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Gd5Ge4 crystallizes in the orthorhombic space groupPnma, and orders antiferromagnetically below the Néel
temperatureTN,127 K. We have employed x-ray resonant magnetic scattering to elucidate the details of the
magnetic structure. The magnetic unit cell is the same as the chemical unit cell. From azimuth scans and the
Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same
magnetic space groupPnm8a. The magnetic moments are primarily aligned along thec axis and thec
components of the magnetic moments at the three different sites are equal. The ferromagnetic Gd-rich slabs are
stacked antiferromagnetically along theb direction.
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I. INTRODUCTION

The Gd5sSixGe1−xd4 alloys have received attention re-
cently because of their unusually strong magnetocaloric,1,2

magnetostrictive,3,4 and magnetoresistive5–7 properties when
xø0.5. All of these properties appear to be related to a first
order magnetic transition accompanied by a martensiticlike
structural change.8

One of the endmembers of this series of compounds,
Gd5Ge4, crystallizes in the Sm5Ge4-type orthorhombic struc-
ture with space groupPnma, and lattice constantsa
=7.6838 Å,b=14.7930 Å, andc=7.7628 Å atT=6 K.9 The
Gd ions are located at one 4c Wyckoff site and two inequiva-
lent 8d Wyckoff sites. They form two Gd-rich slabs, sepa-
rated by sheets of Ge as shown in Fig. 1.10 Below the Néel
temperature,TN,127 K, a second-order transition occurs
where the Gd moments order antiferromagnetically. A first
order magnetic transition from the antiferromagnetic phase
sAFMd to a ferromagnetic phasesFMd occurs in an applied
magnetic field of 18 kOe atT=4.5 K.10 Alternatively, when
Si is substituted for Ge in Gd5sSixGe1−xd4 up to x,0.2, a
similar AFM→FM first order transition occurs upon cooling
in zero field.11 In both cases, the magnetic transition occurs
concomitantly with a structural transition where the slabs
shift relative to one another in thea direction.11,9 From mag-
netization measurements and x-ray structural studies, it has
been proposed that the Gd magnetic moments are ferromag-
netically aligned within the slabs, while the coupling be-
tween slabs can be antiferromagnetic or ferromagnetic. This
indicates the presence of strong magnetoelastic coupling.

Details of the microscopic magnetic structure of Gd5Ge4
or, in fact, any of the Gd5sSixGe1−xd4 alloys have not been
determined largely due to the large neutron absorption cross
section of naturally occurring Gd. The aim of the present
measurement is to elucidate the antiferromagnetic structure
of Gd5Ge4 using x-ray resonant magnetic scattering
sXRMSd.

II. EXPERIMENTAL DETAILS

Single crystals of Gd5Ge4 were grown using the Bridg-
man technique.12 For the XRMS measurements, single crys-

tals were extracted from the ingot and prepared with polished
surfaces perpendicular to the crystallographica andb axes,
with a size of approximately 2 mm32 mm. The temperature
dependence of the magnetization was measured with a
SQUID magnetometer and is shown in Fig. 2. These data
clearly show an antiferromagnetic transition atTN=127 K,
and indicate that the magnetic moment direction is likely
along thec axis since the magnetization inc direction de-
creases to zero as temperature decreases to the base tempera-
ture. These results are in agreement with previous magneti-
zation measurements.13

The XRMS experiment was performed on the 6ID-B
beamline in the MUCAT sector at the Advanced Photon
Source at the GdLII absorption edgesE=7.934 keVd. The
incident radiation was linearly polarized perpendicular to the
vertical scattering planess polarizedd with a spatial cross
section of 1 mmshorizontald30.2 mmsverticald. In this
configuration the resonant magnetic scattering, arising from
electric dipole transitionssE1, from the 2p-to-5d statesd, ro-
tates the plane of linear polarization into the scattering plane
sp polarizationd. In contrast, charge scattering does not
change the polarization of the scattered photonsss-s scat-

FIG. 1. The crystal structure of Gd5Ge4. Shaded regions indicate
the Gd-rich “slabs” stacked along theb direction.
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teringd. Pyrolytic graphite PGs0 0 6d was used as a polariza-
tion analyzer to suppress the charge background relative to
the magnetic scattering signal.

