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ETUDE PAR DIFFRACTION NEUTRONIQUE DE LA

STRUCTURE MAGNETIQUE DU CHROMITE DE TERBIUM

E. F. BERTAUT, J. MARESCHAL et G. F. DE VRIES
CEN-G, Rue des Martyrs, 38, Grenoble
(Regu le 20 mars 1967)

Résume—TbCrO; de structure pérovskite déformée (groupe d’espace Pbnm) est étudié par
diffraction neutronique. Les paramétres de positions atomiques sont: (x = —0,011; y = 0,064)
pour Tb en 4¢/, (x = 0,096; y = 0,470) pour O; en 4¢/, (x = —0,303; y = 0,301, z = 0,049)
pour Oy; en 8d/. Cr est en 45/.

A 77°K et 4,2°K les spins du chrome sont ordonnés suivant le mode Gz; 4 4,2°K les spins du
terbium sont ordonnés suivant les modes Fx et Cy.

A 3,05°K les ions Th®* s’ordonnent suivant une nouvelle structure correspondant 4 un vecteur
de propagation k& = [030]; D’apres la théorie des groupes, la configuration observée appartient
a4 l'une des deux représentations bidimensionnelles du groupe Pbnm associées & k = [030].
L’elargissement des raies magnétiques HKL avec H 3 0 s’explique par l'existence de fautes
d’empilement des plans antiferromagnétiques perpendiculaires 4 Ox, les liaisons magnétiques
entre plans étant beaucoup plus faibles que celles dans le plan. Ces fautes peuvent étre guéries
par application d’un champ magnétique supérieur a 6250 Qe.

L’énergie dipolaire bien que notable (W = —13,90 x 107 ergs/molgr.) n’explique pas i elle
seule la structure observée.

Abstract—The distorted perovskite like structure TbCrOj; (space group Pbnm) is studied by
neutron diffraction. Atomic position parameters are (x = —0-011; y = 0-064) for Tb in 4¢/,
(x = 0:096; y = 0-470) for Oz in 4¢/, (x = —0:303; y = 0-301; z = 0-049) for Oy; in 8d/. Cris
in 45/.

At 77°K and 4-2°K the Cr spins order in a Gz mode; at 4-2°K the Tb spins order in a combina-
tion of Fx and Cy-modes.

At 3-05°K Tb®* ions order in a new magnetic structure with a propagation vector k = (030);
according to group theory the observed configuration belongs to one of the two bidimensional repre-~
sentations of the group Pbmm associated with k = [030]. The broadening of magnetic reflexions
HKL with H # 0 is explained by stacking faults in antiferromagnetic planes perpendicular to Ox,
the magnetic bonds between planes being much weaker than in one plane. These stacking faults
are annealed by the application of a magnetic field higher than 6250 Oe.

Although considerable, the dipolar energy alone (W = —13-90 x 107 ergs/molgr.) does not
explain the observed configuration.

1. INTRODUCTION

CoMME la plupart des composés ABO, formés par
les oxydes des terres rares et des métaux de
transition, TbCrO; appartient 2 la famille des
pérovskites déformées et cristallise dans le groupe
orthorhombique centrosymétrique Pbnm-2 avec
quatre molécules par maille. La Fig. 1 illustre la
relation entre la maille idéale a, pérovskite et la
maille réelle pseudo-quadratique @ = b = ay4/2;
¢ = 2a,.
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Les paramétres de la maille de TbCrOg récem-
ment précisés® sont: a = 5,291 A; = 5,513 4;
c=17557A.

2. PREPARATION DES ECHANTILLONS ET
CONDITIONS EXPERIMENTALES

Des échantillons polycristallins ont été pré-

parés par évaporation & sec sous infrarouge et

calcination 4 1300°C pendant 24 heures d’une

solution nitrique de nitrate de chrome et d’oxyde
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de terbium en quantités calculées. Un porte-
échantillon cylindrique en vanadium (¢ = 15 mm,
e =0,2mm) a. été utilisé pour les mesures de
diffraction neutronique. On s’est servi d'un
cryostat 3 queue de vanadium pour les enregistre-
ments des diagrammes a 293°K, 77°K, 4,2°K et
1,5°K. Les mesures sous champ magnétique ont
été faites 4 4,2°K et 1,5°K dans un cryostat 2
queue de laiton placé dans Pentrefer d’un électro-
aimant lequel produit un champ horizontal
variable de 0 & 16500 Oe.
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Fic. 1. Relation entre la maille idéale pérovskite et la
maille réelle pseudo-quadratique.
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3. AFFINEMENT DE LA STRUCTURE CRISTALLO-
GRAPHIQUE

A Taide des intensités des réflexions nucléaires
observées 4 la température ambiante et en utilisant
un programme d’affinement écrit par Bassi® pour
le calculateur électronique CAE 510, nous avons
abouti aprés 4 itérations aux paramétres suivants
de positions atomiques (Tableau 1).

