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Abstract—We report on the thermodynamic, magnetic properties and the magnetic structure of 
ludwigite-type Cu2MnBO5. The specific heat, the low-field magnetization and the paramagnetic 
susceptibility were studied on a single crystal and combined with powder neutron diffraction 
data. The temperature dependence of the specific heat and the neutron diffraction pattern reveal a 
single magnetic phase transition at T=92 K, which corresponds to the magnetic ordering into a 
ferrimagnetic phase. The cation distribution and the values and directions of magnetic moments 
of ions in different crystallographic sites are established. The magnetic moments of Cu2+ and 
Mn3+ ions occupying different magnetic sites in the ferrimagnetic phase are pairwise antiparallel 
and their directions do not coincide with the directions of the principal crystallographic axes. The 
small value of the magnetic moment of copper ions occupying site 2a is indicative of partial 
disordering of the magnetic moments on this site. The magnetization measurements show a 
strong temperature hysteresis of magnetization, which evidences for field-dependent transitions 
below the phase transition temperature. 

 
I. Introduction 

Cu2MnBO5 belongs to the family of quasi-two-dimensional oxyborates with the ludwigite 
structure. Ludwigites have a complex crystal structure, which involves quasi-low-dimensional 
elements (zig-zag walls and three-legged ladders) formed by metal-oxygen octahedral [1−3]. The 
ludwigite unit cell contains four formula units and includes divalent and trivalent cations or 
divalent and tetravalent ones. In this structure, metal cations are distributed over four 
nonequivalent positions. 

The complex crystallographic structure and the presence of four nonequivalent positions 
occupied by magnetic cations lead to the formation of complex magnetic structures in the 
ludwigite-type crystals. In view of this, it is complex and often impossible to determine the 
configuration of magnetic moments using macroscopic magnetization measurements. In 
addition, the ludwigite structure is characterized by the large number of triangular groups formed 
by metal cations, which sometimes leads to the occurrence of frustrations and spin-glass-like 
states [2−12]. 

To date, the microscopic magnetic structure has been experimentally determined only for 
the monometallic ludwigites Co3BO5 and Fe3BO5 [10-12]. Both compounds crystallize in the 
orthorhombic space group Pbam with the cations occupying the four different Wykoff sites 2a, 
2b, 4g and 4h. An important feature of the Co3BO5 and Fe3BO5 ludwigites is the division of the 
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magnetic structure into two subsystems. The neutron diffraction investigation gives that the 
magnetic moment in one of site is surprisingly small. This suggests that these sites are occupied 
by Co3+ ions in low spin (LS) states. Other sites occupied by divalent Co2+ ions in high spin 
states [12]. In Fe3BO5, which sees a charge ordering transition just below room temperature, the 
magnetic subsystems order at different temperatures with mutually orthogonal magnetic 
moments [11]. The Co3BO5 ludwigite displays a single magnetic transition with the presence of 
an ordered arrangement of low spin and high spin states of the Co3+ ions (SCo3+=0) [12]. These 
features occur most likely to weaken the frustrations in the system. The magnetic structure of 
ludwigites containing different magnetic cations have not yet been experimentally investigated; 
however, from the behavior of their physical properties it was concluded that the magnetic 
ordering could possibly not involve all subsystems and that in some compounds the 
magnetization of different sublattices could order at different temperatures and point in different 
directions [4, 13]. 

The existence of Mn−Cu ludwigites was reported just recently [6]. Single-crystal samples 
were synthesized and the primary structural and magnetic characterization was performed for the 
composition Mn:Cu=1:1 (Cu1.5Mn1.5BO5). Similar to other Cu-containing ludwigites, the 
synthesized compound has a monoclinically distorted ludwigite structure [7], crystallizing in 
space group P21/c. The structural differences between the orthorhombic description in Pbam 
valid for Co3BO5 and Fe3BO5 and the monoclinic description in P21/c of Cu2MnBO5 are small as 
the main structural elements remain unchanged. The unit cell axes of the Pbam description are 
transformed according to a→b, b→c and c→a when going to P21/c. The Wykoff sites for the 
cations change from 2a, 2d, 4g and 4h in Pbam to 2a, 2d, 4e and 4e in P21/c (Table 1). 