Based on the predictions13 of the AFM structure described
above, thes0 k 0d reflectionssfor k oddd are expected to be
strong magnetic reflections and forbidden for normal charge
scattering. Therefore, the sample was mounted on the end of
the cold finger of a displex cryogenic refrigerator with the
crystallographicb axis parallel to the axis of the displex and
set in the scattering plane. This configuration allows the
sample to be rotated around the scattering vectorQ sparallel
to theb axisd while keepingQ constant. In such an azimuth
scd mode, either thea-b or b-c planes can be brought into
coincidence with the scattering plane through a rotation ofc.
Since the resonantE1 scattering is sensitive only to the com-
ponent of the magnetic moment within the scattering plane,
with a cross sectionf ~kW8 ·mW skW8 andmW are the wave vector of
the scattered photons and the magnetic moment, respec-
tivelyd, all three Cartesian components of the moment may
be probed in this mode without remounting the sample.14

In this particular experiment the magnetic peak positions
are forbidden for normal charge scattering, but can be
strongly contaminated by multiple charge scattering.15 How-
ever, the intensity of the multiple scattering is highly sensi-
tive to both the incident beam energy and the azimuth angle
c. For example, in Fig. 3sad a contour map of intensity in
dependence on energy and azimuth angle is shown at the
position of the s5 0 0d reflection measured on the sample
surface cut perpendicular to thea axis. The multiple scatter-
ing contribution at the resonant energy can be minimized
through a judicious choice of azimuth angle as shown in Fig.
3sbd, where the resonant scattering is well separated from the
multiple scattering. We note that resonant scattering can arise
from anomalous charge scattering in addition to magnetic
scattering,16 which will be discussed later.

III. RESULTS AND DISCUSSION

With the sample at low temperature and oriented so that
the b-c orthorhombic axes were coincident with the scatter-
ing plane, a strong magnetic reflection was found at the
nominally forbiddens0 3 0d charge reflection position as il-
lustrated in Fig. 4sad. The full-width-half-maximum of the
magnetic peak measured inu scanssrocking curvesd was
0.1°, the same as that from charge scattering. In order
to confirm that the scattered intensity does indeed arise
from resonant magnetic scattering, energy scans through the
Gd LII absorption edge were performed above and below the
Néel temperaturefsee Fig. 4sbdg. At T=145 K, only charge
scattering, arising from the tails of multiple scattering peaks,
was observed. At low temperature, however, there is clear
evidence of strong resonant scattering at thes0 3 0d magnetic
peak position. Figure 5sad displays the temperature depen-
dence of the integrated intensity of thes0 7 0d magnetic
peak. A Lorentzian peak shape was used to fitu scans
through the reciprocal lattice points to obtain the integrated
intensities. The intensity decreases smoothly to zero as tem-
perature increases up toT=125 K. Magnetic reflections were
found only at reciprocal lattice pointss0 k 0d, wherek is odd.
Therefore, the magnetic unit cell is the same as the crystal-
lographic unit cell.

Having identified the location of the magnetic peaks and,
therefore, the magnetic unit cell, we now turn to the deter-

FIG. 2. Magnetic susceptibilityM /H of the Gd5Ge4 single crys-
tal. The temperature dependence of the susceptibility was measured
on heating of the zero-field cooled sample in a field of 100 Oe
applied parallel to the three crystallographic axes.

FIG. 3. sad Contour map of the intensity as a function of energy
and azimuth anglec at thes5 0 0d position andT=8 K. Disconti-
nuities in the bands of multiple scattering across the energy range
are artifacts of the scanning process andsbd single energy scan at
the azimuth anglec=59.9°, which is depicted as a horizontal
dashed line insad. In sbd, the vertical dashed line represents the
position of the GdLII absorption edge.
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mination of the magnetic moment direction in the antiferro-
magnetic structure. This was accomplished by azimuth scans
through thes0 k 0d reflections. Thes0 3 0d azimuth scan at
T=8 K is shown in Fig. 6. The integrated intensities of the
magnetic peak are normalized by the intensity of thes0 4 0d
charge peaksat the same azimuth angled to reduce systematic

errors. At an azimuth anglec=90°, where thea-b plane is
coincident with the scattering plane, the integrated intensity
is close to zero. We note that the intensity atc=90° is close
to zero over the entire temperature range investigated in this
experimentsfrom 8 K to 140 Kd. This indicates that there is
no contribution to the scattering at this reflection from ana
or b component of the magnetic moment. Two maxima are
found at azimuth values ofc=0° and 180° where theb-c
plane is coincident with the scattering plane. Therefore, only
the c component contributes to the magnetic resonant scat-
tering at this reflection.

