, U.; Hohlwein, D.; Ihringer, J.; Fiebig, M. Magnetic Phase Control by an Electric Field. *Nature (London)* **2004**, 430, 541-544.

6 Diep, H. T. *Frustrated Spin Systems*. World Scientific: Singapore, 2005.

7 Melchy, P. -É.; Zhitomirsky, M. E. Interplay of Anisotropy and Frustration: Triple Transitions in a Triangular-Lattice Antiferromagnet. *Phys. Rev. B* **2009**, 80, 064411.

8 Landsgesell, S.; Prokeš, K.; Ouladdiaf, B.; Klemke, B.; Prokhnenco, O.; Hepp, B.; Kiefer, K.; Argyriou, D. N. Magnetoelectric Properties in Orthorhombic $Nd_{1-x}Y_xMnO_3$: Neutron Diffraction Experiments. *Phys. Rev. B* **2012**, 86, 054429.

9 Cheong, S.-W.; Mostovoy, M. Multiferroics: a Magnetic Twist for Ferroelectricity. *Nat. Mater.* **2007**, 6, 13-20.

10 Reja, S.; Ray, R.; Brink, J.; Kumar, S. Coupled Spin-Charge Order in Frustrated Itinerant Triangular Magnets. *Phys. Rev. B* **2015**, 91, 140403(R).

11 Salamon, M.; Jaime, M. The Physics of Manganites: Structure and Transport. *Rev. Mod. Phys.* **2001**, 73, 583-628.

12 Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous Hall Effect. *Rev. Mod. Phys.* **2010**, 82, 1539-1592.

13 Wang, R. F.; Nisoli, C.; Freitas, R. S.; Li, J.; McConville, W.; Cooley, B. J.; Lund, M. S.; Samarth, N.; Leighton, C.; Crespi, V. H.; Schiffer, P. Artificial 'Spin Ice' in a Geometrically Frustrated Lattice of Nanoscale Ferromagnetic Islands. *Nature (London)* **2006**, 439, 303-306.

14 Nisoli, C.; Moessner, R.; Schiffer, P. Colloquium: Artificial Spin Ice: Designing and Imaging Magnetic Frustration. *Rev. Mod. Phys.* **2013**, 85, 1473-1490.

15 Hayami, S.; Motome, Y. Multiple-Q Instability by (d-2)-Dimensional Connections of Fermi Surfaces. *Phys. Rev. B* **2014**, 90, 060402.

16 Kimura, T.; Lashley, J. C.; Ramirez, A. P. Inversion-Symmetry Breaking in the Noncollinear Magnetic Phase of the Triangular-Lattice Antiferromagnet $CuFeO_2$. *Phys. Rev. B* **2006**, 73, 220401(R).

17 Yu, M. H.; Lewis, L. H.; Moodenbaugh, A. R. Large Magnetic Entropy Change in

the Metallic Antiperovskite Mn_3GaC . *J Appl. Phys.* **2003**, *93*, 10128-10130.

¹⁸ Yan, J.; Sun, Y.; Wu, H.; Huang, Q. Z.; Wang, C.; Shi, Z. X.; Deng, S. H.; Shi, K. W.; Lu, H. Q.; Chu, L. H. Phase Transitions and Magnetocaloric Effect in $Mn_3Cu_{0.89}N_{0.96}$. *Acta Mater.* **2014**, *74*, 58-65.

¹⁹ Fruchart, D.; Bertaut, E. F. Magnetic Studies of the Metallic Perovskite-Type Compounds of Manganese. *J. Phys. Soc. Jpn.* **1978**, *44*, 781-791.

²⁰ Shimizu, T.; Shibayama, T.; Asano, K.; Takenaka, K. Giant Magnetostriction in Tetragonally Distorted Antiperovskite Manganese Nitrides. *J. Appl. Phys.* **2012**, *111*, 07A903.

²¹ Shibayama, T.; Takenaka, K. Giant Magnetostriction in Antiperovskite Mn_3CuN . *J. Appl. Phys.* **2011**, *109*, 07A928.

²² Sun, Y.; Guo, Y. F.; Tsujimoto, Y.; Wang, C.; Li, J.; Wang, X.; Feng, H. L.; Sathish, C. I.; Matsushita, Y.; Yamaura, K. Unusual Magnetic Hysteresis and the Weakened Transition Behavior Induced by Sn Substitution in Mn_3SbN . *J. Appl. Lett.* **2014**, *115*, 043509.

²³ Kamishima, K.; Goto, T.; Nakagawa, H.; Miura, N.; Ohashi, M.; Mori, N. Giant Magnetoresistance in the Intermetallic Compound Mn_3GaC . *Phys. Rev. B* **2000**, *63*, 024426.