 Due to the presence of quasi-low dimensional elements in the structure, many ludwigites 
in the ordered phase are characterized by a strong magnetic anisotropy [4, 8, 9]. The axis of hard 
magnetization corresponds to the direction perpendicular to the low dimensional elements of the 
structure which in compounds adopting the Pbam structure coincides to the c-axis while it 
corresponds to the a-axis in the monoclinic (P21/c) compound here presented. However, in the 
Cu1.5Mn1.5BO5 ludwigite, the anisotropy is weak and the difference between the magnetic 
moment values is only M(H||c):M(H┴c)=1.5. This represents a fundamental difference from 
other ludwigite-type compounds. In addition, in contrast to other Mn-containing ludwigites, the 
Cu1.5Mn1.5BO5 compound has a large magnetic moment, which exceeds e.g. tenfold the magnetic 
moment of Ni1.5Mn1.5BO5 [6]. 

Here we report on thorough investigations of the physical properties of the Cu2MnBO5 
ludwigite with a different cation ratio. In contrast to the previously investigated Cu1.5Mn1.5BO5 
compound, manganese ions in this ludwigite are mainly in the state with valence 3+, which 
reduces the probability of admixing divalent manganese to the Cu2+ ions. In our previous study 
[5], we synthesized the Cu2MnBO5 ludwigite single crystals by the flux technique. It was the 
first study on this compound, where its structural and magnetic properties were investigated; in 
particular, the composition was refined, the structure was clarified, the magnetic transition 
temperature was determined, the strong hysteresis in the field-cooling (FC) and zero field-
cooling (ZFC) modes was established, and an anomaly in the magnetization curves near 75 K 
was found. The group theoretical analysis was performed, the indirect exchange interactions 
were calculated in the framework of the Anderson−Zavadsky model, and a model of the 
magnetic structure was proposed.  
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To shed light on the microscopic nature of the magnetic behavior and clarify the 
mechanisms of the magnetic phase transition, we studied the magnetic structure of the 
Cu2MnBO5

 ludwigite using powder neutron diffraction, measured and interpreted the 
temperature dependence of specific heat of the crystal, established orientational field-
temperature dependences of magnetization, and analyzed temperature dependences of the 
magnetic susceptibility. 

 

II. Experimental Details 

The Cu2MnBO5 ludwigite single crystals were grown by the flux technique. The 
crystallization conditions were described in detail in [5]. 

Magnetic measurements of the Cu2MnBO5 single crystal were performed on a Physical 
Property Measurements System PPMS-9 (Quantum Design) at temperatures of T=3−300 K in 
magnetic fields of up to 80 kOe. 

Specific heat was measured at temperatures from ~64 K (in vicinity of the melting point of 
the nitrogen) to ~320 K using a calorimeter as described in ref. 14. At low temperatures (down to 
2 K), the measurements were performed on a PPMS facility (Quantum Design). The specific 
heat determination error was no more than 1% in both cases. 

The investigated sample was a crystal set with a total mass of 244.7 mg. Specific heat of 
the auxiliary elements (heating pad, lubricant, etc.) was determined separately. 

Powder neutron diffraction data were recorded at the Institut Laue Langevin, Grenoble, 
France, on a D2B high resolution powder diffractometer with a neutron wavelength of λ = 1.594 
Å at room temperature. Due to the fact that the sample had been prepared through crushing of 
single crystals, strong texture effects became visible in the high resolution neutron powder data. 
This texture had disappeared only after powdering the sample down to a grain size below 100 
µm. The sample was placed in a cylindrical double-wall vanadium container in order to reduce 
the absorption resulting from the B10 isotope. The temperature dependence of the neutron 
diffraction pattern was measured on a D20 high-intensity powder diffractometer, as well situated 
at the Institut Laue Langevin,  with λ = 2.41 Å between 1.6 K and 150 K taking spectra of 5 min 
every degree. Additional data were taken at base temperature (1.6 K) and at 110 K with the 
longer acquisition time of 45 min. As the absorption of the sample is stronger at λ = 2.41 Å than 
at λ = 1.594 Å, the sample had to be additionally diluted for these measurements by adding 
aluminum powder. All neutron data were analyzed using the Rietveld refinement program 
FULLPROF [15]. The aluminum powder was refined as a second phase. Magnetic symmetry 
analysis was performed using the program BASIREPS [16, 17]. 

