

ELSEVIER

The magnetic ordering of the novel compound ErGe_3

P. Schobinger-Papamantellos^a, G. André^b, J. Rodríguez-Carvajal^b, C.H. de Groot^c,
K.H.J. Buschow^c

^aLaboratorium für Kristallographie, ETHZ, CH-8092 Zürich, Switzerland

^bLaboratoire Léon Brillouin (CEA-CNRS), Centre d'Etudes de Saclay, 91191, Gif-sur-Yvette, France

^cVan der Waals-Zeeman Laboratory, University of Amsterdam, 1018 XE Amsterdam, Netherlands

Received 6 June 1995

Abstract

The crystal structure and magnetic ordering of the novel orthorhombic compound ErGe_3 of RGe_3 -type structure (*Cmcm*) was studied by neutron powder diffraction and magnetic measurements. ErGe_3 orders antiferromagnetically below $T_N = 7$ K with a collinear antiferromagnetic moment arrangement with the magnetic space group $C112_1/m'$ ($P2_1/m'$) (Sh_{11}^{53}). The Er magnetic moments are confined to the (a, b) plane making an angle of 15° with the a axis. The ordered magnetic moment value at 1.5 K is $8.6 \mu_B$ per Er atom. Field-dependent magnetic measurements at 4.2 K show that ErGe_3 is metamagnetic, and transforms to a ferromagnetic state with the same ordered magnetic moment value in fields larger than about 2 T.

Keywords: Rare-earth germanium compounds; Neutron diffraction; Magnetic properties

1. Introduction

The phase diagram of the erbium–germanium system [1] exhibits several compounds on the germanium-rich side (65%–75% germanium content) with unknown structures. The compound ErGe_{3-x} , which is the richest in germanium content, has been reported to be isomorphic with the orthorhombic ($C222_1$) modification of $\text{YGe}_{3.5}$ [2] and has lattice constants of $a = 0.2077$ nm, $b = 0.399$ nm and $c = 0.388$ nm. However, its crystal structure has not been solved. For the unknown compound ErGe_2 , two phase transitions have been reported at 907 and 932°C; in addition, the structure of a compound with the composition Er_3Ge_4 has been reported recently [3]. The present investigation deals with the crystal structure and magnetic properties of the compound ErGe_3 . It is shown that ErGe_3 is isomorphic with other RGe_3 ($\text{R} \equiv \text{Dy, Tb, Ho}$) compounds reported in Refs. [4] and [5], having structures belonging to the space group *Cmcm* (No. 63). All of these compounds display complex magnetic ordering types (antiphase domain) associated with the presence of several wave vectors. It is shown that the magnetic ordering in ErGe_3 is very different from that found for the other isomorphic compounds.

2. Neutron diffraction and magnetic measurements

The polycrystalline sample of composition ErGe_3 used for neutron diffraction and magnetic measurements was prepared by the methods given in Refs. [4] and [5]. Magnetic measurements made at high temperatures (50–300 K) show that Curie–Weiss behaviour is followed (see Fig. 1) with $\mu_{\text{eff}} = 10.4 \mu_B$ per Er atom and a Curie–Weiss intercept of $\Theta_p = -3$ K. The

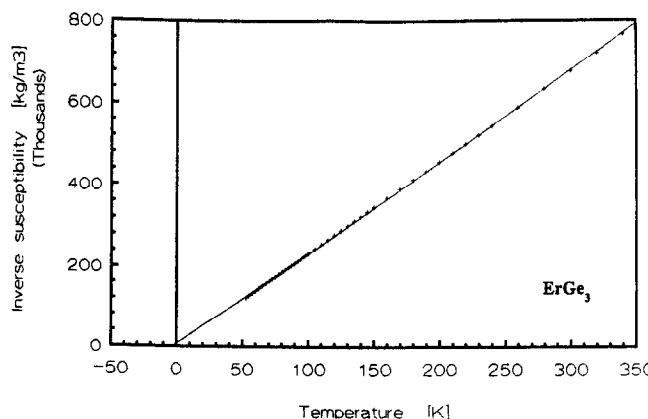


Fig. 1. Reciprocal susceptibility vs. temperature measured in a field of 2 T.

