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ETUDE PAR DIFFRACTION NEUTRONIQUE DE LA 

STRUCTURE MAGNETIQUE DU CHROMITE DE TERBIUM 
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CEN-G, Rue des Martyrs, 38, Grenoble 

(Rep le 20 mars 1967) 

R&name-TbCrOs de structure p&o&cite deform&z (groupe d’espace Pbnm) est 6tudi6 par 
diffraction neutronique. Les parametres de positions atomiques sont: (x = -0,011; y = 0,064) 
pour Tb en 4c/, (x = 0,096; y = 0,470) pour Or en 4c/, (x = -0,303 ; y = 0,301, x = 0,049) 
pour Orr en 8d/. Cr est en 4b/. 

A 77°K et 4,2”K les spins du chrome sont ordonn6s suivant le mode Gz; a 4,2”K les spins du 
terbium sont ordomes suivant les modes Fx et Cy. 

A 3,OS”K les ions Tbs+ s’ordonnent suivant une nouvelle structure correspondant a un vecteur 
de propagation k = [Owl; D’apres la thiorie des groupes, la configuration observee appartient 
a l’une des deux representations bidimensiormelles du groupe Pbnm assocides P k = [O+O]. 
L’elargissement des raies magnetiques HKL avec H # 0 s’explique par l’existence de fautes 
d’empilement des plans antiferromagnetiques perpendiculaires B Ox, les liaisons magnetiques 
entre plans &ant beaucoup plus faibles que celles dans le plan. Ces fautes peuvent &tre gueries 
par application d’un champ magnetique supbrieur a 6250 Oe. 

L’energie dipolaire bien que notable (W = - 13,90 x lo7 ergslmolgr.) n’explique pas a elle 
seule la structure observee. 

Abstract-The distorted perovskite like structure TbCrOs (space group Pbnm) is studied by 
neutron diffraction. Atomic position parameters are (x = -O*Oll; y = O-064) for Tb in 4c/, 
(X = 0.096; y = 0.470) for Or in 4c/, (x = -0.303; y = 0.301; z = O-049) for OrI in Sd/. Cr is 
in 4bl. 

At 77°K and 4*2”K the Cr spins order in a Gz mode; at 4*2”K the Tb spins order in a combina- 
tion of Fx and Cy-modes. 

At 3.05”K Tb3 + ions order in a new magnetic structure with a propagation vector k = (040); 
according to group theory the observed configuration belongs to one of the two bidimensional repre- 
sentations of the group Pbnm associated with k = [ON]. The broadening of magnetic reflexions 
HKL with H # 0 is explained by stacking fat&s in antiferromagnetic planes perpendicular to Ox, 
the magnetic bonds between planes being much weaker than in one plane. These stacking faults 
are annealed by the application of a magnetic field higher than 6250 Oe. 

Although considerable, the dipolar energy alone (W = - 13.90 x 10’ ergsjmolgr.) does not 
explain the observed configuration. 

1. INTRODUCTION Les paramGtres de la maille de TbCrO, recem- 
COMME la plupart des composes ABOs form& par ment prCcis&(3) sont: a = 5,291 A; b = 5,513 b; 
les oxydes des terres rares et des metaux de c = 7,557 A. 
transition, TbCrO, appartient a la famille des 
perovskites deform&es et cristallise dans le groupe 2. PREPARATION DES EC HANTIL.LONS ET 

orthorhombique centrosymetrique Pbnm(1*2) avec CONDITIONS EXPERIMENTALES 
quatre molecules par maille. La Fig. 1 illustre la Des Cchantillons polycristallins ont Cte prC- 
relation entre la maille id&ale a, perovskite et la pares par evaporation a set sous infrarouge et 
maille reelle pseudo-quadratique (I = b = a&2; calcination a 1300°C pendant 24 heures d’une 
c = 2a,. solution nitrique de nitrate de chrome et d’oxyde 
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de terbium en quantites cakulces. Un porte- 
Cchantillon cylindrique en vanadium (4 = 15 mm, 
e = 0,2 mm) a CtC utilisc pour les mesures de 
diffraction neutronique. On s’est servi d’un 
cryostat ZI queue de vanadium pour les enregistre- 
ments des diagrammes B 293”K, 77”K, 4,2”K et 
1,YK. Les mesures sous champ magntkique ont 
CtP: faites a 42°K et 1,5”K dans un cryostat a 
queue de h&on plad dans I’entrefer d’un dlectro- 
aimant lequel produit un champ horizontal 
variable de 0 B 16500 Oe. 

FIG. 1. Relation entre la maille idbale phrovskite et la 
maille r&elle pseudo-quadratique. 