 

III. Magnetic Properties 

Figure 1 shows the temperature dependences of magnetization of the investigated 
Cu2MnBO5 single crystal, which were obtained in the FC (cooling in nonzero magnetic field) 
and FH (heating of the sample in nonzero magnetic field after cooling in the same nonzero 
magnetic field) regimes at H=200 Oe (H||a). At a temperature of T≈90−92 K, both curves reveal 
the sharp magnetization growth corresponding to the phase transition from the paramagnetic to 
the magnetically ordered state. In the vicinity of the phase transition temperature, one can 
observe a small hysteresis of the FC and FH dependences with a value of ∆T1≈0.8 K. At lower 
temperatures, the dependences exhibit an anomalously strong temperature hysteresis in the range 
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of T≈46−85 K with a value of ∆T2≈14 K at H=200 Oe. To study this phenomenon, temperature 
dependences of the magnetization were measured as well in fields of H=20, 50, and 1000 Oe. 
The measurements show that the width of the hysteresis depends nonlinearly on the applied 
magnetic field; specifically, at H=50 Oe, we have ∆T2≈5 K and at H=20 and 1000 Oe, the 
temperature hysteresis is less than ∆T2≈1 K. 

When measuring the orientational dependences of the sample magnetization, we used a 
crystal with the natural habit in the form of a quadrangular prism. Magnetization was measured 
along the x, yand z geometrical axes of the prism. The z axis coincided with the a 
crystallographic axis (1 0 0) in monoclinic lattice P21/c and the x and y axes corresponded to the 
(0 1 1) (b-c-plane) and (0 -1 1) (b-c-plane) crystallographic directions. 

 

 

Figure 1: Temperature dependences of magnetization obtained in the FC (cooling at H=200 Oe) 
and FH (sample heating in a field of H=200 Oe after precooling at H=200 Oe) regimes (H||a). 

Figure 2 presents the orientational dependences of magnetization of the Cu2MnBO5 sample 
obtained in a magnetic field of H=1 kOe. All the curves contain the broad asymmetrical 
maximum, which evidences for the existence of the domain structure in the crystal. The position 
of this maximum changes depending on the magnetic field direction; in the direction H||x, one 
can observe a shelf (constant magnetic moment region) in the temperature range of 5−15 K. 
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Figure 2:. Temperature dependences of magnetization obtained in a magnetic field of 

H=1000 Oe applied in the macroscopic directions H||x, H||y, and H||z of the single-crystal 
samples with the natural habit. (The z axis coincided with the a crystallographic axis (1 0 0) in 

monoclinic lattice P21/c and the x and y axes corresponded to the (0 1 1) (b-c-plane) and (0 -1 1) 
(b-c-plane) crystallographic directions.) 

 
Using the experimental data of the temperature dependences of the magnetization 

(Figure 2) the temperature dependences of the inverse molar susceptibility for H||x, H||y, and H||z 
in the temperature range of T=2−300 K have been obtained. Above the magnetic transition 
temperature the inverse susceptibility corresponding to different magnetic field directions do not 
coincide; i.e., the paramagnetic phase is characterized by anisotropy. This anisotropy can result 
from the strong g-factor anisotropy caused by the coexistence of two Jahn–Teller ions, Cu2+ and 
Mn3+. 

IV. Powder Neutron Diffraction 

Figure 3 shows the refinement of the high resolution data taken at room temperature. The 
compound crystallizes in the space group P21/c as already proposed by Bezmaternykh et al.[6] 
for a compound with composition Cu1.5Mn1.5BO5. In this structure, the Mn and Cu cations are 
distributed over four different sites. Due to the strongly differing neutron scattering lengths for 
Mn (bcoh = −3.73 fm) and Cu (bcoh = 7.72 fm), it is possible to determine precisely the cation 
distribution over these four sites.  
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Figure 3: Observed (dots, red), calculated (black, line), and difference pattern of Cu1.94Mn1.06BO5 

at 295 K. The tick marks indicate the calculated position of the nuclear Bragg peaks. 

Table 1 gives the lattice parameters, atom coordinates, and the occupations resulting from 
the refinement. It can be seen that there is a clear site preference with the Mn3+ cation occupying 
almost exclusively one of the 4e sites (labelled 4e2 in Table 1), while the Cu2+ ion is found at a 
90% level on the 4e1 and the 2d and 2a sites. The refined stoichiometry corresponds to a 
Cu1.94(1)Mn1.06(1)BO5 compound. Bond valence calculations using the determined interatomic 
distances confirm the assumed valences of +3 for Mn and +2 for Cu. This structure is 
monoclinically distorted with respect to the structure of the closely related Fe3BO5 compound, 
which crystallizes in space group Pbam at room temperature [11]. Fe3BO5 sees depending on 
their valence a strong site preference for Fe3+ and Fe2+cations: while Fe2+ resides on sites 4g and 
2a (space group Pbam), Fe3+ is preferentially found on sites 4h and 2d. This can be compared to 
the situation in our Mn1.06Cu1.94BO5 compound, where Mn3+ is mostly found on site 4e2, which 
corresponds to site 4h in Pbam. 