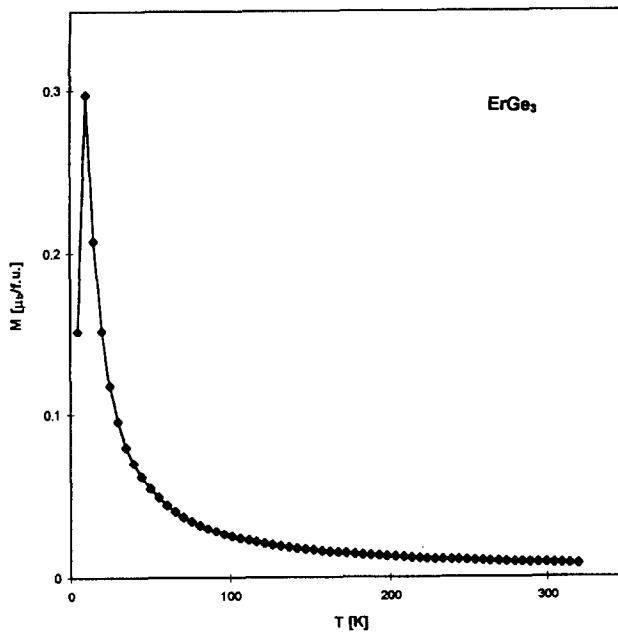


Fig. 2. Temperature dependence of the magnetic moment of ErGe_3 in a field of 0.1 T.

temperature dependence of the magnetization, measured in a field of 0.1 T (see Fig. 2), shows that ErGe_3 orders antiferromagnetically at $T_N = 7$ K. However, the antiferromagnetic state is not very stable. As can be seen from Fig. 3, the antiferromagnetic state is easily transformed into the ferromagnetic state by a metamagnetic transition. The saturation moment in the ferromagnetic state is $8.4 \mu_B$ per Er atom, which is close to the free ion value of Er^{3+} ($gJ\mu_B = 9 \mu_B$).

Neutron diffraction experiments were carried out at the facilities of the Orphée reactor (LLB-Saclay). The data between 1.5 and 20 K were collected on the G4.1 diffractometer (800 cell multidetector), $\lambda = 0.2427 \text{ nm}$. The step increment in 2θ was 0.1° . The data were

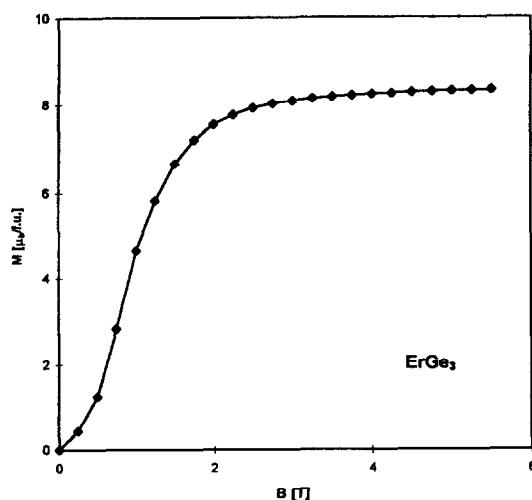


Fig. 3. Field dependence of the magnetic moment of ErGe_3 at 4.2 K.

evaluated by the FULLPROF program [6]. The magnetic form factor for Er^{3+} was obtained from Ref. [7]. All refinements led to reliability factors R_n (nuclear) and R_m (magnetic) with values around 3% and 5% and R_{wp} (profile) of 12%–18%. Due to the presence of impurity phases, the χ^2 values were high in some cases. The 7.5 K neutron pattern shown in Fig. 4 (bottom part) could be indexed with the lattice constants given in Table 1. The low values of the reliability factors confirm the composition and structure proposed previously [4,5]. Next to the nuclear reflections of ErGe_3 , the pattern comprises one non-overlapping foreign line at $2\theta = 43.6^\circ$ identified as the $\text{Ge}(111)$ reflection. Two additional overlapping lines visible in the differ-