3. AFFINEMENT DE LA STRUCTURE @iXtISTALLO- 
GRAPHIcyLm 

A l’aide des intensites des reflexions nucleaires 
observees a la temperature ambiante et en utilisant 
un programme d’tinement Ccrit par BASSI pour 
le calculateur Clectronique CAE 510, nous avons 
abouti apres 4 iterations aux parametres suivants 
de positions atomiques (Tableau 1). 

4. ORDRES ~G~~~ OBSERVES 

Une etude recente des proprictes magnetiques 
des chromites des terres rares a montre l’existence 
de deux temperatures de NCel. La premiere, 
TN1 = 158”K, correspond B un ordre magnetique 
des spins de Crs +. La seconde, TN2 voisine de4”K(5) 
et que nous allons preciser ici correspond a un 
ordre des spins de Tb 3+. Pour Ctudier les diffc- 
rents ordres magnctiques, des diagrammes de 
diffraction neutronique ont &tc enregistres a 
77”K, 4,2”K et 15°K. Si B 77°K et 4,2”K, les 
raies magnctiques apparues ont Cte indexees dans 
la maille cristaflographique, par contre a l,S”K, 
un doublement de la maille dans la direction de 
l’axe 6 a CtC necessaire. 

A. Ordres magnt!tiques h 77°K et 4,2”K 
La maille magnetique identique B la maille 

cristallographique contient quatre atomes de 
chrome et quatre atomes de terre rare Cquivalents; 
on peut alors prCvoir@ quatre modes de spin pour 
les atomes de chrome et quatre pour les atomes de 
Tb caract&isCs par les vecteurs F, relatifs a 
l’arrangement ferromagnetique (+ + -I- +), et 

Tableau 1 

Valeur des 
Sites Position des atomes param&res 

Cr3 + en (4b) ic,o,o; 8,0, t; o,*,g; o,?l,o 

Tb3+ 
x = -0,011 

et en (4~) %Y, &; %%a; Y = 0,064 

oxs - 4+x, S-Y, 2; t-x, Iz+y, t .X= 0,096 

Y= 0,470 

011~~ en (8d) 
x, Y> 8; *-x, 4fY, 8-z; x = -0,303 

f ( Y= 0,301 

E, 3, 9+x; 4+x, q--Y, z > z = 0,049 
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G, C, A, relatifs aux 3 arrangements antiferro- 
~ (+,-+-), (++--) et 

- - +).c7) La sequence des slgnes correspond 
B l’ordre indique dans le Tableau I des triplets de 
coordonncies. Les composantes de ces vecteurs 
forment les bases des representations irreduc- 
tibles du groupe P&m@) (Tableau 2). Dans l’hypo- 
these dun Hamiltonien d’ordre 2 dans les spins, 
2 modes ne peuvent &tre couples que s’ils appar- 
tiennent a la m&me representation. Les deux sous- 
reseaux de Cr et Tb ne peuvent done &tre couplCs 
qu’8 SintCrieur des representations I’, B I’*. N&an- 
moins lorsque 1’Hamiltonien contient des termes 
d’ordre 4 et superieur, il peut coupler des vecteurs 
appartenant a des representations differentes; on 
demontre alors que les parties de spins S@) et 
S(B) appartenant B deux representations diffkentes 
I’(@ et IQ) sont perpendiculaires (conservation 
du moment). 

Tableau 2. Reprt!sentatioses des vectews de base du 
groupe P&m pour k = 0 

Sites 4 bl Sites 4 c/ 

fz (+++I Ax Gy C.z - - Cz 
rf2 t-t-i-1 Fx Cy Gx Fx Cy - 
r3c-++1 Cx Fy Az Cx Fy - 
r*t---t1 Gx Ay Fz - - Fz 
ret++-) - - - Gx Ay - 
r,c+--1 - - - - - AZ 
,,i,+-) - - - - - G.z 

8 -- ) -_- Ax Gy - 

Ordre magn&ique du chrome. A 77”K, les reflex- 
ions magktiques observees (h+k = 2rz+ 1, 2 = 
2n+l) correspondent a un arrangement du type 
G des spins de Cr3+ comme dans LaCrO,@) et 
dans tous les chromites de terres rares, Chaque 
atome de Cr est entoure de six voisins proches 
ayant des moments magnetiques opposes. Les 
reflexions (011) et (101) caracteristiques de cet 
ordre conservent leur rapport d’intensites a 77°K 
et a 4,2”K. Cela indique que la direction de l’anti- 
ferromagnktisme n’a pas change entre ces tem- 
peratures. La valeur du spin d’un ion Cr3+ est 
2,55 ps a 77°K et 2,85 pB a 4,2”K. L’tcart entre 
cette derniitre valeur et le moment theorique de 
3 pB peut &tre attribue a des effets de covalence.(g) 

L’Cgalitk des raies (011) et (101) et l’impossibilite 
de &parer le paquet de raies (121), (013), (211), 
(103), ne permettent pas de decider entre deux 
directions possibles d’antiferromagnetisme: [OOl] 
ou [llO]. 