4, ORDRES MAGNETIQUES OBSERVES

Une étude récente des propriétés magnétiques
des chromites des terres rares a montré I'existence
de deux températures de Néel. La premicre,
Ty1 = 158°K, correspond & un ordre magnétique
des spins de Cr®*. La seconde, Ty, voisine de4°K‘®
et que nous allons préciser ici correspond a un
ordre des spins de Th3*. Pour étudier les diffé-
rents ordres magnétiques, des diagrammes de
diffraction neutronique ont été enregistrés 2
77°K, 4,2°K et 1,5°K. Si a4 77°K et 42°K, les
raies magnétiques apparues ont été indexées dans
1a maille cristallographique, par contre i 1,5°K,
un doublement de la maiile dans la direction de
Paxe b a été nécessaire.

A. Ordres magnétiques a 77°K et 4,2°K

La maille magnétique identique & la maille
cristallographique contient quatre atomes de
chrome et quatre atomes de terre rare équivalents;
on peut alors prévoir® quatre modes de spin pour
les atomes de chrome et quatre pour les atomes de
Tb caractérisés par les vecteurs F, relatifs 2
Parrangement ferromagnétique (++++), et

Tableau 1
Valeur des

Sites Position des atomes paramgdtres

Cr3* en (4‘[7) %: 0,0; %) 0, %; 0, %: %; 0, %: 0
8+ x = —0,011
'lzz en (40) ( ©yE X3 ) y= 0,064
0,2~ %+x: %—y: $ i—x %+y:& x = 0,096
1 y= 0,470
%y 7 x4y, 3z x = —0,303
01°~ en (84d) + ( ) y= 0,301
E’.’T” §+2; %+x; %-%E 2= 0:049
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G, C, A, relatifs aux 3 arrangements antiferro-
magnétiques  {(+—+-), (++——) et
(4 — — +).” La séquence des signes correspond
4 Pordre indiqué dans le Tableau I des triplets de
coordonnées, Les composantes de ces vecteurs
forment les bases des représentations irréduc-
tibles du groupe Pbnm® (Tableau 2). Dans 'hypo-
thése d’un Hamiltonien d’ordre 2 dans les spins,
2 modes ne peuvent étre couplés que s’ils appar-
tiennent 4 la méme représentation. Les deux sous-~
réseaux de Cr et Tb ne peuvent donc étre couplés
qu’a Pintérieur des représentations I'; 2 T',. Néan-
moins lorsque PHamiltonien contient des termes
d’ordre 4 et supérieur, il peut coupler des vecteurs
appartenant 4 des représentations différentes; on
démontre alors que les parties de spins S@ et
S® appartenant & deux représentations différentes
'@ et T@ sont perpendiculaires (conservation
du moment),

Tableau 2. Représentations des vecteurs de base du
groupe Pbnm pour k = 0

Sites 4 b/ Sites 4 ¢/
Ty(+4++) Ax Gy C=z —_— — Cz
Ta(+—4) Fx Cy Gz Fx Cy —
T3 (—++) Cx Fy A=z Cx Fy —
Te(——+) Gx Ay Fz — — Fx
Ts(++=) — — — Gx Ay —
Fe(+—~~) — — = — Az
Ti(=+~) — — — — — Gz
Tg{(——~} — — — 4x Gy —

Ordre magnétique du chrome. A 77°K, les réflex-
ions magnétiques observées (A+k = 2n+1, I =
2n+1) correspondent & un arrangement du type
G des spins de Cr®* comme dans LaCrOg;® et
dans tous les chromites de terres rares. Chaque
atome de Cr est entouré de six voisins proches
ayant des moments magnétiques opposés. Les
réflexions (011) et (101) caractéristiques de cet
ordre conservent leur rapport d’intensités a2 77°K.
et 2 4,2°K. Cela indique que la direction de I’anti-
ferromagnétisme n’a pas changé entre ces tem-
pératures. La valeur du spin d'un ion Cr3* est
2,55 pp 2 77°K et 2,85 py 4 4,2°K. L’écart entre
cette derniére valeur et le moment théorique de
3 up peut étre attribué 2 des effets de covalence.(®
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L’égalité des raies (011) et (101) et impossibilité
de séparer le paquet de raies (121), (013), (211),
(103), ne permettent pas de décider entre deux
directions possibles d’antiferromagnétisme: [001]
ou [110].