²⁴ Matsunami, D.; Fujita, A.; Takenaka, K.; Kano, M. Giant Barocaloric Effect Enhanced by the Frustration of the Antiferromagnetic Phase in Mn_3GaN . *Nat. Mater.* **2015**, *14*, 73-78.

²⁵ Lukashev, P.; Sabirianov, R. F.; Belashchenko, K. Theory of the Piezomagnetic Effect in Mn-based Antiperovskites. *Phys. Rev. B* **2008**, *78*, 184414.

²⁶ Deng, S. H.; Sun, Y.; Wu, H.; Huang, Q. Z.; Yan, J.; Shi, K. W.; Malik, M. I.; Lu, H. Q.; Wang, L.; Huang, R. J.; Li, L. F.; Wang, C. Invar-like Behavior of Antiperovskite $Mn_{3+x}Ni_{1-x}N$ Compounds. *Chem. Mater.* **2015**, *27*, 2495-2501.

²⁷ Wang, C.; Chu, L. H.; Yao, Q. R.; Sun, Y.; Wu, M. M.; Ding, L.; Yan, J.; Na, Y. Y.; Tang, W. H.; Li, G. N.; Huang, Q. Z.; Lynn, J. W. Tuning the Range, Magnitude, and Sign of the Thermal Expansion in Intermetallic $Mn_3(Zn, M)_xN$ ($M = Ag, Ge$). *Phys. Rev. B* **2012**, *85*, 220103(R).

²⁸ Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S. Local Lattice Distortion in the Giant Negative Thermal Expansion Material

1
2
3
4
5
6 Mn₃Cu_{1-x}Ge_xN. *Phys. Rev. Lett.* **2008**, 101, 205901.

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
29 Song, X. Y.; Sun, Z. H.; Huang, Q. Z.; Rettenmayr, M.; Liu, X. M.; Seyring, M.; Li, G. N.; Rao, G. H.; Yin, F. X. Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride. *Adv. Mater.* **2011**, 23, 4690-4694.

30 Hamada, T.; Takenaka, K. Phase Instability of Magnetic Ground State in Antiperovskite Mn₃ZnN: Giant Magnetovolume Effects Related to Magnetic Structure. *J. Appl. Phys.* **2012**, 111, 07A904.

31 Fruchart, R.; Madar, R.; Barberon, M.; Fruchart, E.; Lorthioir, M. G. Transitions Magnétiques et Déformations Cristallographiques Associées Dans les Nitrures du Type Perowskite ZnMn₃N et SnMn₃N. *J. Phys. (Paris)* **1971**, 32, 982-984.

32 Sun, Y.; Wang, C.; Wen, Y. C.; Zhu, K. G.; Zhao J. T. Lattice Contraction and Magnetic and Electronic Transport Properties of Mn₃Zn_{1-x}Ge_xN. *Appl. Phys. Lett.* **2007**, 91, 231913.

33 Sun, Y.; Wang, C.; Wen, Y. C.; Chu, L. H.; Pan, H.; Nie, M. Negative Thermal Expansion and Magnetic Transition in Anti-Perovskite Structured Mn₃Zn_{1-x}Sn_xN Compounds. *J. Am. Ceram. Soc.* **2010**, 93, 2178-2181.

34 Ma, P. W.; Dudarev, S. L. Constrained Density Functional for Noncollinear Magnetism. *Phys. Rev. B* **2015**, 91, 054420.

35
36 Mryasov, O. N.; Gubanov, V. A.; Liechtenstein, A. I. Spiral-Spin-Density-Wave States in Fcc Iron: Linear-Muffin-Tin-Orbitals Band-Structure Approach. *Phys. Rev. B* **1992**, 45, 12330.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
35 Mryasov, O. N.; Lichtenstein, A. I.; Sandratskii, L. M.; Gubanov, V. A. Magnetic Structure of FCC Iron. *J. Phys. Condens. Matter* **1991**, 3, 7683-7690.

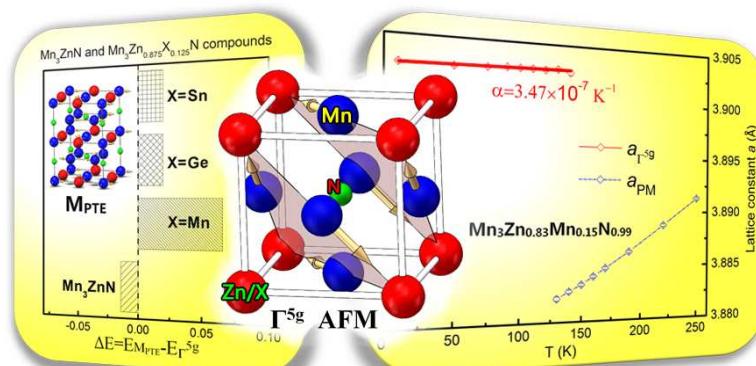
36 Lukashev, P.; Belashchenko, K. D.; Sabirianov, R. F. Large Magnetoelectric Effect in Ferroelectric/Piezomagnetic Heterostructures. *Phys. Rev. B* **2011**, 84, 134420.