Ordre ~~t~~e dac taboo. A 4,2”K, on observe 
l’apparition, due B un ordre du Tb, des raies 
faibles (012), (102), (110) et (002) et une leg&e 
augmentation des raies (020), (112), (120) et (210); 
elles sont caracteristiques des arrangements F et 
C. La faiblesse des intensites observees ne permet 
pas de determiner avec certitude les directions 
de ces modes; mais puisque I~elsj < 1c102j et 
&cl, < 42lW le mode C est vraisemblablement 
dirige selon Oy. (On ne peut neanmoins exclure 
la presence d’un mode CX.) D’aprks le TabIeau 2, 
Cy ne peut coexister qu’avec Fx et le couplage 
entre les sous-reseaux de Tb et de Cr ne peut 
s’effecteur qu’a l’indrieur de la representation l?s; 
ceci permet, par une voie trhs indirecte, de prhoir 
la direction ~antiferromagn~~sme du Cr selon 
[OOl]. On peut kgalement dCduire de ce tableau 
clue le faible ferromagnetisme du chrome mis en 
evidence par des mesures d’aimantation(5’ (N 0,Ol 
clg) est dirige selon OX. Le modele propose ici 
serait done analogue a celui observe dans 
TbFeO,(lO) au-dessus de 3,l”K et dans HoFe03(r1) 
et HoCr0s.(12) 

Il. Ordre d 1,5”K 
Sur le diagramme enregistre B 4,2”K apparait 

Cgalement une raie t&s large s’kalant de 0 = 5” 
a 6 = 7” csracteristique d’un ordre a courte dis- 
tance et de la proximite d’une transition magne- 
tique. Effectivement un diagramme enregistm 
B 1,S’K fait apparaitre un grand nombre de raies 
magnetiques que Son peut classer en deux cat& 
gories. 

La premikre comprend des raies faibles index- 
ables dans la maille cristallographique et carac- 
tkistiques du mode C. L’egalite des raies (100) et 
(010) impose comme seules directions possibles de 
cet arrangement [OOl] ou [llO]. La presence des 
raies faibles peut s’interpreter par la persistance 
d’un faible couplage Cr-Tb. Le doublet (011) 
(101) caracteristique du mode G de Cr n’est pas 
mod&& Le couplage est possible pour [llO] avec 
les modes Gy (Tb) Gz (Cr) et pour [OOl] avec 
les modes Cx (Tb) Gy (Cr) de sorte que nous ne 



2146 E. F. BERTAUT, J. MARESCHAL et G. F. DE VRIES 

pouvons pas d&cider entre les deux directions du 
mode C 21 l’aide des seules don&es d’intensids. 

La deuxfme cattgorie comprend de fortes 
raies dont l’indexation exige un doublement de la 
maille selon b. Ces raies ayant K impair dans la 
nouvelle maille correspondent done & un vecteur 
de propagation k = [O+O] da& l’ancienne maille. 

En numdrotant de 1 B 8 les positions des atomes 
de Tb dans la nouvelle maille: 

%y,a(l); %g,$(2); &+%&y*,4(3); 

t-%t+Y,a(4); *,$z+r,ac5>; 

%3--y,$(6); jl+x,%-y,%(7); 

?I-% t+r, t(8) (1) 

(oh x = -0,011, y = 0,032), les t&s fortes 
intensitk des raies K = 2n + 1, L = 2n+ 1 im- 
posent les relations : 

et 
s, = -s, = -s, = s, 

ss = -s, = -s, = ss (2) 

entre les projections des moments des atomes de 
Tb sur les axes Ox et Oy. Par contre aucune rela- 
tion ne permet de lier les moments des atomes en 
1, 2, 5, 6 g ceux des atomes en 3, 4, 7, 8 ; ceci est 
dO & la forme complexe du facteur de structure 
magnktique 

F,,, = F,(1,2,5,6)+iF,(3,4,7,8) (2’) 

Les deux possibilitk (+ - + --; - + - +) et 

(+-- + ; - + + -) existent pour la succession 
selon (1) des signes des composantes x et y. 
On les notera GG et AA par analogie avec les 
notations prCcCdentes. Selon qu’ils sont identiques 
ou diffkrents sur Ox et Oy, on aura des modPles 
collinkaires (abrCgC c) ou non collinCaires (abrCgC 

ncA ou ncB). Les diffkrentes possibilitCs sont 
rCsumCes dans le Tableau 3. 

Le calcul des intensitCs magktiques montre 
que les trois types de modkles c, 9zcA et ncB se 
diffkencient t&s lCg&rement par la forme des 
termes d’interfkence selon OX et Oy; le meilleur 
accord avec les observations est obtenu pour un 
mod&.le lzcA (Tableau 4). 