The solid line in Fig. 6 represents the expected depen-
dence,I =A sin2sc−ccd, for the integrated intensity withcc

=s88.1±1.8d°. The small deviation ofcc from 90° results
from a slight misalignment of the sample. The intensity at
c=0° deviates from the calculated curve because of particu-
larly strong contributions from multiple scattering. Figure 6
indicates that either there is no magnetic moment component
alonga or b, or the intensity of thes0 3 0d magnetic peak is
not sensitive to either thea or theb magnetic moment com-
ponents due to cancelations arising from the symmetry of the
magnetic order.

In order to determine the sensitivity of the magnetic re-
flections to different spatial components of the magnetic mo-
ment, we must look into the details of the possible magnetic
space groups. For the Sm5Ge4-type structure with the crys-
tallographic space groupPnma, eight magnetic space groups
are possible,17,18 and are listed in Table I. Each magnetic
space group yields relations among the components of the
magnetic moments along the three crystallographic axes de-
scribed by modes. These modes represent the sign sequence
of the moment components of each ion, in each site, along a
particular direction.

In Table II the magnetic modes for the 4c and 8d Wyckoff
sites are listed along with the corresponding structure factors
for magnetic diffraction. From here, we see that only one
mode,A, for the 4c site and two modes,R andAB, for the 8d

FIG. 4. sad u scan through thes0 3 0d magnetic peak at 10 K
sfilled circlesd and 145 K sopen circlesd and sbd energy scans at
10 K sfilled circlesd and 145 Ksopen circlesd through the magnetic
peak. The data were measured at an azimuth angle ofc=30° using
aluminum attenuator with 0.41 transmission. The dashed line rep-
resents the position of the GdLII absorption edge.

FIG. 5. sad Integrated intensity of thes0 7 0d magnetic peak
measured upon heating the sample, at an azimuth angle ofc=30°,
using an aluminum attenuator with 0.41 transmission.sbd Integrated
intensity of thes5 0 0d resonant peak measured during heating at an
azimuth angle ofc=60° without attenuator.

FIG. 6. The integrated intensity of thes0 3 0d magnetic peak
normalized by thes0 4 0d charge peak atT=8 K. The solid curve
represents the variation expected for magnetic moments along thec
axis.
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sites can contribute to the magnetic intensity ofs0 k 0d re-
flections. Selecteds0 k 0d reflections were measured, and
their integrated intensities are shown in Table III. Since only
a c-component contribution to the magnetic scattering was
found for all s0 k 0d reflections, only modes for thec com-
ponent must to be considered fors0 k 0d reflections. We note
that in general, all three Wyckoff sites need not be in the
same magnetic space group with the same corresponding

modes.17 Considering all possible combinations, in our case,
there can be 17 different descriptions of the intensities for
s0 k 0d reflections. All cases were checked by comparing the
measured integrated intensities of thes0 k 0d reflections with
the structure factors calculated from Table II. For example, if
all three sites are described by the same magnetic space
groupPnm8a, only thec components in theA mode at the 4c
site and theR mode at the two 8d sites contribute to the
intensity of the magnetics0 k 0d reflections according to

I = A sin2sc − ccd
cos2 u

sin 2u
us− 1dsk−1d/2mc

4c + 2mc
8d1 sin 2pky8d1

+ s2mc
8d2 sin 2pky8d2du2. s1d

TABLE I. The magnetic modes of the 4c and 8d Wyckoff sites for the eight possible magnetic space groups of the crystallographic space
groupPnmaassociated with a magnetic unit cell that is the same as the crystallographic unit cellsbased on Ref. 17 with a modified sequence
of the atomic positions according to Ref. 18d. The modessA, C, F, G for a 4c site,AB, CB, FB, GB, L, P, Q, R for an 8d sited are characterized
by the sign sequence for the magnetic moment components along the three crystallographic axes.