 
Table 1: Results of the Rietveld refinement of the high-resolution neutron diffraction data at 

295 K for Cu1.94Mn1.06BO5 in P21/c. 
 P21/c x y z Occ.Mn/Cu 
Cu/Mn 2a 0 ½ ½ 0.090(4)/0.910(4) 
Cu/Mn 2d ½ 0 ½ 0.068(4)/0.932(4) 
Cu/Mn 4e1 0.0638(6) 0.9877(2) 0.2790(1) 0.102(4)/0.898(4) 
Cu/Mn 4e2 0.576(2) 0.7324(5) 0.3785(4) 0.877(2)/0.123(2) 
B 4e 0.4057(8) 0.2640(2) 0.3670(2)  
O1 4e 0.0038(8) 0.0953(2) 0.1454(2)  
O2 4e 0.1492(8) 0.8725(2) 0.4118(2)  
O3 4e 0.4661(8) 0.1187(2) 0.3654(2)  
O4 4e 0.6091(8) 0.6597(2) 0.5369(2)  
O5 4e 0.6419(7) 0.8332(2) 0.2337(2)  
      
a [Å]  3.13851(4)    
b [Å]  9.4002(1)    

Page 6 of 15AUTHOR SUBMITTED MANUSCRIPT - JPCM-108729.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



7 

 

c [Å]  12.0204(1)    
β [°]  92.267(1)    

 
Figure 4 shows the low-angle region of the thermal dependence of the neutron diffraction 

pattern of Cu1.94Mn1.06BO5. A transition is clearly visible at about 90 K, where an increase in the 
intensity of several Bragg reflections can be discerned. In accordance with the magnetic data, 
this transition is identified as a transition to a magnetically ordered, most probably ferromagnetic 
state. Down to the lowest temperatures, there is no further transition.  

 

 
Figure 4: Thermal dependence of the neutron diffraction pattern of Cu1.94Mn1.06BO5 between 2 K 

and 140 K. Only every third spectrum of the original measurement is shown. 

Using the program K-search, which is a part of the FULLPROF suite of refinement 
programs, the magnetic propagation vector κ = 0 was confirmed. Fitting the intensity of the 
Bragg peak having the most intense magnetic contribution, a transition temperature of TC = 92 K 
was established. Magnetic symmetry analysis using the program BASIREPS was used to 
determine for κ = 0 the allowed irreducible representations (IR) and their basis vectors (BV) for 
cation sites 4e, 2d, and 2a; they are listed in Table 2. 

Table 2: Basis vectors (BV) of the allowed irreducible representations (IR) for κ = 0 for the 
Wykoff  positions 4e, 2d and 2a of space group P21/c 

 IR1 IR2 IR3 IR4 
4e BV1 BV2 BV3 BV1 BV2 BV3 BV1 BV2 BV3 BV1 BV2 BV3 
x, y, z 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 
-x, y+½, -z+½ -1 0 0 0 1 0 0 0 -1 -1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1 1 0 0 0 -1 0 0 0 1 
-x, -y, -z 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 -1 0 
x, -y+½, z+½ -1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0 0 -1 0 
             
2d, 2a             
x, y, z 1 0 0 0 1 0 0 0 1    1 0 0 0 1 0 0 0 1    
x, -y+½, z+½ -1 0 0 0 1 0 0 0 -1    1 0 0 0 -1 0 0 0 1    

For the determination and refinement of the magnetic structure, a difference data set 
created by subtracting the high intensity data set taken with long counting times within the 
paramagnetic phase at 110 K from the data set at 1.6 K was used. This allows refining solely the 
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magnetic contribution and increases thereby the precision of the magnetic moment 
determination. The fixed scale factor needed for performing this type of purely magnetic 
refinement gets first evaluated from the refinement of the 110 K data set. Atomic positions were 
fixed to the values resulting from the refinement of the high-resolution refinement (Table 1). 
Testing all the allowed IRs, it is found that the magnetic structure sees a ferromagnetic alignment 
of spins along the a and c unit cell directions corresponding to IR3, which corresponds to the one 
proposed already in [5]. There is no contribution coming from BV2 of this IR3, there is therefore 
no antiferromagnetic component present in the magnetic structure. Figure 5 shows the results of 
the refinement or the difference data set 2 K – 110 K.  