La Fig. 2 reprksente un des modkles supposC 
dans lequel les moments antiferromagnktiques du 
Tb appartenant au vecteur de propagation k = 
[O&O] sont 7,76 pLB selon OX et 3,17 pB selon Oy 

Tableau 3. Modes collinhzires (c) et non collinkaires 
(nc) possibles 

OY 

GG Aii GG ZA 

le moment total &ant de 8,5 pB g 1,5”K, assez 
proche de la valeur thtorique (9 pB) de l’ion libre 
satur& 

Dhrmination de la tempkrature de Nbel du Tb 
Les rksultats prCcCdents semblent indiquer que, 
comme dans TbFeO,, il existe deux arrangements 

FIG. 2. Structure magnktique de CrTbOs au-dessous de 
3,OS’K. 

successifs pour Tb et par conkquent deux tem- 
pkratures de NCel TN2 et TN3 (TN2 > 4,2”K; 
1,5”K < TN3 < 4,2”K). Les trop faibles inten- 
sit& dues aux modes C et F du Tb au-dessus de 
4,2”K ne permettent pas de dkterminer TN2 par 
diffraction neutronique. Par contre nous avons 
suivi en fonction de la tempkrature l’apparition 
de la raie (011). La variation de son intensitC (Fig. 
4) permet la dktermination de TN3. 

TN3 = 3,05( + 0,05)“K. 
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Tableau 4. I&nsittfs calcul~es et observkes de divers mod2les 
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T = 1,5”K 

hkl Fa sinaa Fa sinsa Fa sinSa 
ftcA C nCB I obs 

010 
011 
020 
100 
110 
021 
101 I 
111 
120 
002 1 
030 
012 
121 
031 
022 
102 1 
130 
112 1 
131 
040 
122 
200 
032 
041 
210 

30 

11 

539 

257 

13 

155 
22 
0 

338 

46 

213 192 

248 258 

20 20 

177 177 

30 

7 

539 

260 

13 

155 
22 

33: 

46 

30 

3 

539 

263 

13 

155 
22 
0 

338 

46 

172 261* (k33) 

268 261* (k17) 

20 

177 
0 
1 

21t (k15) 

172 (+20) 
0 

15 (&20) 

10 (*lo) 
517 (+ 5) 

30t (k 8) 

10* (& 3) 

539 ( f 10) 

254* (+ 8) 

13t(+ 6) 

142 (&-24) 
36 (+14) 

31: (*lo) 

35t (kl5) 

* Ces intensites ont et6 mesur&s apres gu&ison des fautes d’empilement par application d’un champ ma- 
gn6tique de 15 kOe. 

t Ces intensites correspondent B un ordre CyFx du Tb s’expliquant par la persistance d’un faible couplage 
Tb-Cr. 

5. METHODE MACROSCOPIQUE 

La methode macroscopique@) consiste a deter- 
miner les combinaisons linCa.ires de spins se trans- 
formant selon une representation irreductible du 
groupe d’espace cristallographique et susceptibles 
de rep&enter la configuration observCe des spins. 
Cette mcthode peut &tre gCnCralisCe au cas oh la 
maille magnctique differe de la maille cristallo- 
graphique, c’est A dire lorsque le vecteur de propa- 
gation k des spins est non nul et a l’interieur ou a 
la surface de la premiere zone de Brillouin. La 
mcthode gCnCrale est dCveloppCe dans(13). Nous 
I’appliquons ici au cas du vecteur k = [OgO]. 
Nous obtiendrons a la fois les reprksentations 
irreductibles ainsi que les vecteurs de base du 
groupe d’espace associe 2 k. Nous numerotons de 

1 A 4 les spins des sites 4c dans l’ordre suivant 
marque aussi sur la Fig. 3: 

x,r,;P(l); %$Z(2); &+%t-rA(3); 

8 - x9 8 +Y > H4) (3) 
Comme gCnCrateurs du groupe Pbnm nous 

choisissons (comme da&o) l’axe helicoIdal & 

en x & 0, l’axe helicdidal zy en 2 y 2, et le centre 
de symktrie 1 en 000. 

Le sens physique du vecteur k = [O&O) est 
qu’au bout d’une translation b le sens des spins 
est inverse. C’est ainsi que le point marque 1’ sur 
la Fig. 3 (translate de b) a le spin inverse du point 
1 et que le point 1” (translate de a) a le meme 
spin que le point 1. 11 s&it de connaitre les spins 
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0 4’ 

03’ 

r_---- ____-- -, 

12 j 2’(3) 

I I 1 I 

? 
I, - l’(4) I 
I I 

L+_L_________? 