Ordre magnétique du terbium. A 4,2°K, on observe
Papparition, due 2 un ordre du Tb, des raies
faibles (012), (102), (110) et (002) et une légere
augmentation des raies (020), (112), (120) et (210);
elles sont caractéristiques des arrangements F et
C. La faiblesse des intensités observées ne permet
pas de déterminer avec certitude les directions
de ces modes; mais puisque Ipygy < I(10z €t
I120y < I 210y le mode C est vraisemblablement
dirigé selon Oy. (On ne peut néanmoins exclure
la présence d’un mode Cx.) D’aprés le Tableau 2,
Cy ne peut coexister qu'avec Fx et le couplage
entre les sous-réseaux de Tb et de Cr ne peut
g’effecteur qu’a 'intérieur de la représentation I'y;
ceci permet, par une voie trés indirecte, de prévoir
la direction d’antiferromagnétisme du Cr selon
[001]. On peut également déduire de ce tableau
que le faible ferromagnétisme du chrome mis en
évidence par des mesures d’aimantation® (~ 0,01
ug) est dirigé selon Ox. Le modtle proposé ici
serait donc analogue & celui observé dans
TbFe0;4® au-dessus de 3,1°K et dans HoFeQ,1?
et HoCrQ,.¢2

B. Ordre 2 1,5°K

Sur le diagramme enregistré 3 4,2°K apparait
également une raie trés large s’étalant de 6 = 5°
4 8 = 7° caractéristique d’un ordre 4 courte dis-
tance et de la proximité d'une transition magné-
tique. Effectivemnent un diagramme enregistré
4 1,5°K fait apparaitre un grand nombre de raies
magnétiques que P'on peut classer en deux caté-
gories.

La premidre comprend des raies faibles index-
ables dans la maille cristallographique et carac~
téristiques du mode C. L’égalité des raies (100) et
(010) impose comme seules directions possibles de
cet arrangement [001] ou [110]. La présence des
raies faibles peut s’interpréter par la persistance
d’un faible couplage Cr-Tb. Le doublet (011)
(101) caractéristique du mode G de Cr n’est pas
modifié. Le couplage est possible pour [110] avec
les modes Cy (Tb) Gz (Cr) et pour [001] avec
les modes Cz (Tb) Gy (Cr) de sorte que nous ne
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pouvons pas décider entre les deux directions du
mode C 4 'aide des seules données d’intensités.

La deuxieéme catégorie comprend de fortes
raies dont l'indexation exige un doublement de la
maille selon . Ces raies ayant K impair dans la
nouvelle maille correspondent donc & un vecteur
de propagation k = [0340] dans I'ancienne maille.

En numérotant de 1 2 8 les positions des atomes
de Tb dans la nouvelle maille:

%Y i(l); 9?»5’: %(2); %"*‘x’ i—y»%(3);

%—x) i'*'y»i(“‘); x’é'l'yai(s);
9?,%‘“3’,%(6); %'*'x’ %“%%(7);
-2, §+y,4(8) (1)

(ot x= —0,011, y = 0,032), les trés fortes
intensités des raies K = 2n+1, L = 2n+1 im-
posent les relations:

S1 = "—Sz = “‘S5 = Ss
Ss = —S4 = =8 = Ss (2)

et

entre les projections des moments des atomes de
Tb sur les axes Ox et Oy. Par contre aucune rela-
tion ne permet de lier les moments des atomes en
1, 2, 5, 6 4 ceux des atomes en 3, 4, 7, 8; ceci est
dd 4 la forme complexe du facteur de structure
magnétique

F,=F,1,2,5,6)+iF,(3,4,7,8) 29

Les deux possibilités (+—+—; —+—4) et
(+——+; —++ —) existent pour la succession
selon (1) des signes des composantes x et y.
On les notera GG et AA par analogie avec les
notations précédentes. Selon qu’ils sont identiques
ou différents sur Ox et Oy, on aura des modéles
collinéaires (abrégé ¢) ou non collinéaires (abrégé
nc, ou ncg). Les différentes possibilités sont
résumées dans le Tableau 3.

Le calcul des intensités magnétiques montre
que les trois types de modeles ¢, nc, et ncy se
différencient trés légérement par la forme des
termes d’interférence selon Ox et Oy; le meilleur
accord avec les observations est obtenu pour un
modele nc, (Tableau 4).