Position Pn8ma Pnm8a Pnma8 Pn8m8a Pnm8a8 Pn8ma8 Pn8m8a8 Pnma

a b c a b c a b c a b c a b c a b c a b c a b c a b c

i 4c G G A A C F F C F A G C

1 x 1/4 z 1 1 1 1 1 1 1 1 1 1 1 1

2 1/2−x 3/4 1/2+z 1 1 2 2 2 1 1 2 1 2 1 2

3 −x 3/4 −z 2 2 2 2 1 1 1 1 1 2 2 1

4 1/2+x 1/4 1/2−z 2 2 1 1 2 1 1 2 1 1 2 2

i 8d P L Q L P R Q R P GB CB FB FB AB GB AB FB CB R Q L CB GB AB

1 x y z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1/2−x −y 1/2+z 1 1 2 1 1 2 2 2 1 2 2 1 1 1 2 1 1 2 2 2 1 2 2 1

3 −x 1/2+y −z 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 2 1 2 2 1 2

4 1/2+x 1/2−y 1/2−z 1 2 2 2 1 1 2 1 1 2 1 1 1 2 2 2 1 1 1 2 2 1 2 2

5 −x −y −z 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1

6 1/2+x y 1/2−z 2 2 1 2 2 1 1 1 2 2 2 1 1 1 2 1 1 2 1 1 2 2 2 1

7 x 1/2−y z 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2

8 1/2−x 1/2+y 1/2+z 2 1 1 1 2 2 1 2 2 2 1 1 1 2 2 2 1 1 2 1 1 1 2 2

TABLE II. Magnetic modes for the 4c and 8d Wyckoff sites,
and their corresponding structure factors for thesh 0 0d, s0 k 0d, and
s0 0 ld reflectionssh,k, l are oddd. x4c, y4c, z4c andx8d, y8d, andz8d

are the atomic positions andm j
4c andm j

8d are the magnetic moment
components along the correspondingj axis s j =a,b,cd at the 4c site
and the 8d sites, respectively.

Mode sh 0 0d s0 k 0d s0 0 ld

A 0 im j
4cs−1dsk−1d/2 −im j

4c sin 2plz4c

C m j
4c cos 2phx4c 0 m j

4c cos 2plz4c

F 0 0 0

G −im j
4c sin 2phx4c 0 0

AB 0 2m j
8d cos 2pky8d 0

CB 0 0 0

FB 0 0 0

GB 2m j
8d cos 2phx8d 0 2m j

8d cos 2plz8d

L −2im j
8d sin 2phx8d 0 0

P 0 0 0

Q 0 0 0

R 0 −2im j
8d sin 2pky8d −2im j

8d sin 2plz8d

TABLE III. The measured and calculatedffrom Eqn.s1dg values
of the integrated intensity ofs0 k 0d reflections.

k Measured intensity Calculated intensity

3 0.123±0.002 0.123

5 0.0045±0.0003 0.00021

7 0.186±0.006 0.186

9 0.0028±0.0002 0.0029

11 0.0248±0.0008 0.0249

13 0.0221±0.0009 0.0221

L. TAN et al. PHYSICAL REVIEW B 71, 214408s2005d

214408-4



Here,A is the scaling factor,c is the azimuth angle, andu
is half of the scattering angle. Additionally,

cos2 u/sin 2u =

Î1 −Skl

2b
D2

kl

2b

,

wherel is the wavelength of the incident photons,b is the
lattice constant, andy8d1=0.1022 andy8d2=0.1168 for T
=6 K.9

For all 17 cases the calculated integrated intensity was fit
to the measured data with two dependent parameters
mc

8d1/mc
4c andmc

8d2/mc
4c and an overall scaling factorAsmc

4cd2.
The best fit to the data, shown in Table III corresponds to all
three magnetic Gd sites described by the same magnetic
space group, Pnm8a. The resulting ratios mc

8d1/mc
4c

=0.98±0.03 andmc
8d2/mc

4c=0.99±0.04 indicate equal mag-
netic moment components along thec axis at the three
Wyckoff sites. An important result of this analysis is that the
absence of intensity at thes0 3 0d reciprocal lattice point at
azimuthc=90° does not require the absence ofa or b com-
ponents of the magnetic moment but, rather, arises from the
magnetic space group symmetry. A second consequence of
this analysis is that nob component of the magnetic moment
is allowed for the 4c site ssee Table Id.