 

 
 

Figure 5: Refinement of the difference spectrum 2 K – 110 K of Cu1.94Mn1.06BO5. Observed 
(dots, red), calculated (line, black), and difference pattern. The tick marks indicate the calculated 
positions of the magnetic Bragg peaks. Two regions at 2 θ ~ 50° and ~ 54° were excluded due to 
the presence of strong up/down features at the positions nuclear Bragg peaks of the added Al – 
phase. 

 

 
Figure 6: Magnetic structure of Cu1.94Mn1.06BO5  at 2 K; the numbers correspond to the different 
cation sites: 4e2 mainly occupied by Mn (4), 4e1 mainly occupied by Cu (3), 2d (2) and 2a (1) as 

well both mainly occupied by Cu. 
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While the 4e2 site, which is mainly occupied by manganese, possesses a magnetic moment 
of about 2.7 µB, the 4e1 site and the 2d and 2a sites, which are mainly occupied by copper, have 
− as expected for a Cu2+ ion – lower moment sizes of about 0.9, 1.1 and 0.4 µB, respectively. The 
spin directions on the different sites are not parallel, but form an arrangement comprising strong 
ferrimagnetic elements. Figure 6 displays the magnetic structure where the lengths of the arrows 
reflect the relative size of the magnetic moments. Table 3 gives details of the refined magnetic 
components. The corresponding Shubnikov or magnetic space group was determined to P21′/c′ 
using the programs of the Bilbao Crystallographic Server and of the Isotropy software package 
[18, 19]. 

Table 3: Results of the refinement of the magnetic structure using BV1 and BV3 of IR3. 
Magnetic components were determined using the Mn3+ and the Cu2+ magnetic form factors for 
the different cation sites depending on which cation occupies predominantly the concerned site. 
The total magnetic moments µTot are given in µB. The numbering corresponds to the one used in 
Figure 6 and in the main text. 

 BV1 BV3 µTot. 
(1) Cu on 2a 0.09(8) -0.44(9) 0.45(10) 
(2) Cu on 2d 0.60(8) 0.97(6) 1.12(9) 
(3) Cu on 4e1 -0.23(3) 0.91(5) 0.93(6) 
(4) Mn on 4e2 -1.93(2) -1.91(6) 2.66(6) 
RMagn. 5.3   

 
The four different sublattices only possess ferromagnetic interactions, a fact which can be 

directly linked to the site specific occupation by either Mn3+ or Cu2+ ions. 90° superexchange 
interactions M-O-M should in fact be ferromagnetic between cations of the same type having the 
same valence following the Goodenough−Kanamori [20] rules. The reduced value of the 
magnetic moment found for Mn3+ - 2.7 µB instead of the theoretical 4.0 µB – can be related to the 
non-negligible amount of Cu2+ (12%) occupying the 4e2 site which will hinder an equivalent 
amount of neighboring Mn3+cations to adopt a ferromagnetic alignment and could even lead 
locally to some antiferromagnetic Mn3+ - Cu2+ interactions. 

 

V. Thermodynamic Properties 

Figure 7 illustrates the specific heat measurements in the entire temperature range in zero 
magnetic field (T=2–320 K, H=0). One can observe an anomalous behavior with a temperature 
peak at Tc=88.1 K. The lattice specific heat was determined using linear combinations of the 
Debye–Einstein functions with the characteristic temperatures found to be TD= 331 K and TE= 
780 K. It can be seen that the low temperature region is not correctly interpolated. The same 
behavior was previously observed in another ludwigite crystal, Ni5GeB2O10 [13]. Subtracting the 
lattice contribution to the specific heat from the experimental data, we found the excess specific 
heat and the phase transition entropy ∆S= 0.6 J/(mol*K). Under the assumption that the magnetic 
moments order completely in the crystal, the maximum possible entropy of the magnetic phase 
transition can be calculated from the formula: 