La Fig. 2 représente un des modeles supposé
dans lequel les moments antiferromagnétiques du
Tb appartenant au vecteur de propagation k =
[030] sont 7,76 ug selon Ox et 3,17 py selon Oy
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Tableau 3. Modes collinéaires (c) et non collinéaires

(nc) possibles
oy

GG 44 GG A4
ox
GC_; c ney, c neg
AA nea c neg c
(ele] ¢ nep ¢ ncy
AA nep c nc, P

le moment total étant de 8,5 pgp & 1,5°K, assez
proche de la valeur théorique (9 uy) de l'ion libre
saturé,

Détermination de la température de Néel du Tb
Les résultats précédents semblent indiquer que,
comme dans TbFeOy;, il existe deux arrangements

Ors
O cr

Fic. 2. Structure magnétique de CrTbhO; au-dessous de
3,05°K.

successifs pour Tb et par conséquent deux tem-
pératures de Néel Ty et Tz (Tyg > 4,2°K;
1,5°K < Ty < 4,2°K). Les trop faibles inten-
sités dues aux modes C et F' du Tb au-dessus de
4,2°K ne permettent pas de déterminer Ty, par
diffraction neutronique. Par contre nous avons
suivi en fonction de la température I’apparition
de la raie (011). La variation de son intensité (Fig.
4) permet la détermination de T'y,.

Tys = 3,05(+0,05)°K.
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Tableau 4. Intensités calculées et observées de divers modéles

T =1,5K

hkl F2sin2a F2 sin3a F?sin?x

nca ¢ nep I obs
010 19 19 19 10 (+10)
011 518 518 518 517 (£ 5)
020
100} 30 30 30 30t ( 8)
110 11 7 3 10* (+ 3)
‘1’(2)}} 539 539 539 539 (+10)
111 257 260 263 254% (+ 8)
120
ey 13 13 13 13t (+ 6)
030 155 155 155 142 (£24)
012 22 22 22 36 (+14)
121 0 0 0 0
031 338 338 338 318 (+10)
022
102} 46 46 46 351 (£15)
ﬁg} 213 192 172 261* (+33)
131 248 258 268 261* (+17)
040
122: 20 20 20 21t (£15)
200
032 177 177 177 172 (+20)
041 0 0 0 0
210 11 6 1 15 (£20)

* Ces intensités ont été mesurées aprés guérison des fautes d’empilement par application d’un champ ma-

gnétique de 15 kQe.

1 Ces intensités correspondent & un ordre CyFx du Tb s’expliquant par la persistance d'un faible couplage

Tb—Cr.

5. METHODE MACROSCOPIQUE

La méthode macroscopique® consiste & déter-
miner les combinaisons linéaires de spins se trans-
formant selon une représentation irréductible du
groupe d’espace cristallographique et susceptibles
de représenter la configuration observée des spins.
Cette méthode peut étre généralisée au cas ol la
maille magnétique differe de la maille cristallo-
graphique, c’est 4 dire lorsque le vecteur de propa-
gation k des spins est non nul et & 'intérieur ou 4
la surface de la premitre zone de Brillouin. La
méthode générale est développée dans®®, Nous
lappliquons ici au cas du vecteur k = [030].
Nous obtiendrons 4 la fois les représentations
irréductibles ainsi que les vecteurs de base du
groupe d’espace associé 4 k. Nous numérotons de

1 & 4 les spins des sites 4c dans 'ordre suivant
marqué aussi sur la Fig. 3:

%11 %712 1+%1-5,10)
%_x’ %+y,%(4) (3)

Comme générateurs du groupe Pbnm mnous
choisissons (comme dans®) 1’axe hélicoidal 2x
en x % 0, 'axe hélicoidal 2y en } y %, et le centre
de symétrie 1 en 000.

Le sens physique du vecteur k = [040) est
qu’au bout d’une translation b le sens des spins
est inversé. C’est ainsi que le point marqué 1" sur
la Fig. 3 (translaté de b) a le spin inverse du point

1 et que le point 1°° (translaté de @) a le méme
spin que le point 1. Il suffit de connaitre les spins
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Fi1c. 3. Equivalence des configurations GxAy et AxGy.
Par un changement d’origine on passe de la maille
contenant les configurations GxA4y & la maille tracée en
pointillé dans laquelle les points (1), (2), (3), (4) corres-
pondent & 'arrangement AxGy équivalent.

sur les points 1 4 4 pour engendrer toute la struc-

ture. Les opérations 2x, 2y et 1 appliquées au
vecteur k, changent le vecteur k en lui-méme

4000

3000

1{OI) {unités arbitraires)

2000

1000

t 2 3 4
°K
FiG. 4. Variation de l’intensité de la raie (011) avec la
température.

(2 une équivalence pres);
2y[030] = [040];
2x[040] = [0}0] = [040] +[01-0];
1[030] = [050] = [030] (4)

Donc le groupe G}, du vecteur k est identique au
groupe ponctuel G, associé au groupe Ponm.