1 3” 

-Y 

- 254 

FIG. 3. Equivalence des configurations GxAy et AxGy. 
Par un changement d’origine on passe de la maille 
contenant les configurations GxAy B la maille tracke en 
pointill dans laquelle les points (l), (2), (3), (4) corres- 

pondent a l’arrangement AxGy equivalent. 

sur les points 1 a 4 pour engendrer toute la struc- 
- _ 

ture. Les operations 2x, 2y et i appliquees au 
vecteur k, changent le vecteur k en lui-m&me 

k 

I 

’ TN q 3,05 OK 
1 I ,I/’ , 
I 2 3 4 

OK 
FIG. 4. Variation de l’intensitb de la raie (011) avec la 

tempkrature. 

(a une equivalence p&s) ; 

2y[o*o] = [O&O]; 

2~[0$0] = [o$o] = [o$o] +[oio]; 

i[o*o] = [oioo] + [o*o] (4) 

Done le groupe Gk du vecteur k est identique au 
groupe ponctuel G, associe au groupe Pbnm. 

PropriMs de transformations 
Nous illustrons la methode par l’operation 1 

qui transforme le point 1 en 2, 2 en 1, 3 en 4’ et 
4 en 3’ (cf. Fig. 3). On a, les spins &ant consider-es 
comme vecteurs axiaux, 

Is, = s,; is, = s,; is, = s4, = -s,; 

is, = +.I = -sS (5) 

La matrice de transformation selon 1 est done la 
matrice d’ordre 12 = 4 x 3 
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Oil 

2 l 1 . . 
a= 

3 . .-_1 . (6) 

4 . . .-I 

De m&me on a: 

2&,, = 34,; 2jrs,, = +s3,; 

&3y = --s& i&4, = -%lJ 
(7) 

et des equations analogues, mais avec changement 
de signe, pour les composantes x et z. On peut 

former les matrices de transformation (2i) et 

aussi (2;) et d’une maniere gCnCrale, celles des 8 

operations du groupe (a savoir e = identite, & 

2i, 22 = 2;. 2i, plus les 4 operations I, 27. i, 
2i - f, et % - f). On peut ensuite reduire ces 
matrices par les procedes usuels de la theorie 
des groupes. Ici now choisissons une methode 
plus simple, en examinant d’emblee l’action des 
elements de symetrie sur les combinaisons lineaires 
de spins. 

On a par exemple: 

&(s, - &- + s3 - s4)z = - (s1 -s, - s3 + s4)z 

soit 25Gx = -Ax (8) 

On peut ainsi ecrire 

2xGx = Gx; 2jGx = -Ax; iGx = -Ax; 

2:Ax = -Ax; 2yAx = Gx; iAx = - Gx. 

(9) 

Les vecteurs Gx et Ax forment done la base 
d’une transformation dans un espace a deux 
dimensions dont les matrices de transformation 
sont : 

G)=(; _;); m=(; -‘); 

il)=( l1 -‘) (10) . 

Le probleme est de savoir si cet espace de deux 
dimensions est irreductible. On passe des matrices 
de transformations (10) aux matrices de represen- 
tations par une transposition*(14) 

AI=(: _;) A~=( _1: ) 
A3=( ‘1 -‘) (11) 

Les transposees forment une representation. Ici 

A,, A,, A,, representent respectivement 2&, 23 

et i. La “representation” que nous appelons Tllc 
est r&urn&e dans le Tableau 5. 

On a en sommant sur les caracteres x, 

n=s 
2 [x,12 = 8 = n = nombre d’elements (12) 
j=l 

ce qui implique I’irrCductibilitC de la representa- 
tion lYlk. De mCme en raisonnant sur les 
combinaisonsFz(++++)etCz (++--),on 

* Nous renvoyons au livre de kkINE(l*) oh la raison 
du choix des matrices transpostes est bien exposbe. 

Tableau 5. Reprthntations dugroupe Pbnm asso&es au vecteur k = [OiO] 

Opkateurs e 2; & 2’2 i 2% . i 23-i 2; * f 
Matrices e Al Aa &Aa A3 AA3 &A3 &GA3 
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trouve : 

&2x = Cx; 2+2x = - Fx; iCx = Fx; 

&Fx = -Fz; 2iFz = Cz; iFz = Cz. 

(13) 

On construit comme plus haut les matrices de 
transformation et une representation l?sk Cgalement 
rCsumCe dans le Tableau 5. Elle est irreductible, 
car on a encore (12). Constitue-t-elle une repre- 
sentation nouvelle, c’est a dire non Cquivalente B 
l?,,, La reponse est oui, car on a (12’) 

5 Xs’wX~r*k~ = 0 (12’) 
j=l 

Les deux representations rlk et J?sk sont les 
seules possibles car la rbgle de la theorie des 
groupes (14), oh d est la dimensionalite de la 
representation, est bien verifiee 

n= cdj2=22+22=8 
5 

(14) 

On trouve finalement que les composantes selon 
x et y des partenaires v1 et q2 d’une mCme colonne 
du Tableau 6 appartiennent a l?rk, tandis que les 
composantes z appartiennent Q r2k. 