37 Blöchl, P. Projector Augmented-Wave Method. *Phys. Rev. B*, **1994**, 50, 17953-17979.

38 Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, 59, 1758-1775.

39 Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. *Phys. Rev. B* **1992**, 45, 13244-13249.

1
2
3
4
5
6 41 Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made
7 Simple. *Phys. Rev. Lett.* **1996**, 77, 3865-3868.
8
9 42 Mattsson, A. E.; Armiento, R.; Paier, J.; Kresse, G.; Wills, J. M.; Mattsson, T. R.
10 The AM05 Density Functional Applied to Solids. *J. Chem. Phys.* **2008**, 128, 084714.
11
12 43 Ropo, M.; Kokko, K.; Vitos, L. Assessing the Perdew-Burke-Ernzerhof
13 Exchange-Correlation Density Functional Revised for Metallic Bulk and Surface
14 Systems. *Phys. Rev. B* **2008**, 77, 195445.
15
16 44 Liu, C. M.; Chen, X. R.; Xu, C.; Cai, L. C.; Jing, F. Q. Melting Curves and Entropy
17 of Fusion of Body-Centered Cubic Tungsten Under Pressure. *J. Appl. Phys.* **2012**, 112,
18 013518.
19
20 45 Humphrey, W.; Dalke, A.; Schulten, K. VMD - Visual Molecular Dynamics, *J.*
21 *Molec. Graphics* **1996**, 14, 33-38.
22
23 46 Larson, A. C.; Von Dreele, R. B. *General Structure Analysis System (GSAS)*,
24 Technical Report LAUR 86-748 for Los Alamos National Laboratory: Los Alamos,
25 NM, 2004.
26
27 47 Qu, B. Y.; Pan, B. C. Nature of the Negative Thermal Expansion in Antiperovskite
28 Compound Mn₃ZnN. *J. Appl. Phys.* **2010**, 108, 113920.
29
30 48 Sun, Y.; Wang, C.; Huang, Q. Z.; Guo, Y. F.; Chu, L. H.; Arai, M. S.; Yamaura, K.
31 Neutron Diffraction Study of Unusual Phase Separation in the Antiperovskite Nitride
32 Mn₃ZnN. *Inorg. Chem.* **2012**, 51, 7232-7236.
33
34 49 Granado, E.; Huang, Q.; Lynn, J. W.; Gopalakrishnan, J.; Greene, R. L.; Ramesha,
35 K. Spin-Orbital Ordering and Mesoscopic Phase Separation in the Double Perovskite
36 Ca₂FeReO₆. *Phys. Rev. B* **2002**, 66, 064409.
37
38 50 Terada, N.; Nakajima, T.; Mitsuda, S.; Kitazawa, H.; Kaneko, K.; Metoki, N.
39 Ga-Substitution-Induced Single Ferroelectric Phase in Multiferroic CuFeO₂. *Phys.*
40 *Rev. B* **2008**, 78, 014101.
41
42 51 Hua, L.; Wang, L.; Chen, L. F. First-Principles Investigation of Ge Doping Effects
43 on the Structural, Electronic and Magnetic Properties in Antiperovskite Mn₃CuN. *J.*
44 *Phys.: Condens. Matter* **2010**, 22, 206003.
45
46 52 Fishman, R. S.; Okamoto, S. Noncollinear Magnetic Phases of a Triangular-Lattice
47 Antiferromagnet and of Doped CuFeO₂. *Phys. Rev. B* **2010**, 81, 020402(R).
48
49
50
51
52
53
54
55
56
57
58
59
60


⁵³ Wang, F.; Vishwanath, A. Spin Phonon Induced Collinear Order and Magnetization Plateaus in Triangular and Kagome Antiferromagnets: Applications to CuFeO₂. *Phys. Rev. Lett.* **2008**, 100, 077201.

⁵⁴ Kawamura, H. Universality of Phase Transitions of Frustrated Antiferromagnets. *J. Phys. Condens. Matter* **1998**, 10, 4707-4754.

⁵⁵ Fishman, R. S. Spin Waves in CuFeO₂. *J. Appl. Phys.* **2008**, 103, 07B109.

⁵⁶ Seki, S.; Yamasaki, Y.; Shiomi, Y.; Iguchi, S.; Onose, Y.; Tokura, Y. Intrinsic Damping of Spin Waves by Spin Current in Conducting Two-Dimensional Systems. *Phys. Rev. B* **2007**, 75, 100403(R).