Propriétés de transformations

Nous illustrons la méthode par l’operatlon 1
qui transforme le point 1 en 2,2 en 1, 3 en 4 et
4 en 3’ (cf. Fig. 3). On a, les spins étant considérés
comme vecteurs axiaux,
Isg =5, = —5y;

Is; = 855 1sy = 5;

1s, = 3" = —83 (5)
La matrice de transformation selon 1 est donc la
matrice d’ordre 12 = 4x 3

¥y
0

X

o © R
R o o W



ETUDE PAR DIFFRACTION NEUTRONIQUE DE LA STRUCTURE MAGNETIQUE

od 1 2 3 4
1 /1 « «
2 . 1 . .
=30 . .21 . ©)
4\ . . .-
De méme on a:
2.5"513; = S4y5 2}-"211 = -}534;
2~Y~‘3y = —S2y; 2}3411 = —S1y Q)

et des équations analogues, mais avec changement
de signe, pour les composantes x et 2. On peut

former les matrices de transformation (2y) et
aussi (2x) et d’une maniére générale, celles des 8
opérations du groupe (2 savoir e = identité, 2x,
2y, 2z = 2x. 2y, plus les 4 opérations 1, 2x. T,
2y 1, et 2z- f). On peut ensuite réduire ces
matrices par les procédés usuels de la théorie
des groupes. Ici nous choisissons une méthode
plus simple, en examinant d’emblée Paction des
éléments de symétrie sur les combinaisons lindaires
de spins.
On a par exemple:

2y(sy —sp+ 55— Sa)g = —(S1—53—53+54);
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Les vecteurs Gx et Ax forment donc la base
d’une transformation dans un espace a deux
dimensions dont les matrices de transformation

sont:
):

@=(._.) &=
(10)

=(",7)

T\ -1
Le probléme est de savoir si cet espace de deux
dimensions est irréductible. On passe des matrices

de transformations (10) aux matrices de représen-
tations par une transposition*14)

) xef
(1)

—1

1

.

1
-1 .

Les transposées forment une représentation. Ici
A, A,, A;, représentent respectivement 2x, 2y

et 1. La “représentation” que nous appelons |
est résumée dans le Tableau 5.
On a en sommant sur les caractéres y;

n=8
_ > xsl? = = nombre d'éléments  (12)
soit 2yGx = —Ax 8) =1
On peut ainsi crire ce qui implique Pirréductibilité de la représenta-
_ _ - tion I'j;. De méme en raisonnant sur les
2xGx = Gx; 2yGx = —Ax; 1Gx = — Ax; combinaisons Fz (++ + +) et Cz (+ +——), on
2xAx = — Ax; 2ydx = Gx; 14x = —Gu. * Nous renvoyons au livre de HEINE®® ol la raison
(9) du choix des matrices transposées est bien exposée.
Tableau 5. Représentations du groupe Pbnm associées au vecteur k = [030]
Opérateurs e 2} 2} 2z 1 2x-1 fy -1 2z-1
Matrices e A A A Aa As A4 A4, A1 4345
1 1 1 1 -1 -1 -1 -1 .
Plk
1 -1 -1 . 1 . -1 1 1 .1
1 . 1 . 1 . 1 . 1 1 1 . 1 .
Tox
1 -1 -1 . 1 5 1 . -1 . -1 1
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trouve:
2xCz = Cz; Z;Cz = —Fg; 1Cz = Fz;
OxFz = —Fz; 2yFz=Cz; 1Fz= Cx.
(13)

On construit comme plus haut les matrices de
transformation et une représentation Iy, également
résumée dans le Tableau 5. Elle est irréductible,
car on a encore (12). Constitue-t-elle une repré-
sentation nouvelle, c’est & dire non équivalente 2
T';42 La réponse est oui, car on a (12)

8
S Ty T = 0 (12"
J=1

Les deux représentations I'y, et I'y, sont les
seules possibles car la régle de la théorie des
groupes (14), ou d est la dimensionalité¢ de la
représentation, est bien vérifiée

n=>d?=22422=38 14
i

On trouve finalement que les composantes selon
x et y des partenaires g, et p, d’'une méme colonne
du Tableau 6 appartiennent a I'y,, tandis que les
composantes 2 appartiennent a I'yy.

Invariants

Demandons-nous d’abord quelle est la signi-
fication physique du fait que Gx et Ax appar-
tiennent & une représentation irréductible de
dimensions 2. C’est qu'on peut décrire la méme
structure magnétique indifféremment par Gx ou
par Ax, les deux descriptions étant parfaitement
équivalentes, comme le montre la Fig. 3. Le
Tableau 6 nous enseigne de plus qu’avec Gx, Ax
d’une part, Ay, Gy, d’autre part appartenant i
I';;, on peut construire des invariants tels que
GxAy+ AxGy. On vérifie aisément que dans Iy

E. F. BERTAUT, J. MARESCHAL et G. F. DE VRIES

on peut construire 4!/[(4—2)!2!] = 6 invariants
et dans I'y, un invariant.