)/(2.25)1)(2ln()1)(2ln(∆∆∆ 23 KmolJCuSRnMnSRnSSS CuMnCuMn ⋅=+++=+= ++
  
(1) 
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Where nMn and nCu are the ion concentrations, S(Mn3+)=2 and S(Cu2+)=1/2 are the spin 
magnetic moments of ions, and R is the universal gas constant. The magnetic phase transition 
entropy obtained using formula (1) exceeds by far the experimental value. This difference is 
indicative of the absence of complete ordering of the magnetic moments at this magnetic phase 
transition, which agrees with the results from the neutron magnetic scattering data. The partial 
ordering of the magnetic moments is characteristic of heterometallic ludwigites, which contain 
two or more magnetic ions [2, 3]. The homometallic ludwigites Fe3BO5 [10, 11, 21] and Co3BO5 
[12, 21] are characterized, on the contrary, by the long-range magnetic order. The Co3O2BO3 
system has a ferromagnetic spin configuration in the rungs of the 4-2-4 ladders with an effective 
moment of 8.2 µB per cell and a ferrimagnetic configuration in the rungs of the 3-1-3 ladders 
with about 8 µB per cell, which gives 1.4 µB per Co cation. All the moments are nearly parallel 
to the b axis, making this the easy magnetization axis in accord with bulk magnetic anisotropy 
measurements [4, 22]. The value of the magnetic moment expected for HS Co2+ is 3 µB and 
1 µB for the LS state, considering only the spin contribution, as is usual for these systems. For 
Co3O2BO3 assuming Co2+ in HS and Co3+ in LS states, the expected entropy is 23.0 J/mol K, 
larger than the experimental value S(TN) = 13.71 J/mol K [4]. 

The Fe3O2BO3 system has a net moment along the a axis of 18.9 µB per cell (i.e. 0.79 µB 
per Fe cation) at 10 K. The Fe1, Fe2 and Fe3 moment values (3.3, 3.9 and 3.9 µB) are reasonable 
for a Fe2+ cation, but those for Fe (4a) and Fe (4b) cations 2.7(1) µB  are still small compared to 
expected values (5 µB). [11]. The Fe3O2BO3 is complicate system and the specific heat must 
involve not only the spin contribution but additional degrees of freedom, such as structural 
excitations and/or electron tunneling [23]. 

In addition, we studied the temperature dependence of specific heat in an external magnetic 
field of H=4.7 kOe (inset (a) of Figure 7). It can be noted that the temperature of the magnetic 
phase transition changes only weakly in the applied magnetic field while the specific heat peak is 
significantly spread. A similar behavior was observed on the completely magnetically ordered 
ludwigites Co3BO5 [21] and Co5SnB2O10 [24]. This behavior is indicative of the presence of 
antiferromagnetic interactions in the crystal [21]. 

We attribute the anomaly of the excess specific heat at Т=23 K (inset b of Figure 7) to 
additional contributions to the lattice specific heat, which are ignored in the Debye−Einstein 
models. Although the compound under study is dielectric, at temperatures close to zero, the 
specific heat decreases in accordance with the linear law, which were observed for all 
investigated ludwigites [13, 24]. 
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Figure 7: Specific heat curves (H=0). The black line shows experimental data and the red line, 
the lattice contribution to specific heat. Inset (a): specific heat curves at H=0 and H=4.7 kOe. 

Inset (b): residual specific heat. 
In Section III, devoted to the magnetic properties of the investigated ludwigite, we found a 

temperature hysteresis of the magnetization in the heating and cooling modes in magnetic fields 
of up to H=1 kOe. The dependences of magnetization contain inflection points below the phase 
transition temperature. To study this effect, we calculated the temperature dependences of the 
temperature derivative of the squared magnetization (Figure 8), since, according to the molecular 
field theory, the magnetic contribution to the specific heat is proportional to the squared 
spontaneous magnetization [25]. 

 
Figure 8: Temperature dependences of the normalized temperature derivative of the squared 

magnetization at H=20, 50, 200, and 1000 Oe. 

Figure 8 shows the dM2/dT(T) dependences obtained at H=20, 50, 200, and 1000 Oe. All 
curves show a peak independent of the external magnetic field which corresponds to the 
magnetic phase transition at T ≈ 89 K. This temperature is consistent with the phase transition 
temperature determined from the specific heat measurements and with the neutron diffraction 
data. However, below the transition temperature T≈89 K, the dM2/dT (T) dependences show a 
second peak, whose position and shape depend, to a great extent, on the applied magnetic field. 
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As the magnetic field H is increased, the peak significantly spreads and shifts to lower 
temperatures. 