Table of Contents

	LDA	AM05	PBEsol	PBE	PW91	Experiment
a_0 (Å)	3.702	3.781	3.790	3.871, 3.870 ⁴⁴	3.860	3.912 ²⁷
m (μ_B)	2.21	2.10	2.16	2.60, 2.63 ⁴⁴	2.51	2.61 ²⁷

Table 1 for manuscript
108x35mm (300 x 300 DPI)

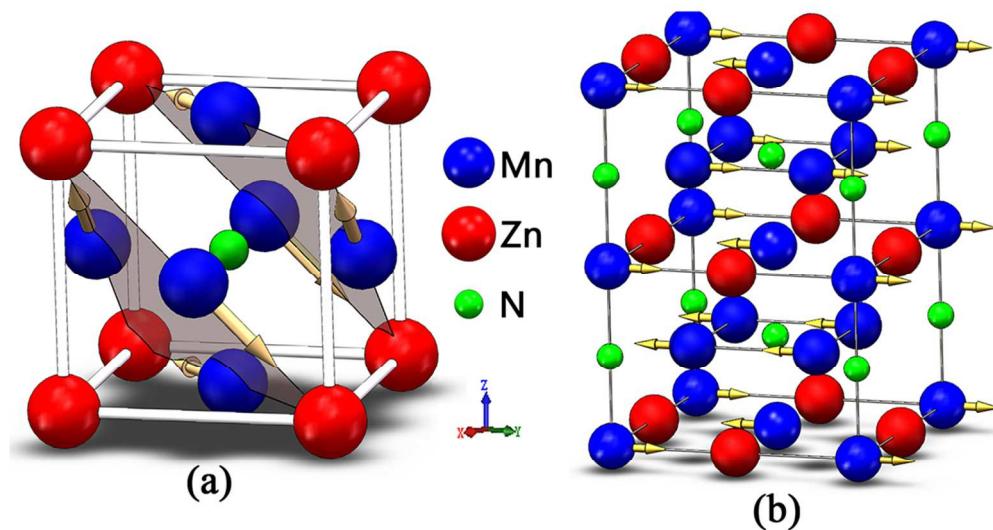


Figure 1 for manuscript
102x56mm (300 x 300 DPI)

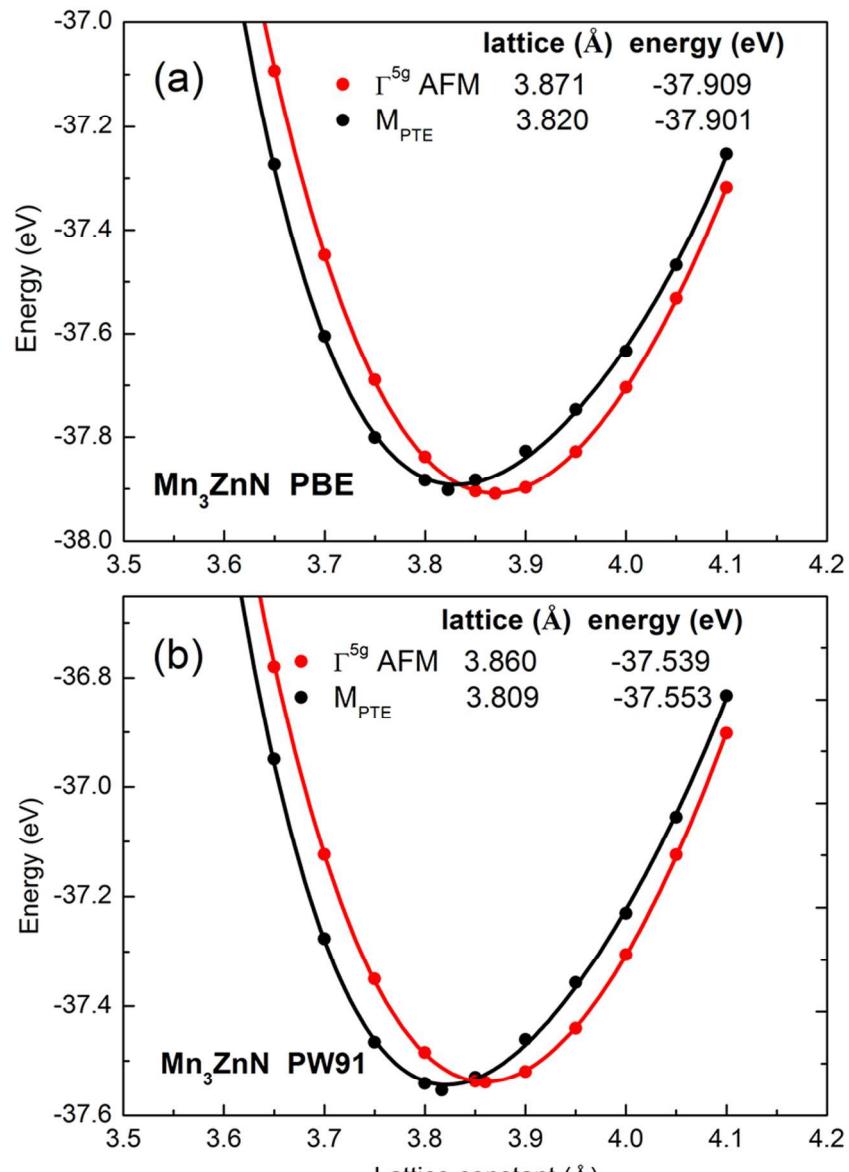


Figure 2 for manuscript
75x105mm (300 x 300 DPI)