La théorie des groupes est donc en accord avec
Pexpérience qui trouve 'association GxGxAyAy
ou GyGyAxAx et leurs inverses. Elle est cependant
en désaccord avec des modes colinéaires
GxGxGyGy ou AxAxAyAy ainsi qu’avec des
modes non colinéaires AxAxGyGy et GxGxAyAy
(cf. modes ¢ et ncg du Tableau 3).

Remarque
Le Tableau 6 montre que théoriquement il est
possible d’avoir simultanément dans Ty

GxAyFxCy ou dans une notation plus compléte
GxGxAyAyFx FxCyCy. On pourrait alors spéculer
que le faible couplage Tb~Cr supprime les com-
posantes Fx et Cy ne laissant subsister que
GxGxAyAyFxFxCyCy. En fait les études des
fautes d’empilement sous champ montrent que la
configuration FxCy n’est pas couplée avec GxAy
(k = [040]) (voir plus loin).

6. FAUTES D’EMPILEMENT MAGNETIQUES

A 1,5°K, les raies K = 2n+1 sont considér-
ablement élargies lorsque H 3 0. De plus, les
intensités calculées de ces raies en utilisant le
moment magnétique déduit des intensités obser-
vées des raies fines sont de 30 a4 40 pour cent
supérieures aux observations. Ces résultats ex-
périmentaux conduisent a admettre, dans la
direction Ox, V'existence de fautes d’empilement
de plans antiferromagnétiques AB, AB... etc,
A contenant les atomes numérotés 1, 2, 5, 6 et
B ceux numérotés 3, 4, 7, 8.

Aussi bien le calcul (cf. Tableau 4) que la
théorie des groupes montrent que les arrangements
non colinéaires AxAxGyGy et GxGxAyAy ainsi
que leurs inverses AxAxGyGy et GxGxAy Ay sont
équivalents. En désignantun plan A par A4+ si

Tableau 6. Vecteurs de base associés a k = [030]

Représentation I'yx

Représentation I'g;

Fx Gx

?1

Pa Ax

Cy Ay Az Cz

-Gz Fz
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les composantes S, et Sy, (¢ = 1,2, 5, 6) se corres-
pondent selon la suite des signes (+ =~ —+), un
plan B par B—+4 si la suite des signes est
(—++-) pour S, et (+——+) pour Sy
(i = 3, 4, 7, 8) on a les équivalences suivantes:

AxAxGyGy = A+ +B—+
AxAxGyGy = A— —B+ —
GxGxAydy = A+ +B+ —
GxGxAyAy = A— —B— +

Une séquence telle que

(15)

A++B—-+... A++B—-+ | A-—-B—-4+ ... 4A--B-+

peut-étre considérée ainsi comme la succession de
domaines antiferromagnétiques, séparés par des
“fautes d’empilement’”’ qui correspondent ici au
changement du signe des moments d'un plan A ou
B. Introduisons la probabilité « de changement
de signe d’un plan de méme catégorie, 5i P, estla
probabilité pour que deux plans distants de m
mailles soient identiques, on a la relation de
récurrence

Pp =Py y(l=a)+(1=Pp_y)e  (16)
P, tendant vers  quand m — <o, on a:
Pp=}+cg™ = 3[1+(1-2a)!™]  (17)

en remarquant que Py = 1l et P = 1—a, P, est
une fonction paire de m (P, = P_,,).

Utilisant des notations analogues & celles de
WiLsoN® Pintensité I (hy, kg, hg) est (2 un
facteur de proportionnalité prés)

I(hy, kg, h3)
= z Zon * Quym® exp(2mwih - 1)

= Z (Ny = |m YN — [m ) (N~ [m3])

X {Qp* Quym*dexp(2mih - 1y)  (18)

Ici lindice 7 repere la mi*me maille, l'indice
m = (my, my, my) la mime maille & partir de la
nidme maille prise pour origine. Les N, sont les
nombres de mailles selon les 3 directions de pério-
dicité. Les sommations sur m; vont de —N; a
+ N;. Le vecteur Q,, est 1ié au facteur de structure
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magnétique conventionnel F, par
Qp = e(F, - €)—Fp (19)

On montre dans Pappendice A que la valeur
moyenne

Qn* Qnin*> = Ilez(Zme -1) (20)

L’intensité I(hy, kg, hy) (18) peut alors s’écrire
sous la forme d’un produit de 3 sommes

