

REFINEMENT OF THE CRYSTAL AND MAGNETIC STRUCTURE OF PrFeO₃ AT T = 8 K*

I. SOSNOWSKA

Institute of Experimental Physics, University of Warsaw, Warsaw (Poland)

P. FISCHER

Laboratorium für Neutronenstreuung, ETH, CH-5303 Würenlingen (Switzerland)

(Received December 8, 1984)

Summary

The orthoferrite PrFeO₃ crystallizes according to space group *Pbnm*, and the magnetic structure is of the *G_x* type. Based on neutron-diffraction measurements performed at 8 K with improved resolution, the structure parameters and the ordered magnetic moment of Fe³⁺ ($\mu = \mu_x = 4.14(4)\mu_B$) were refined. The results are compared with previous room-temperature data.

1. Introduction

The crystal structures of rare earth orthoferrites were extensively investigated at room temperature by Marezio *et al.* employing single-crystal X-ray studies [1]. Neutron-diffraction measurements of the 011 and 101 reflections of PrFeO₃, performed by Pinto and Shaked [2], indicate *G_x*-type antiferromagnetic ordering of Fe³⁺ moments in the temperature range 4.2 - 293 K. The time-of-flight (TOF) neutron-diffraction study reported by Kaun *et al.* [3] supports this model in the temperature range 77 - 293 K. In a previous neutron-diffraction study of PrFeO₃ made at room temperature by the authors [4] the ordered magnetic moment $\mu = \mu_x = 3.73(3)\mu_B$ per Fe³⁺ ion was determined, and the orthorhombic crystal structure corresponding to space group *Pbnm* [1] was confirmed. By means of high-resolution TOF neutron data Sosnowska and Steichele [5] proved that the magnetic structure of PrFeO₃ is of pure *G_x* type at room temperature. The present experiment extends the quantitative analysis of the crystal and magnetic structures of PrFeO₃ to low temperatures (8 K).

*Paper presented at the International Rare Earth Conference, ETH Zurich, Switzerland, March 4 - 8, 1985.

2. Experimental details and discussion

Using improved resolution (neutron wavelength, $\lambda = 1.503 \text{ \AA}$, from a Ge 311 monochromator and collimations $\alpha_1 = \alpha_3 = 10'$) compared with the 293 K study [4], the neutron-diffraction measurement was performed on a polycrystalline sample of PrFeO_3 on a two-axis spectrometer situated at the Saphir reactor, Würenlingen. Figure 1 shows the corresponding 8 K diffraction pattern. The neutron intensities were analysed by the Rietveld profile method [6] using the neutron scattering lengths $b_{\text{Pr}} = 4.45$, $b_{\text{Fe}} = 9.54$, $b_{\text{O}} = 5.81 \text{ F}$ and the neutron magnetic form factor of Fe^{3+} [7]. Good agreement of observed and calculated neutron intensities was achieved. The relevant results are summarized in Table 1. The 8 K and room-temperature structures appear to be similar. Also at 8 K, the magnetic structure is of the G_x type, and the ordered magnetic moment, μ_{Fe} , amounts to $4.14(4)\mu_{\text{B}}$, i.e., it is reduced below the free-ion value of $5 \mu_{\text{B}}$ ($S = 5/2$). These results support ref. 2 as well as the estimate of a weak Pr-Fe coupling in PrFeO_3 published by Pataud and Sivardière [8], which makes reorientation phase transitions improbable.

TABLE 1

Parameters of the crystal and magnetic structure of PrFeO_3 for space group $Pbnm$, determined by means of neutron diffraction