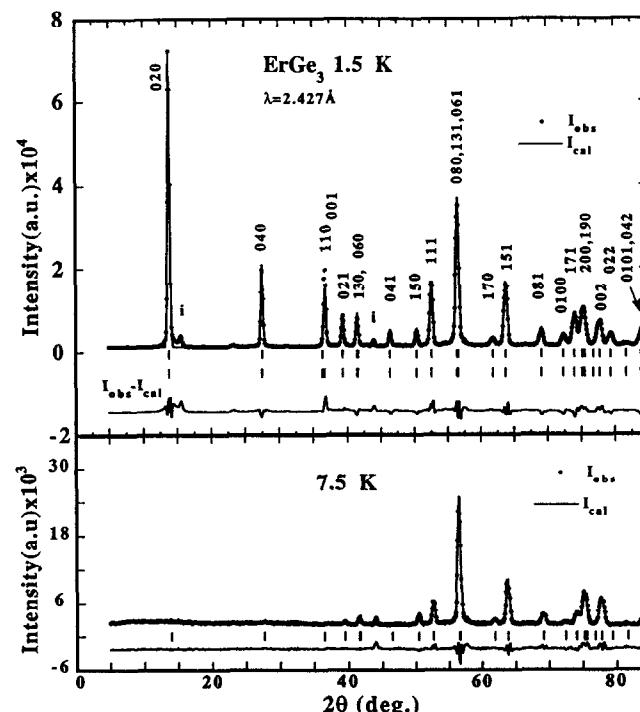
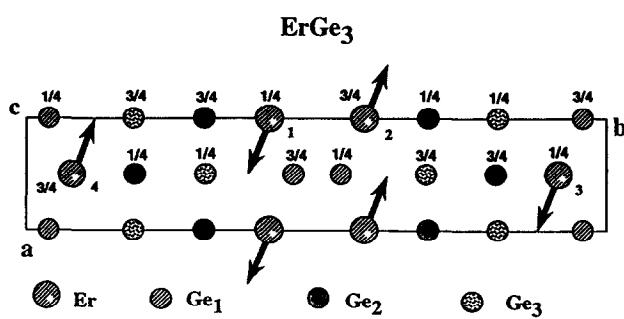


Fig. 4. Observed, calculated and difference neutron diagrams of ErGe_3 measured at 1.5 K (top part) and 7.5 K (bottom part).

Table 1
Refined parameters from neutron data at 7.5 K (paramagnetic state) and 1.5 K (magnetically ordered state) of ErGe_3 . Space group $Cmcm$ (No. 63), all atoms at site 4(c)

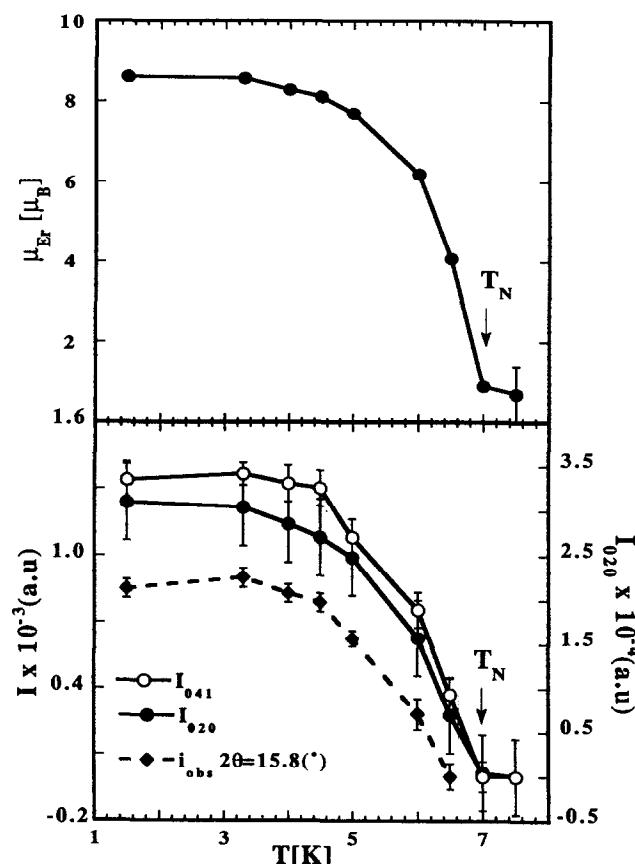
Atom parameter	7.5 K	1.5 K
$y_{\text{Er}}: (0, y, 1/4)$	0.4154(5)	0.4183(4)
$y_{\text{Ge}1}: (0, y, 1/4)$	0.0411(5)	0.0424(9)
$y_{\text{Ge}2}: (1/2, y, 1/4)$	0.1922(4)	0.1922(8)
$y_{\text{Ge}3}: (1,2, y, 1/4)$	0.3128(5)	0.3126(8)
$\mu_{x\text{Er}} (\mu_B), \mu_{y\text{Er}} (\mu_B)$	—	8.3(1), 2.3(2)
$\mu_{z\text{Er}} (\mu_B), \phi_a (^\circ)$	—	8.6(1), 15(1)
$a (\text{nm})$	0.39963(11)	0.39968(7)
$b (\text{nm})$	2.0650(8)	2.0659(4)
$c (\text{nm}), B_{\text{of}} (\text{nm}^2)$	0.38841(10), 0.002	0.38843(6), 0.002
$R_n (\%), R_m (\%)$	6.8, —	3.76, 5.88
$R_{wp} (\%), R_{\text{exp}} (\%), \chi^2$	18.4, 12.34, 2.2	16.0, 1.9, 68

