

Table 1. Variation of $e^2K/\sigma Tk^2$ with ϵ_F/kT for metals

ϵ_F/kT	$e^2K/\sigma Tk^2$	
	Dominant acoustic mode scattering	Dominant ionized impurity scattering
0.0	2.172	46.89
0.1	2.184	46.86
0.2	2.196	46.74
0.3	2.211	46.68
0.4	2.226	46.56
0.5	2.241	46.50
0.6	2.256	46.38
0.7	2.271	46.26
0.8	2.286	46.17
0.9	2.304	46.08
1.0	2.319	45.96
1.5	2.409	45.36
2.0	2.499	44.73
2.5	2.589	44.16
3.0	2.673	43.53
3.5	2.751	43.05
4.0	2.820	42.51
4.5	2.883	42.19
5.0	2.934	41.86
5.5	2.988	41.66
6.0	3.018	41.28
6.5	3.054	41.09
7.0	3.081	40.89
7.5	3.105	40.71
8.0	3.126	40.62
8.5	3.144	40.47
9.0	3.159	40.41
9.5	3.171	40.38
10.0	3.180	40.23

For a non-degenerate semiconductor having Maxwellian velocity distribution of electron (or hole velocities), equation (5) may be shown to reduce to

$$\frac{K_c}{\sigma T} = \frac{k^2}{2e^2} (5-n) \quad (10)$$

where

$$v \propto v^n$$

and K_c represents the contribution to thermal conductivity by the charge carriers.

Acknowledgments—The authors are grateful to Prof. M. S. Sodha for suggesting the problem and subsequent discussions.

Department of Physics
Indian Institute of Technology
Hauz Khas
New Delhi-29, India

H. K. SRIVASTAVA
D. P. TEWARI

References

1. SOMMERFELD A. and FRANK N. H., *Rev. Mod. Phys.* 3, 1 (1931).
2. SEITZ F., *Modern Theory of Solids*. McGraw-Hill, New York (1940).
3. DINGLE R. B., *Appl. Scient. Res.* 6, 225 (1956).

J. Phys. Chem. Solids. Vol. 27, pp. 1192-1193.

Magnetic properties of LiCoPO_4 and LiNiPO_4 *

(Received 17 January 1966; in revised form 11 February 1966)

THE lithium orthophosphates of divalent nickel and cobalt are isostructural with minerals lithiophilite (LiMnPO_4) and triphylite (LiFePO_4). All four are members of the olivine family.

Polycrystalline LiNiPO_4 and LiCoPO_4 were prepared from lithium carbonate and the orthophosphates of ammonium, nickel and cobalt. The mixtures were reacted in air at 800°C . Lattice parameters were determined by X-ray diffraction;⁽¹⁾ for LiCoPO_4 $a:b:c = 10.20:5.92:4.70$ Å, and for LiNiPO_4 the orthorhombic cell dimensions are 10.03, 5.85 and 4.68 Å. The space group is *Pnma* with the transition-metal ions occupying mirror plane sites at $\pm(x, \frac{1}{4}, z)$ and $\pm(\frac{1}{2} + x, \frac{1}{4}, \frac{1}{2} - z)$, where $x \sim +0.28$ and $z \sim -0.02$.

Magnetic susceptibility data taken with a vibrating-sample magnetometer are shown in Fig. 1; no field dependence was observed. In the paramagnetic region, LiCoPO_4 follows a Curie-Weiss law, with $\mu_{\text{eff}} = 5.7 \pm 0.1 \mu_B$ and $\theta = 90 \pm 3^\circ\text{K}$. The effective moment is larger than those observed in $\text{Co}_2\text{SiO}_4(5.1 \mu_B)$ and $\text{CoCaSiO}_4(4.8 \mu_B)$. In cobalt calcium orthosilicate, Co^{2+} ions occupy the inversion sites, and in Co_3SiO_4 , both positions. The mirror symmetry site is the larger of the two octahedra, and a larger moment is expected since

* Supported by the U.S. Air Force Materials Laboratory, under contract AF 33(616)2199, and by Advanced Research Projects Agency, Department of Defense, through Contract SD-90.

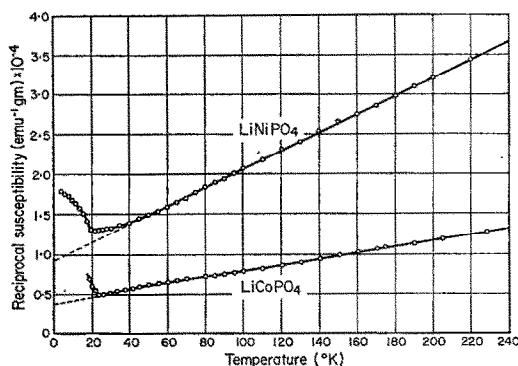


FIG. 1. Reciprocal magnetic susceptibility of polycrystalline LiCoPO₄ and LiNiPO₄.

there is less orbital quenching. Similar effects are noted in other transition metal olivines. The Curie-Weiss law coefficients for LiNiPO₄ are 3.35 μ_B and 79°K. In both compounds the susceptibility reaches a maximum at 23 ± 2 °K, indicative of a paramagnetic-antiferromagnetic phase transition.

To establish the magnetic order, neutron diffraction patterns were taken above and below the transition temperature. All the magnetic reflections could be indexed on the chemical unit cell so that only four spin directions need be determined. The best agreement was obtained with collinear arrangements in which the spins at $(x, \frac{1}{4}, z)$ and $(\frac{1}{2}+x, \frac{1}{4}, \frac{1}{2}-z)$ are parallel to one another and antiparallel to those at $(1-x, \frac{3}{4}, 1-z)$ and $(\frac{1}{2}-x, \frac{3}{4}, \frac{1}{2}+z)$. This is the same configuration observed in LiMnPO₄⁽²⁾ but the spin directions differ. In LiCoPO₄ the spins lie along b , which is also the preferred direction in Co₂SiO₄. The

moments are collinear to a in LiMnPO₄ and probably to c in LiNiPO₄, where the magnetic intensities are very weak. The magnetic structure of LiCoPO₄ is illustrated in Fig. 2. Antiferro-

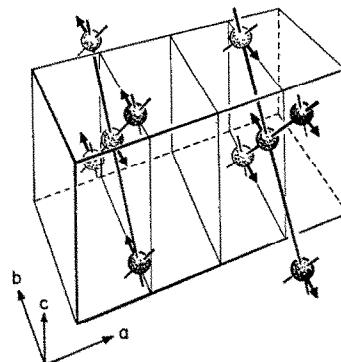


FIG. 2. Magnetic structure of LiCoPO₄. Antiferromagnetic LiNiPO₄ and LiMnPO₄ adopt similar arrangements with different spin directions.

magnetic Co-O-Co superexchange interactions couple the spins closely in planes parallel to (100). Only long-range forces operate between neighboring planes.

Electrical Engineering Department R. P. SANTORO
Massachusetts Institute of D. J. SEGAL
Technology R. E. NEWNHAM
Cambridge, Massachusetts

References

1. NEWNHAM R. E. and REDMAN M. J., *J. Am. Ceram. Soc.* **48**, 547 (1965).
2. NEWNHAM R. E., SANTORO R. P. and REDMAN M. J., *J. Phys. Chem. Solids* **26**, 445 (1965).