According to the neutron diffraction data obtained, the Cu2MnBO5 ludwigite undergoes the 
only magnetic phase transition at a temperature of Tc≈92 K. However, the neutron scattering 
experiment was carried out at H=0 and, according to the temperature behavior of the derivative 
of the squared magnetization, in magnetic fields close to zero we can expect the coincidence of 
the position of the second peak with the phase transition temperature. 

The inset in Figure 7 shows the temperature dependence of specific heat in the range of 
T=82−96 K, which involves the phase transition region. It can be seen that the specific heat peak 
is fairly broad even without external magnetic field (according to the temperature dependence of 
the excess specific heat, the peak width attains ∆T≈15 K), which can suggest, e.g., the gradual 
partial ordering of the moments in the 2а site, which manifests itself as a hysteresis in the 
magnetization curves. 

The dependence of specific heat obtained at H=5 kOe also does not exclude such an 
interpretation due to the large field value. It can be seen in Figure 8 that at H=1 kOe, the 
maximum of the derivative significantly broadens and shifts toward lower temperatures. In other 
words, according to the temperature extrapolation of the center position and peak shape, in a 
magnetic field of H=5 kOe this peak can be absent. 

Such a field dependence of the temperature anomaly peak position is observed in systems 
with the spin-reorientation transition (see, for example, [26]). As the magnetic field is increased, 
the temperature of spin reorientation lowers. 

VI. Discussion 

To date, the magnetic structure has been determined only for monometallic ludwigites 
Co3BO5 [12] and Fe3BO5 [10, 11]. The results obtained by [10] and [11] for Fe3BO5 are 
somewhat different, but the main peculiarities are identical: the magnetic system is divided in 
two subsystems where the first one comprises the Fe ions on sites 4h and 2d while the second 
one those of the Fe ions on sites 4g and 2a (Pbam setting). The two subsystems form two 
different three leg ladders (3LL) [4] which order in Fe3BO5 at different temperatures in 
perpendicular directions [11]. In the case of Co3BO5, the magnetic system is as well divided into 
the same two subsystems which order, however, at the same temperature [11]. In Fe3BO5 the 
magnetic moments are directed along the c axis in the first subsystem formed by the triad 4-2-4 
and along the b axis in the second subsystem formed by the triad 3-1-3 [27]. In the Co3BO5 
ludwigite the magnetic order of the 3-1-3 subsystem is the same as in the Fe3BO5 ludwigite. 
However the second subsystem 4-2-4, unlike the Fe3BO5, has almost the same direction as the 3-
1-3 subsystem. But, formed by 4-2-4 triads, this 3LL consists only of the chains of the position 2 
ions due to the nonmagnetic low spin state of the Co3+ ions positioned on site 4. These chains are 
connected with the 3-1-3 3LL by super-superexchange interactions Co-O-B-O-Co. 

In the compound investigated by us, the magnetic moments lie in a different plane – ac. 
However, there is a certain similarity with the magnetic structure of Fe3BO5 [11]. Figure 9 shows 
the magnetic moments of ions on each crystallographic site; for convenience, they have a 
common reference point. It can be seen that the magnetic moments of ions in positions 2 and 4 
and in positions 3 and 1 lie almost in one straight and are antiferromagnetically oriented. The 
two straights make an angle of 60°. Thus, in the crystal under study, similar to Fe3BO5, the 
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magnetic subsystem is divided in the same two subsystems, but the angle between the magnetic 
moments amounts to about 

Figure 9:

The difference in the orientation of the magnetic moments in 
can be caused by the Jahn
oxygen octahedra surrounding iron lie
distorted due to the Jahn−Teller effect

The estimation of the 
that in Fe3BO5 there are many frustrating interactions, since 
structure form triangular groups and most of them couple
magnetic moments of the two subsystems arrange orthogonally,
frustrations [28]. In Cu2MnBO
frustrated and the other are very weak
orientation of the moments in the subsystems

Such a separation of the magnetic system in two subsystems oriented nonparallel is 
apparently characteristic of
only studied for Fe3BO5, Co
investigations of the magnetization
which also evidence the occurrence of magnetization in two directions

One more specific feature
The calculation of exchange 
4 (4e2) are weakly antiferromagnetic and the exchange 
site 3 (4e1) are different: one is weakly 

At the magnetic phase transition, ions in site
exchange interaction with the rest ions and order incompletely
dependences of magnetization
incomplete ordering of the magnetic moments of ions in site
behavior of specific heat does not contradict the proposed model

 

VII. Conclusions 

magnetic subsystem is divided in the same two subsystems, but the angle between the magnetic 
 60° with the moments lying in the ac plane. 