T (K)	8	293 [4]	293 [1]
λ (\AA)	1.503(1)	2.331(2)	X-rays
a (\AA)	5.486(4)	5.483(5)	5.482
b (\AA)	5.591(4)	5.578(5)	5.578
c (\AA)	7.783(5)	7.788(7)	7.786
B_{Pr} (\AA^2)	0.5(1)	0.92(5)	
B_{Fe} (\AA^2)	0.22(4)	0.92(5)	
B_{O} (\AA^2)	0.41(4)	0.92(5)	
x_{Pr}	0.990(2)	0.984(2)	0.99097(4)
y_{Pr}	0.0450(9)	0.044(1)	0.04367(5)
$x_{\text{O}1}$	0.086(1)	0.084(1)	0.0817(7)
$y_{\text{O}1}$	0.4795(9)	0.481(1)	0.4788(9)
$x_{\text{O}2}$	0.7076(6)	0.7065(7)	0.7075(5)
$y_{\text{O}2}$	0.2925(6)	0.2908(6)	0.2919(5)
$z_{\text{O}2}$	0.0448(5)	0.0449(6)	0.0437(5)
μ_{Fe} (μ_{B})	4.14(4)	3.73(3)	
R_{wp}	0.121	0.091	
R_{in}	0.046	0.034	0.023
R_{im}	0.033	0.017	
R_{e}	0.071	0.058	

T = temperature, λ = neutron wavelength, a , b , c = lattice constants, B = temperature factor, R_{wp} , R_{in} , R_{im} = agreement ratios concerning weighted profile and integrated nuclear and magnetic intensities, respectively, R_{e} = statistically expected R factor [6], μ = ordered magnetic moment per Fe^{3+} ion. Literature data for the room-temperature structure are added for comparison.

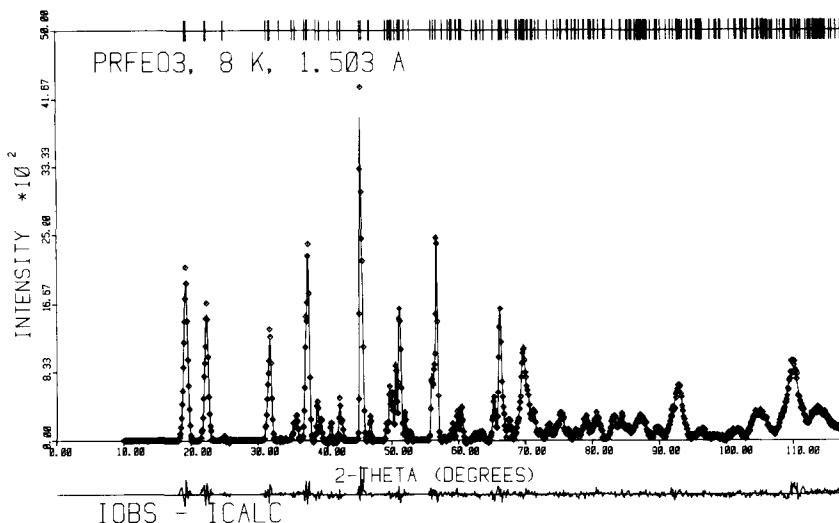


Fig. 1. Observed (points, corrected for absorption and background) and calculated (line) neutron diffraction patterns of PrFeO_3 at 8 K (step $\Delta 2\theta = 0.1^\circ$).

Acknowledgments

One of the authors (I.S.) was supported by research grant MR.I.5 and the ETH neutron scattering laboratory.

References

- 1 M. Marezio, J. P. Remeika and P. D. Dernier, *Acta Crystallogr., Sect. B*, **26** (1970) 2008.
- 2 H. Pinto and H. Shaked, *Solid State Commun.*, **10** (1972) 663.
- 3 J. L. P. Kaun, B. Lilppold, M. M. Lukina, W. Matz, B. N. Savenko and K. Henning, *Sov. Phys. Crystallogr.*, **21** (1976) 212.
- 4 I. Sosnowska and P. Fischer, *AIP Conf. Proc.*, **89** (1982) 346.
- 5 I. Sosnowska and E. Steichele, *AIP Conf. Proc.*, **89** (1982) 309.
- 6 H. M. Rietveld, *J. Appl. Crystallogr.*, **2** (1969) 65.
- 7 R. E. Watson and A. J. Freeman, *Acta Crystallogr.*, **14** (1961) 27.
- 8 P. Pataud and J. Sivardi  re, *J. Phys. (Paris)*, **31** (1970) 1017.