Invariants 
Demandons-nous d’abord quelle est la signi- 

fication physique du fait que Gx et Ax appar- 
tiennent a une representation irreductible de 
dimensions 2. C’est qu’on peut decrire la mCme 
structure magnetique indifferemment par GX ou 
par Ax, les deux descriptions &ant parfaitement 
Cquivalentes, comme le montre la Fig. 3. Le 
Tableau 6 nous enseigne de plus qu’avec Gx, Ax 
d’une part, Ay, Gy, d’autre part appartenant a 
r Ik, on peut construire des invariants tels que 
GxAy+AxGy. On verifie aisement que dans rlk 

on peut construire 4!/[(4-2)!2!] = 6 invariants 
et dans rzrc un invariant. 

La theorie des groupes est done en accord avec 
l’experience qui trouve l’association Gx~xAyAy 
ou GycyAxAx et leurs inverses. Elle est cependant 
en d&accord avec des modes colineaires 
GxGxGyGy ou AxAxAyAy ainsi qu’avec des 
modes non colineaires AxAx@Gy et GxGxAyAy 
(cf. modes c et ncs du Tableau 3). 

Remarque 
Le Tableau 6 montre que theoriquement il est 

possible d’avoir simultanement dans rile 
GxAyFxCy ou dans une notation plus complete 
Gx~xAyAyFx~xCy~y. On pourrait alors speculer 
que le faible couplage Tb-Cr supprime les com- 
posantes Fx et cy ne laissant subsister que 
Gx~xAyAyFxFxCyCy. En fait les etudes des 
fautes d’empilement sous champ montrent que la 
configuration FxCy n’est pas couplee avec GxAy 
(k = [O&O]) (voir plus loin). 

6. FAUTES D’EMPILEMENT MAGNETIQUFS 
A 1,5”K, les raies K = 2n+ 1 sont consider- 

ablement Pllargies lorsque H # 0. De plus, les 
intensites calculees de ces raies en utilisant le 
moment magnetique deduit des intensites obser- 
&es des raies fines sont de 30 ?I 40 pour cent 
superieures aux observations. Ces resultats ex- 
perimentaux conduisent a admettre, dans la 
direction Ox, l’existence de fautes d’empilement 
de plans antiferromagnetiques AB, AB . . . etc, 
A contenant les atomes numerates 1, 2, 5, 6 et 
B ceux numerods 3, 4, 7, 8. 

Aussi bien le calcul (cf. Tableau 4) que la 
theorie des groupes montrent que les arrangements 
non colineaires AxAxGy& et GxGxAyAy ainsi 
que leurs inverses AXAXC$G~ et GXGXAYAY sont 
equivalents. En dtsignant un plan A par A + + si 

Tableau 6. Vecteurs de base associh d k = [OQO] 

'pl 

‘pa 

Fx 

-cx 

Representation l?lk 

GX CY 

AX -FY 

AY 

Gv 

Reprbentatlon IYak 

AZ CZ 

-Gz FZ 
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les composantes S,, et S,, (i = 1,2,5,6) se corres- 
pondent selon la suite des signes (+ - - +), un 
plan B par B- + si la suite des signes est 
(-++-) pour S,, et (+--+) pour S,, 
(i =I 3,4,7, 8) on a les equivalences suivantes: 

AxAxGyc=y = A+ +B- + 

AxdxcjGy = A- -B+ - 

GxCxAyAy = A+ +B+ - 

~XGXA~A~ = A--B- -I- (W 

Une sequence telle que 

magnetique conventionnel F, par 

Q, = e(F;e)-F,,, 09) 

On montre dans l’appendice A que la valeur 
moyenne 

<Qm * Qn+ m* > = IQmlaW’m, - 1) (2’3) 

L’intensitC I@,, 4, &J (18) peut alors s’dcrire 
sous la forme dun produit de 3 sommes 

%, hs, hs) = IQ? x1 l & * & (21) 
Ici X2 et 8s sont des fonctions d’interferences 

A++B-+ . . . A++B-+ 1 A--B-+...A--B-i- I 

pew-&tre consideree ainsi comme la succession de 
domaines antiferromagnetiques, &pares par des 
“fautes d’empilement” qui correspondent ici au 
changement du signe des moments d’un plan A ou 
B. Introduisons la probabilite Q de changement 
de signe d’un plan de m&me categoric. Si P, est la 
probabilitd pour que deux plans distants de m 
mailles soient identiques, on a la relation de 
recurrence 

P, = P,_l(l-cr)+(l-P,_J)a (16) 

P, tendant vers 12 qnand m + 00, on a: 

P, = ij+cq’m’ = t[l+(1-2a)lml] (17) 

en remarquant que PO = 1 et PI = 1 -a. Pm est 
une fonction paire de m (Pm = P_m). 