I(hy, by, hg) = IQP 21 * zz : 23 (21

Ici Z, et X, sont des fonctions d’interférences

“régulitres” (22) c’est i dire trés étroites pour N
et N grands tandis que X; est la fonction d’inter-
férence perturbée et élargie par les défauts (23)

2 = Z(N i~ |m;|)exp(2mihm )

b
Sin WNjhj 2 .
~ (__.._..___) ; j=2,3 (22)
sinwhy
+N,
> = > (Ny=|m|)(1—20)!m! exp(2mihym,)
1 ~Nip (23)

Remarque. Les expressions (18) 4 (20) montrent
que <Q,Q,.,*> peut étre déterminé expéri-
mentalement sans aucune hypothése & partir de la
transformée de Fourier de la raie observée. Nous
exploiterons cette remarque dans un autre travail.
Ici nous avons exprimé la fonction de corrélation
{Q,Q,.,*) au moyen du paramétre « (probabilité
de défautd’empilement) lequel peut etrerelié facile-
ment a la largeur moyenne de la raie (hy, kg, k3).

23 (23) peut étre calculé i P'aide de progressions
géométriques (cf. appendice B) et posséde avec
un bon degré d’approximation la forme Lorentz-
ienne (25) ot P'on a posé

hy = hy,+e . (R, entier) 4
> = C*[[1+7%3(1 —2a)/a?]

1

(25)

La largeur 4 mi-hauteur de cette intensité X, est:
2x

26y =
2 T (1—2%)

(26)
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En dérivant la loi de Bragg selon %,, on obtient
A® = hyd?tgOAh, [a,? 27

Ici A® est I'dlargissement angulaire observé,
© langle de Bragg, d la distance réticulaire.
Remarquons que selon (27) seules les raies #; 5 0
donnent lieu 2 un élargissement A®. Si nous
faisons Ahy = Z¢; 9, la mesure de A®,, nous
fournit un moyen grice  (26) et (27) de déduire
la probabilit¢ d’un défaut d’empilement. On
observe que A® donc « dépendent du traitement
thermique imposé a I’échantillon entre la tem-
pérature de Néel T'yq et celle a laquelle on effectue
la mesure. Les élargissements observés sur les
raies (111) et (131) varient entre 8" et 15" et
correspondent 2 des valeurs de o comprises entre
0,055 et 0,101 soit & un défaut sur 18 plans
jusqu'a un défaut sur 10 plans ou encore, selon
la remarque faite au début de ce paragraphe, 2
des domaines antiferromagnétiques dont la dimen-
sion varierait entre 96 et 50 A. Le phénoméne de
fautes d’empilement a déja été signalé pour
KNiF,. 18 11 peut s’expliquer par I'existence

IHunités arbitraires)

| —B
/,\ Ag=18"
/ \A9=33‘ w:\m\

ag 200 L

A

o od

! 1
(o] 5 10

6 H(kOe)

Fic. 5. A gauche, raie (111) avant (A) et aprds (B)
guérison des fautes d’empilement.

A droite, variation de la largeur & mi-hauteur de la raie
(111) avec la champ H appliqué.
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d’interactions entre feuillets beaucoup plus faibles
que celles agissant dans chaque feuillet. Nous
précisons ce point dans le calcul de Iénergie
dipolaire,

Action d’un champ magnétique. Une étude de la
variation de la largeur de la raie (111) en fonction
d’un champ magnétique croissant appliqué dans
la direction du vecteur de diffusion du plan (111)
a mis en évidence la guérison des fautes d’empi-
lement pour un champ de 6250 Oe (Fig. 5). Ce
phénomeéne s’explique par le comportement
métamagnétique de Tb.® Soulignons ici qu’aprés
guérison des défauts on observe un affaiblissement
du mode C(Tb) ce qui semble indiquer que C
n’est pas couplé avec AxAxGyGy (ou les con-
figurations équivalentes) mais avec un mode F.
Des mesures sous champ qui seront publiées
ultérieurement ont confirmé ce point.