ence diagram in Fig. 4 at $2\theta = 75^\circ$ and 77° could possibly be attributed to the (200) and (002) reflections of the adjacent ErGe_2 (high temperature) phase ($a = 0.3882 \text{ nm}$, $b = 0.353414 \text{ nm}$, $c = 0.39837 \text{ nm}$, C lattice) [8] with unknown structure.


The patterns collected in the magnetically ordered state, $1.5 \text{ K} < T < 7 \text{ K}$, were indexed with the same C cell of the crystal structure ($\mathbf{q} = 0$). There are eight magnetic space groups associated with the magnetic C lattice and the wave vector ($\mathbf{q} = 0$) [9,10]. Three of these allow ferromagnetic modes. Because of the low symmetry of the 4(c) Wyckoff site, the magnetic moment directions of the Er atoms situated at the intersection of the 2_y axis (at $z = 1/4$) and the mirror planes m_x (at $x = 0$), m_z (at $z = 1/4$) are restricted to uniaxial moment arrangements of the F(+++) or G(+−−) [11] type unless further symmetry reduction is observed. A uniaxial arrangement along y is invariant under the antimirror operations m'_x , m'_z (see Table 2). The corresponding magnetic space groups are $C2'/m'2/c2'_1/m'$ (Sh_{63}^{464}) and $C2/m'2/c2_1/m'$ (Sh_{63}^{465}). From the strong intensity of the (020) magnetic reflection, it is obvious that the orientation of the magnetic moments deviates strongly from the y direction.

The refinement of the magnetic intensities has shown that the Er magnetic moments are oriented 15° off the a axis within the plane (001) as shown in Fig. 5.

Table 2


The magnetic space groups of Cmcm associated with the magnetic C lattice ($\mathbf{q} = 0$). The magnetic modes F(+++) and G(+−−) of the 4(c) site. The signs refer to the atoms: (1), (0, y , $1/4$); (2), (0, $-y$, $3/4$); (3), ($1/2$, $1/2 + y$, $1/4$); (4), ($1/2$, $1/2 - y$, $3/4$)

Magnetic space group	x	y	z
Cmcm (Sh_{63}^{459})	—	—	G_z
Cmc'm (Sh_{63}^{460})	—	—	—
Cmcm' (Sh_{63}^{461})	G_x	—	—
* Cmcm' (Sh_{63}^{462})	—	—	F_z
* $\text{Cmc'm}'$ (Sh_{63}^{463})	F_x	—	—
* Cmcm' (Sh_{63}^{464})	—	F_y	—
Cmcm' (Sh_{63}^{465})	F_x	G_y	—
Cmcm (Sh_{63}^{458})	—	—	—

Fig. 5. Schematic representation of the collinear antiferromagnetic ordering of ErGe_3 .