Table II also provides us with a means of investigating
whether there is a component of the magnetic moment along
the a axis through measurements of the magnetic scattering
at thesh 0 0d lattice pointssh oddd. At these reflections, only
the component of the moment along thea axis contributes to
the scattering according to modesG and L in the magnetic
space groupPnm8a. Because thea component is parallel to
the scattering vector,Q, for sh 0 0d reflections, the integrated
intensities are not dependent upon the azimuth anglec. The
sh 0 0d reflections withh=1, 3, 5, and 7 were measured at
the GdLII absorption edge. AtT=10 K, the resonant inten-
sities are too weak to be separated from multiple scattering,
except at thes5 0 0d reflection as shown in Fig. 3. Surpris-
ingly, although weak resonant scattering was indeed ob-
served for thes5 0 0d reflection, no temperature dependence
of its intensity was observed, even above the Néel tempera-
ture, as shown in Fig. 5sbd. Therefore, this resonant scatter-
ing does not arise from magnetic scattering related to the
magnetic order belowTN. We believe this resonant contribu-
tion arises from Templeton scattering,16,19 perhaps originat-
ing from long-range ordering of anisotropic charge distribu-
tions. Further investigations of this feature are planned.

Any magnetic scattering signal at thes5 0 0d reflection
must be very small. Furthermore, no significant resonant
scattering was found at thes1 0 0d, s3 0 0d, or s7 0 0d posi-
tions. These results suggest that there is noa component of
the magnetic moments. Although we cannot exclude smalla
components for the magnetic moments on the 4c and 8d sites

based on only four reflections, specific features of the crys-
tallographic structure may be used to obtain additional con-
strains on thea components. For example, in Tb5Ge4, there
is no a component of the moment at the 4c site while size-
ablea components were identified for both 8d sites.18,20This
most likely arises from the environment of the 4c sites in the
structure. In both slabs shown in Fig. 1, each Gd ion at the 4c
site is located at the center of a deformed cube with four Gd
ions at the 8d1 site and four Gd ions at the 8d2 site at the
corners.18 This can result in a near compensation of thea
component of the exchange field at the 4c sites by the sur-
rounding eight Gd ions for thePnm8a magnetic space group.
If we assume that for Gd5Ge4 noa component of the moment
exists at the 4c site, then the upper limits forma

8d1 andma
8d2

are determined to be 0.06mc and 0.05mc, respectively, from
the constraints given by the measuredsh 0 0d reflections.

Unfortunately, theb components of the magnetic moment
contribute only to the magnetic intensity of charge forbidden,
off-specularsh k0d and s0 k ld reflections and, therefore, no
direct information concerning theb component can be ob-
tained. For thesh k0d reflections, the magnetic structure fac-
tors arise from linear combinations of thea and b compo-
nents, while for thes0 k ld reflections both theb and c
components contribute. A complicating factor in the analysis
of these reflections is that, in both cases, the entanglement of
magnetic components for two different crystallographic di-
rections introduces magnetic domains whose populations
strongly influence the intensity of the magnetic reflections.
While we have shown above that there is nob component of
the magnetic moment at the 4c site, it is extremely difficult
to unambiguously determine the presence or absence of the
magnetic componentsmb

8d1 andmb
8d2 with the limited number

of accessible magnetic reflections. However, if we assume
that the magnitudes of the magnetic moment at all sites are
the same,21 the result that mc

8d1/mc
4c=0.98±0.03 and

mc
8d2/mc

4c=0.99±0.04ssee aboved allows us to postulate that
the magnetic moments lie primarily along thec axis for all
three sites.

Summarizing, this XRMS experiment on the Gd5Ge4 sys-
tem has shown that, below the Néel temperature,TN= 127 K,
the antiferromagnetic order is described by a magnetic unit
cell which is the same as the crystallographic unit cell. As
proposed by Levinet al.,13 the magnetic moments are ferro-
magnetically aligned within the slabs, while their stacking in
the b direction is antiferromagnetic. Furthermore, all Gd
sites order within the same magnetic space group,Pnm8a.
The magnetic moments are primarily aligned along thec axis
and thec components of the magnetic moments at the three
different sites are the same within the error. Within experi-
mental error, noa component of the magnetic moments was
detected. While ab component of the moment at the 4c site
can be excluded by the symmetry of the space group, the
presence of ab component of the moment at the 8d sites
could not be unambiguously determined. Future XRMS mea-
surements of the Gd5sSixGe1−xd4 alloys are planned to inves-
tigate changes in the magnetic structure upon alloying with
Si as well as modifications of the magnetic structure in mag-
netic fields.
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