: Orientations of the magnetic moments (NPD data)

The difference in the orientation of the magnetic moments in Cu
can be caused by the Jahn−Teller effect; as mentioned in [5], in Fe3BO

surrounding iron lie in the bc plane, while in Cu2MnBO
−Teller effect and the long axes are turned in the
the exchange interactions using the Anderson−

there are many frustrating interactions, since the metal ions in the ludwigite 
structure form triangular groups and most of them couple in triads with each other
magnetic moments of the two subsystems arrange orthogonally, 

MnBO5, part of the exchange interactions between the subsystems is also 
frustrated and the other are very weak [5], which leads, as in Fe3

orientation of the moments in the subsystems.  
Such a separation of the magnetic system in two subsystems oriented nonparallel is 

of all ludwigites; however, up to now the magnetic structure 
, Co3BO5 and now Cu2MnBO5. This idea is 

magnetization of single crystals of FeCo2BO5 and
which also evidence the occurrence of magnetization in two directions. 

feature of is the small magnetic moment of a copper ion in site
The calculation of exchange interactions showed that the exchange interactions

are weakly antiferromagnetic and the exchange interactions with 
one is weakly ferromagnetic and the other, antiferromagnetic

At the magnetic phase transition, ions in site 1 (2a) are apparently 
exchange interaction with the rest ions and order incompletely. The 

magnetization reveal the above-discussed hysteresis, which can be related to the 
incomplete ordering of the magnetic moments of ions in site 1 (2a) and
behavior of specific heat does not contradict the proposed model. 
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magnetic subsystem is divided in the same two subsystems, but the angle between the magnetic 
 

 
(NPD data). 

Cu2MnBO5 and in Fe3BO5 
BO5 the long axes of the 
MnBO5 the octahedra are 

the a direction as well. 
−Zavadsky model shows 

metal ions in the ludwigite 
triads with each other [28, 29]. The 

 possibly, to reduce the 
between the subsystems is also 

3BO5, to the nonparallel 

Such a separation of the magnetic system in two subsystems oriented nonparallel is 
the magnetic structure have been 

 in directly confirmed by 
and Ni5GeB2O10 [4, 13], 
 

is the small magnetic moment of a copper ion in site 1 (2a). 
interactions with ions in site 
with the two nearest ions on 

ferromagnetic and the other, antiferromagnetic.  
are apparently weakly coupled by the 

 FH and FC temperature 
which can be related to the 

and, as we stated above, the 
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The structural, magnetic, and thermodynamic properties of the ludwigite Cu2MnBO5, a 
new compound in the family of quasi-low-dimensional oxyborates with the ludwigite structure, 
have been studied. The quasi-two-dimensional crystal structure and the presence of a large 
number of magnetic ions on different sites in the unit cell lead to a magnetic structure which is 
difficult to establish by macroscopic magnetic studies. The Cu2MnBO5 ludwigite is the first 
heterometallic representative of the family of ludwigites whose microscopic magnetic structure 
was experimentally determined by neutron powder diffraction. Similar studies had been carried 
out earlier for the monometallic Fe3BO5 and Co3BO5 ludwigites. Combining the new results on 
Cu2MnBO5 with the results on Fe3BO5 and Co3BO5 it appears as a common feature of the 
ludwigites that the magnetic structure is divided into two subsystems of three leg ladders labelled 
4-2-4 and 3-1-3 where the numbers represent the different magnetic cation sites forming the 
ladders. This characteristic of the magnetic structure is linked to the specific geometry of the 
crystal structure and occurs to weaken the frustration in the system. The magnetic structure of 
Cu2MnBO5 is more complex than in Fe3BO5 – the directions of all the four magnetic moments 
do not coincide with the principal crystallographic directions in the crystal, which is most likely 
caused by the Jahn−Teller effect. In addition, the small moment of the copper ions in site 1 (2a) 
indicates the incomplete magnetic ordering on this site, which is confirmed by the magnetic 
(anomaly in the magnetization curves) and thermodynamic properties and is characteristic of 
heterometallic ludwigites [2, 4, 7, 30]. The strong dependence of the magnetization on the 
applied magnetic field in the region of the second anomaly in the temperature dependences of 
magnetization needs further investigations of the magnetic and thermodynamic properties in 
weak magnetic fields. A clear understanding of the mechanisms of magnetic ordering in the 
Cu2MnBO5 ludwigite will elucidate the properties of other compounds in this family. 
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