The Er atoms 1, 3 and 2, 4, related by the C-centring operation, have their magnetic moments parallel, while the atoms 1, 2 and 3, 4, related by the inversion operation, have their moments antiparallel (anti-inversion). This arrangement implies a symmetry reduction to the monoclinic $C112_1/m'$ ($P2_1/m'$) space group. The resulting ordered moment value of $8.6(1) \mu_B$ per Er atom at 1.5 K is in good agreement with the moment value associated with the ferromagnetic configuration $(8.4(1) \mu_B$ per Er atom, see Fig. 3). The temperature dependence of the magnetic intensities and of the Er ordered magnetic moment value, shown in Fig. 6, confirms the ordering temperature $T_N = 7 \text{ K}$ of the magnetic measurements. The refined Er moment values indicate that the planar antiferromagnetic arrangement remains unchanged over the whole magnetically ordered region.

A weak line visible in the 1.5 K pattern close to the (020) reflection probably arises from the magnetic ordering of an impurity phase, e.g. the high temperature phase ErGe_2 with unknown structure. As can be seen in Fig. 6 (bottom part), this peak disappears at slightly lower temperatures than the other magnetic

Fig. 6. Temperature dependence of the magnetic intensities (bottom part) of the (020) and (041) reflections of ErGe_3 and of the unidentified magnetic reflection $i_{0\text{bs}}$ at $2\theta = 15.8^\circ$. Also shown is the temperature dependence of the Er magnetic moment (top part).

reflections. Several trials to incorporate this peak into the refinements by considering more complex ordering types with a small modulation of the main structure did not converge.

As usually observed in rare earth intermetallics, ErGe_3 is found to have the lowest ordering temperature within the series of isomorphous germanides of the type RGe_3 ($\text{R} \equiv \text{Tb}, \text{Dy}, \text{Ho}$), which order antiferromagnetically at 40 K, 24 K and 10 K respectively. In contrast with the other members, which display complex ordering types including incommensurate phases with several wave vectors, the magnetic ordering of the ErGe_3 compound is simple. The easy plane of antiferromagnetism of the Er compound (001), with the moments close to the a axis, is also different from Dy and Tb, which have an almost uniaxial arrangement parallel to the c axis [5,12].

- [2] F.A. Schmidt, O.D. McMasters and O.N. Carlson, *J. Less-Common Met.*, 26 (1972) 53.
- [3] O.Ya. Oleksyn and O.I. Bodak, *J. Alloys Comp.*, 210 (1994) 19.
- [4] P. Schobinger-Papamantellos, D.B. de Mooij and K.H.J. Buschow, *J. Alloys Comp.*, 183 (1992) 181.
- [5] P. Schobinger-Papamantellos, J. Rodriguez-Carvajal, T. Janssen and K.H.J. Buschow, *Proc. Int. Conf. on Aperiodic Crystals, Les Diablerets, Switzerland, 18-22 September, 1994*.
- [6] J. Rodriguez-Carvajal, *Physica B*, 192 (1993) 55.
- [7] A.C.C. Wilson (ed.), *International Tables for Crystallography*, Vol. C, Kluwer Academic, Dordrecht, Boston, London, 1992.
- [8] O.Ya. Oleksyn, personal communication, 1995.
- [9] V.A. Koptzik, *Shubnikov Groups*, Moscow University Press, Moscow, 1966.
- [10] W. Opechowski and R. Guccione, in G.T. Rado and H. Suhl (eds.), *Magnetism II A*, Academic Press, London, 1965, Chapter 3, p. 105.
- [11] E.F. Bertaut, in G.T. Rado and H. Suhl (eds.), *Magnetism III*, Academic Press, London, 1963, Chapter 4, p. 149.
- [12] P. Schobinger-Papamantellos, T. Janssen and K.H.J. Buschow, submitted to *J. Magn. Magn. Mater.*.

References

- [1] V.N. Eremenko and I.M. Obushenko, *Non-Ferrous Met. Res.*, 9 (3) (1981) 216.