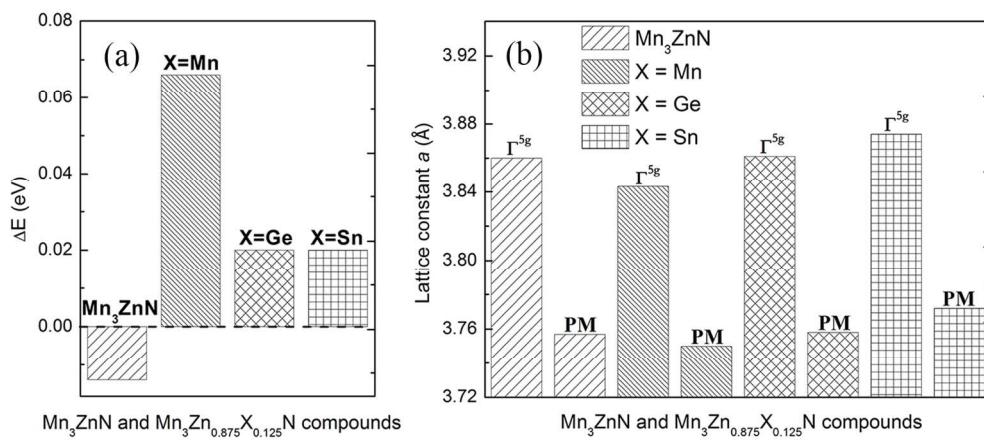


Figure 3 for manuscript
150x66mm (300 x 300 DPI)

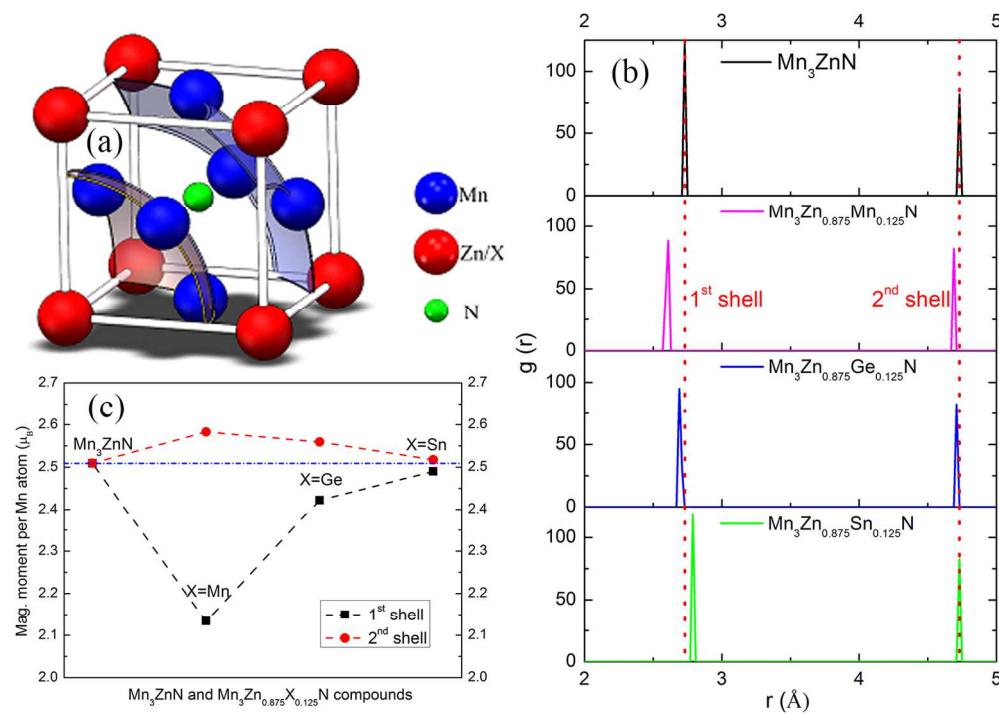


Figure 4 for manuscript
146x104mm (300 x 300 DPI)