Utilisant des notations analogues B celles de 
WIzso;u~15) l’intensite I (&, hs, hs) est (a un 
facteur de propo~onn~t~ p&s) 

= 2 CQn * Qn+m* exp&ih * rm) 

= i k- IntllWk I+.lXJ%- ImA) 
m 

x <Qn * Qn+ m* )exp(2&2 * rm) w 

Ici l’indice n rep&e la niipme maille, l’indice 
m = (ml, m,, ms) la mi*me maille a partir de la 
ni*me maille prise pour origine. Les Ni sont les 
nombres de mailles selon les 3 directions de perio- 
dicite. Les sommations sur m, vont de -IV* i 
+ iVf. Le vecteur Q ,, est lie au facteur de structure 

“r&ulieres” (22) c’est B dire t&s Ctroites pour Ns 
et Ns grands tandis que TZr est la fonction d’inter- 
ference perturbee et Clargie par les defauts (23) 

2 = c(Nf-- M)exp(2+mJ 
f 

2 = ‘2 (N1-- Imrl)(l -2a)lmif exp(2nih,m,) 
1 --Xl 

(23) 

~~~. Les expressions (18) B (20) montrent 

que <Qm*Qn+ m* > peut hre d&tern&C experi- 
mentalement sans aucune hypoth&se B partir de la 
transform&e de Fourier de la raie observee. Nous 
exploiterons cette remarque dans un autre travail. 
Ici nous avons exprime la fonction de correlation 

<QmQ,+ m*) au moyen du param&re u (probab~it~ 
de defaut d’empilement) lequel peut etrerelie facile- 
ment a la largeur moyenne de la raie (h,, h,, hs), 

& (23) peut &tre calculC ?I l’aide de progressions 
geometriques (cf. appendice B) et possede avec 
un bon degre d’approximation la forme Lorentz- 
ienne (25) oh l’on a pos& 

h, = hl,-kE (h,, entier) (24) 

2 = Fe/[1 +7Pe2(1 -2a)/aa] (29 
1 

La largeur B mi-hauteur de cette intensite ISI est: 

2a 
2%2 = 

aZ/( l -2a) 
(26) 
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En dCrivant la loi de Bragg selon h,, on obtient 

A0 = hld2tgOAla,fia,2 (27) 
Ici A0 est l’tlargissement angulaire obserd, 

0 l’angle de Bragg, d la distance rCticulaire. 
Remarquons que selon (27) seules les raies h, # 0 
donnent lieu B un Clargissement A@. Si nous 
faisons Ah, = ZE~,~, la mesure de A@,,, nous 
fournit un moyen grlce B (26) et (27) de ddduire 
la probabilid d’un dCfaut d’empilement. On 
observe que A@ done a dkpendent du traitement 
thermique impose B 1’Cchantillon entre la tem- 
perature de NCel TN8 et celle Zi laquelle on effectue 
la mesure. Les klargissements observks sur les 
raies (111) et (131) varient entre 8’ et 1.5’ et 
correspondent 8 des valeurs de a comprises entre 
0,055 et 0,101 soit 8 un d&faut sur 18 plans 
jusqu’8 un dCfaut sur 10 plans ou encore, selon 
la remarque faite au d&but de ce paragraphe, B 
des domaines antiferromagnCtiques dont la dimen- 
sion varierait entre 96 et 50 A. Le phkomkne de 
fautes d’empilement a d&j& CtC signal& pour 
K,NiF,.(16) 11 peut s’expliquer par l’existence 

i (unit& arbifraires) 

H(kOe) 

FIG. 5. A gauche, raie (111) avant (A) et aprhs (B) 
gubrison des fautes d’empilemenr. 

A droite, variation de la largeur B mi-hauteur de la raie 
(111) avec la champ H appliqu6. 

d’interactions entre feuillets beaucoup plus faibles 
que celles agissant dans chaque feuillet. Nous 
prkisons ce point dans le calcul de l’knergie 
dipolaire. 

Action d’un champ magnkique. Une &ude de la 
variation de la largeur de la raie (111) en fonction 
d’un champ magnkique croissant appliquC dans 
la direction du vecteur de diffusion du plan (111) 
a mis en &idence la gukison des fautes d’empi- 
lement pour un champ de 6250 Oe (Fig. 5). Ce 
phCnom&ne s’explique par le comportement 
m&tamagnCtique de Tb. (5) Soulignons ici qu’aprks 
gukrison des dCfauts on observe un affaiblissement 
du mode C(Tb) ce qui semble indiquer que C 
n’est pas caupl& avec AxAxGjGy (ou les con- 