7. ENERGIE DIPOLAIRE

La valeur de Ty ainsi que la faiblesse des
interactions Tb~Cr suggérent que I'énergie dipo-
laire W, représente une part importante dans
Pétablissement de 'ordre antiferromagnétique de
Tb au-dessous de 3,05°K. L’énergie dipolaire
par maille est évaluée selon la méthode de la
référence@? et dérivée de D'énergie électrostati-
que des réseaux ioniques.*® Elle a pour expression

2
W, = ) V=13 [3|h-D(h)|2—|h[?|D(h)]?]
h
2m

¢*(h) 2w
a3

Ici ¥V = volume de la maille; h = vecteur de
I’espace réciproque; P = V=1 % m; (= 0 pour
un antiferromagnétique); m; = moment localisé
enr;

La forme de la fonction ¢(k) est explicitée dans
Pappendice C. La méthode de calcul fait inter-
venir essenticllement le facteur de structure
dipolaire D(h) (29) tres analogue au facteur de
structure magnétique

D(h) = Smyexp2mib-r)  (29)

Or comme ce dernier (cf. (2)) D(h) aura ici
la forme complexe

D(k) = D(4)+iD(B)

X

VP2 (28)

(30)
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Cela entraine comme conséquence que
Wy = Wy(A4)+ Wy(B) &)

En d’autres termes, 1’énergie dipolaire étant
une fonction additive de W,(A) et de W, (B)
il n'y a pas de couplage dipolaire entre feuillets
voisins A et B. Donc les seules interactions actives
sont entre feuillets seconds voisins. Elles sont
certainement faibles par rapport aux interactions
dans un méme feuillet. En prenant la composante
Ox égale & 7,76 pp et celle selon®™ Oyégale a
3,17 pgon trouve W, = —13,90x 10 erg/molgr.

Nous avons calculé la variation de I'énergie
dipolaire en fonction de la direction du moment
de Tb dans le plan Oxy. Or on trouve un mini-
mum dans la direction Ox de —15,42x107 erg/
molgr. Il y a donc d’autres facteurs tel que le
champ cristallin qui contribuent ici, quoique
faiblement, au bilan énergétique total,

8. CONCLUSION

Parmi d’autres composés contenant Tb, CrThO4
joue un réle assez exceptionnel. Dans ThFeQ40®
ainsi que dans TbAlO4,%® Tb a un ordre anti-
ferromagnétique qui conserve la maille cristallo-
graphique. Il y a cependant un caractére commun
a savoir une interaction négative entre les atomes
1 et 2 ou 3 et 4 et un caractére fortement dipolaire
des interactions Tb-Tb.
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APPENDICE A

Evaluation de <Qy > Qs n*>
Soit F, le facteur de structure de la niéme maille

F, = ,F(4)+in,F(B) (A.1)
Ici F(A4) est celui du plan 4, iF(B) celui du plan B,

€y €t 7, sont des signes + ou — correspondant aux
quatre structures possibles (15). On a alors:

Qn Qnin®) = {Fp-Fpin®
—(Fn-&)(Fpin*-€)>
= [|F(AD)]2—(F(4) - &)"Tenenem
+[F(B)?—(F(B) * €)*Tnuinsm
+i[(F(4) - F(B)—(F(4) - ¢)

X(F(B) ’ e)]("?n‘n-i—m'"en"lnd—m) (A'Z)
Orona:
€a€nem = en[I')m‘fn"*'(I _Pm)(“"fn)]
=2Py—1 =90nem (A.3)
indépendamment de n; comme on a certainement:
Tn€n+m = Mn€n-m
et €Mnim = €' —mln’ = €n_min (A4)

K@y ¢ Qr+m™ ) se réduit 4 la formule (20) du texte,

APPENDICE B

Evaluation de Z; (23)
Avec les abréviations (B.2) et (B.3)

5
3 =Nyt (Nl-q%)@ +3% (B.)
g = (1 —2a)exp(2mih,) (B.2)

Nl
2 = 21 g" = (g"1~1)(g-1) (B.3)
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En posant k; = hyo+ € (B, entier) avec I’approxi-
mation cos 27e ~ 1—27%? et en ne retenant que les
coefficients proportionnels & N;, on obtient pour X,
I’approximation Lorentzienne (25) du texte.

S & (Na)/[1 +72(1 — 2a) /o2]

1

(B.4)

APPENDICE C

Forme de la fonction o(h) ([formule (28)]

(k) est la transforme de Fourier d’une fonction
arbitraire o(r) mais assujettie & étre sphérosymétrique,
normalisée, identiquement nulle & Pextérieur d’une
sphére de diamétre 2R, et ayant un gradient nul sur la
sphere. Ici 2R, est la plus petite distance entre atomes
porteurs de moments. Nous avons pris R, = 1,54 A.
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Nous avons choisi la fonction (C.1)

15 (r—R)?
r—-
2wRp 0

La transformée de Fourier est (C.2) avec I’abréviation
(C.3)

o(h) = 60(a cos & +2a— 3 sin «)/a® (C.2)
« = 2n|h|R, (C.3)

L’avantage de la méthode réside dans sa program-
mation facile et la convergence rapide de |p(%)|2. Le
calcul a été effectué a 1’aide de la calculatrice C.A.E. 510
du C.N.R.S.

o(r) = (C.1)