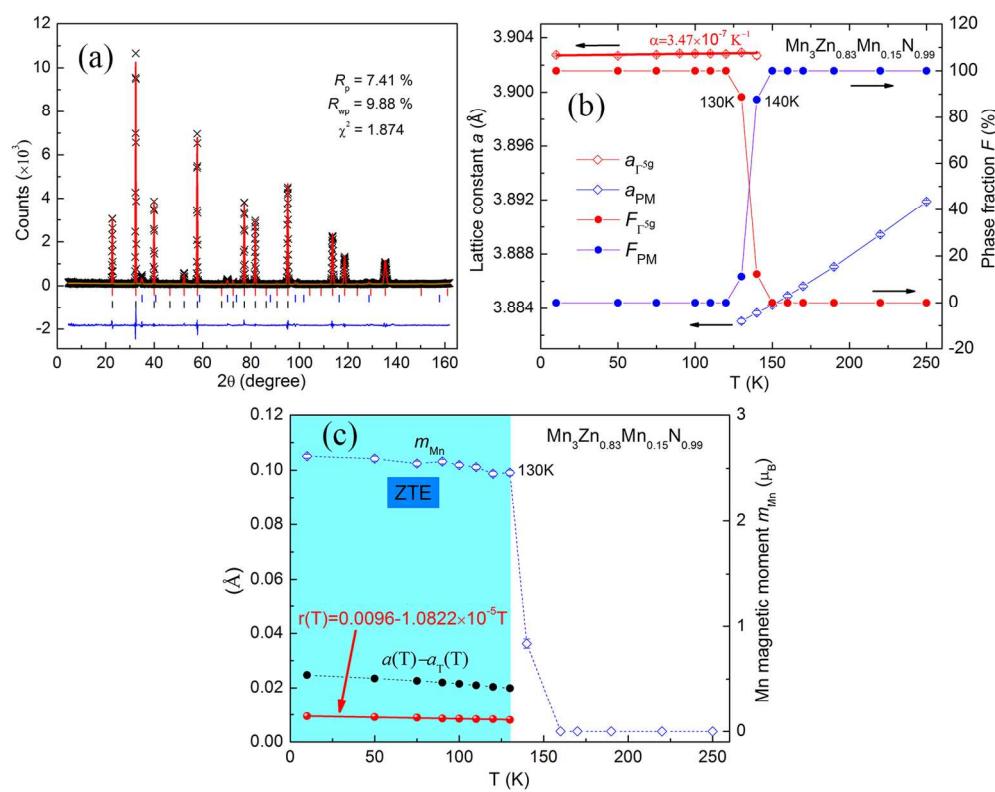


Figure 5 for manuscript
150x117mm (300 x 300 DPI)

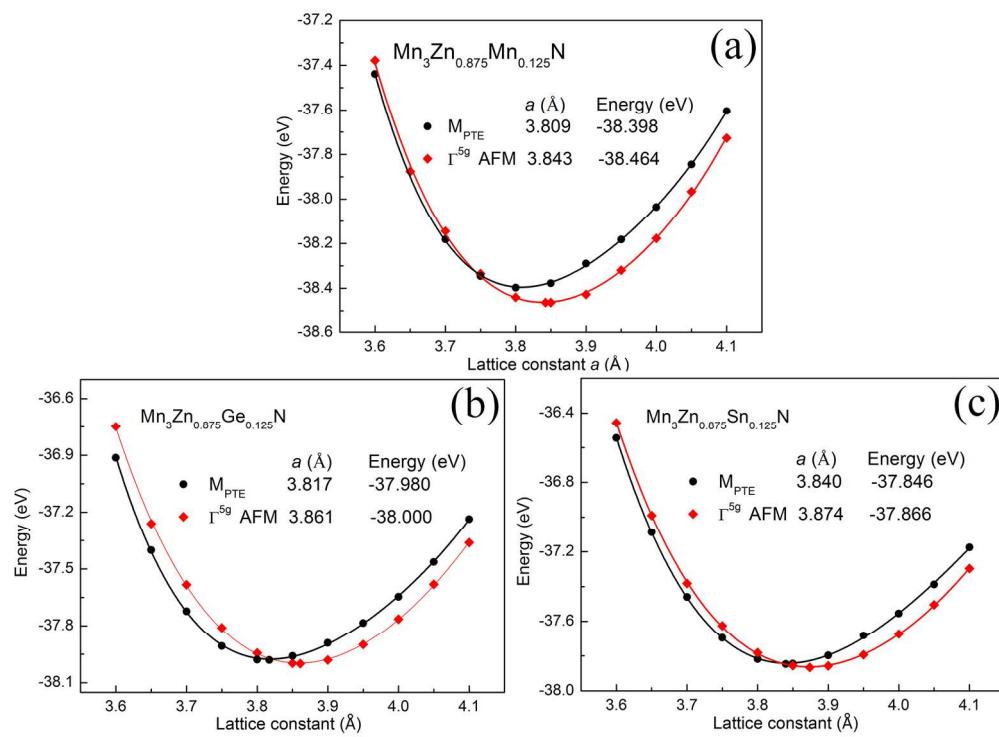


Figure S1 for Supporting information
172x125mm (300 x 300 DPI)

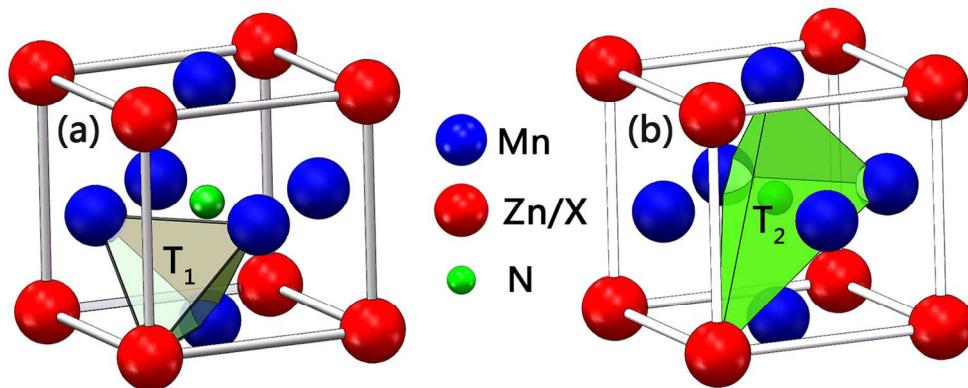


Figure S2 for Supporting information
141x57mm (300 x 300 DPI)

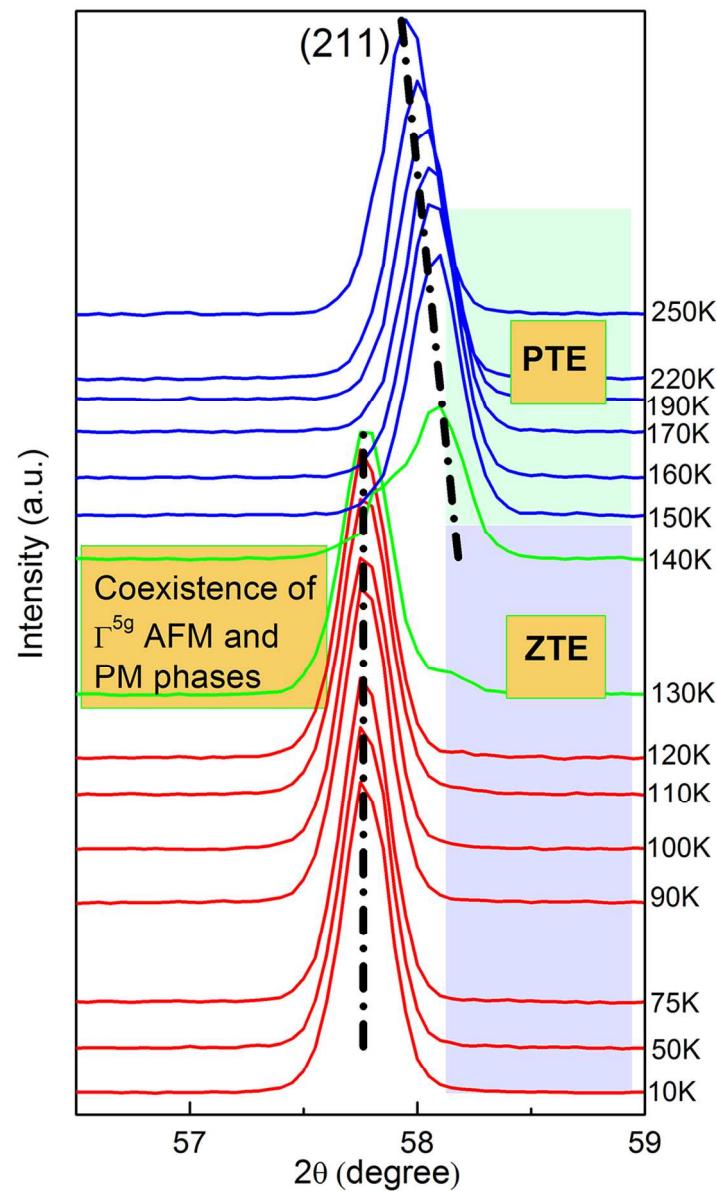


Figure S3 for Supporting information
96x147mm (300 x 300 DPI)

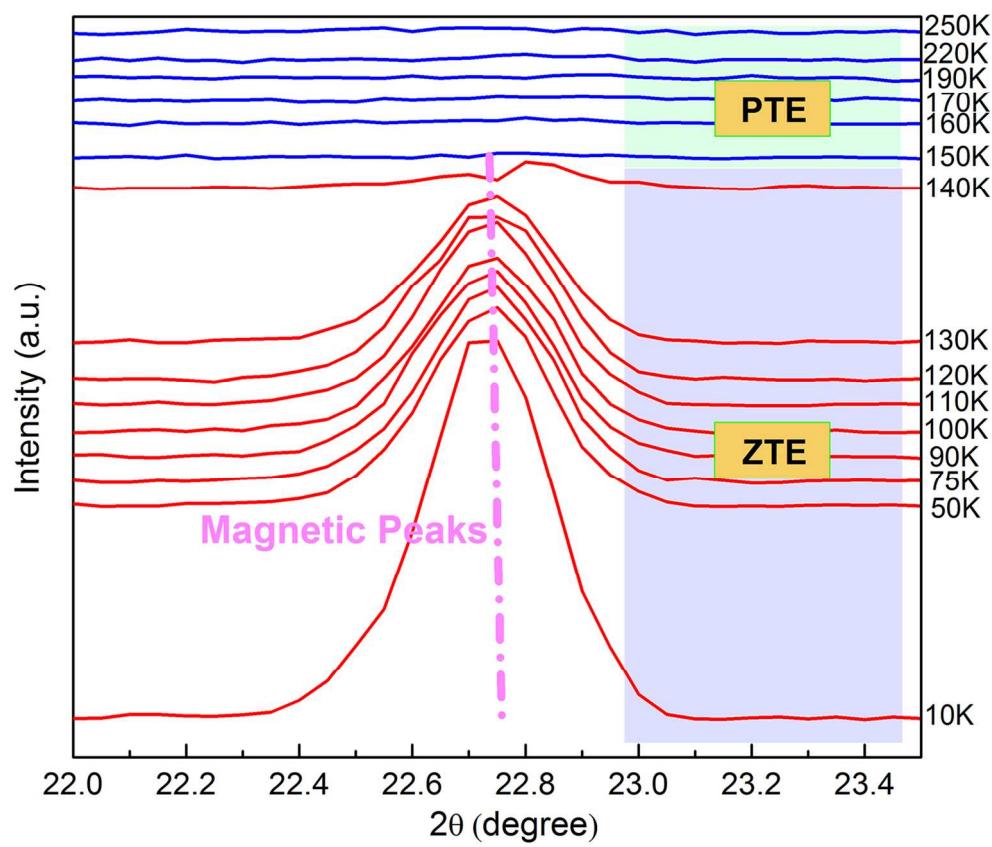


Figure S4 for Supporting information
134x117mm (300 x 300 DPI)

T (K)	a	Err a	m_{Mn}	Err m_{Mn}	R (%)	R_{wp} (%)	χ^2 (%)	U_{iso} (Mn)	U_{iso} (Zn)	U_{iso} (N)	
10	10	3.90274	8×10^{-5}	2.60	0.02	7.41	9.88	1.874	3.01×10^{-3}	3.50×10^{-3}	1.40×10^{-3}
11	110	3.90284	9×10^{-5}	2.51	0.02	6.78	8.76	1.265	3.60×10^{-3}	3.79×10^{-3}	2.30×10^{-3}
12	170	3.8856	1×10^{-4}	0	-	7.86	8.81	1.543	5.16×10^{-3}	5.21×10^{-3}	2.84×10^{-3}
13	250	3.8919	1×10^{-4}	0	-	6.26	7.31	1.342	5.25×10^{-3}	6.54×10^{-3}	3.94×10^{-3}

Table S1 for Supporting information
109x38mm (300 x 300 DPI)

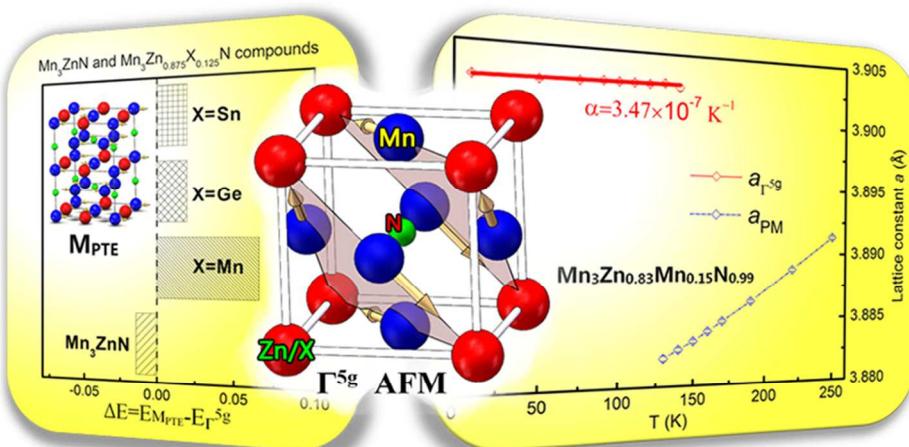


Table of Contents for manuscript
74x35mm (300 x 300 DPI)