figurations Cquivalentes) mais avec un mode F. 
Des mesures sous champ qui seront publiCes 
ultkrieurement ont confirm& ce point. 

7. ENERGIE DIPOLAIRE 

La valeur de TN3 ainsi que la faiblesse des 
interactions Tb-Cr suggkrent que l’knergie dipo- 
lake Wb reprkente une part importante dans 
1’~tablissement de l’ordre ant~erromagn~tique de 
Tb au-dessous de 3,OS”R. L’knergie dipolaire 
par maille est &ah&e selon la mCthode de la 
rCf&ence(17) et d&iv&e de l’kergie 4ectrostati- 
que des rtseaux ioniques. ~3) Elle a pour expression 

Ici V = volume de la maille; h = vecteur de 
l’espace rkiproque; P = V-l B mj (= 0 pour 
un antiferromagrktique); rnf = moment local&t5 
en pi 

La forme de la fonction 9th) est explicit&e dans 
l’appendice C. La m&hode de calcul fait inter- 
venir essentiellement le facteur de structure 
dipolaire D(h) (29) t&s analogue au facteur de 
structure magnkique 

D(h) = 2 m, exp(2rrih * rt) (29) 

Or comme ce dernier (cf. (2’)) D(h) aura ici 
la forme complexe 

= I)(A) + iDI) (30) 
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Cela entraine comme consequence que 

IV, = W,(A)+ W,(B) (31) 

En d’autres termes, l’energie dipolaire &ant 
une fonction additive de W,(A) et de W,(B) 
il n’y a pas de couplage dipolaire entre feuillets 
voisins A et B. Done les seules interactions actives 
sont entre feuillets seconds voisins. Elles sont 
certainement faibles par rapport aux interactions 
dans un m&me feuillet. En prenant la composante 
Ox &gale a 7,76 pn et celle selon(‘f 0~ egale ?i 
3,17 pn on trouve IV, = - 13,90 x 10 ergfmolgr. 

Nous avons calcul6 la variation de l’energie 
dipolaire en fonction de la direction du moment 
de Tb dans le plan Oxy. Or on trouve un mini- 
mum dans la direction Ox de - 15,4’&? x lo7 erg/ 
molgr. 11 y a done d’autres facteurs tel que le 
champ cristallin qui contribuent ici, quoique 
faiblement, au bilan Cnergetique total, 

8. CONCIA3SION 

Parmi d’autres composes contenant Tb, CrTbO, 
joue un role assez exceptionnel. Dans TbFeO,(lO) 
ainsi que dans TbAIOs,(rg) Tb a un ordre anti- 
ferromagnetique qui conserve la maille cristallo- 
graphique. 11 y a cependant un caractere commun 
8 savoir une interaction negative entre les atomes 
1 et 2 ou 3 et 4 et un caractbre fortement dipolaire 
des interactions Tb-Tb. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 
BERTAUT E. F. et FORRPT F., 1. Phys. ~a&um, Paris 

17, 129 (1956). 
GELLER S. et WOOD G., Act. crystallogr. 9, 563 

(1956). 
QUWXL-AMWWNAZ S. et MARE~CHAL J., Bull. Sot. 

fr. A&&r. Cristallogr. 86,204 (1963). 
BASSI G., These de 3eme Cycle de ~a~~atiques 

Appliquees, Grenoble (Mars 1966). 
REBOUILLAT J. P., These de 3bme Cycle de Magnb- 

tisme, Grenoble (1965). 
BERTAUT E. F., Treatise on Magnetism, Vol. 3, 

edited by RAW and SUEL, Academic Press, New 
York (1963). 

WOLLAN E. 0. et KOEHLER W. C., Phys. Reu. 
loo, 545 (1955). 

KOEHLBR W. C. et WOLL.AN E. O., J. Phys. Chem. 
Solids 2, 100 (1957). 

NATHANS E. ,WILL G. et Cox D. E., Proceedings of 
the Magnetism Conference, Nottingham, 327 
(1965). 

10. BBRTAC’T E. F., CHAPPERT J., MAREWHAL J., 
F&BOUILL.AT J. et SIVARDIBRB J., Solid State 

Commun., 5, 293 (1967). 

11. KOXHLER W. C., WOLF E. 0. et WILKINSO~U 
M. KS, P&s. &ZI. 118,58 (1960). 

12. BERTAUT E. F., MAFUXZHAL J., PAIJTHENI~~ R. et 
ROULT G., Proceedings of the Magnetism Con- 
ference, 275, Nottingham (1965). 

13. KOSTER G. F., Solid St. Phys. 5, 173 (1959). 
14. SEINE V., Group Theory in Quantum Mechanics, 

Pergamon Press, Oxford (1960). 
15. WlLsON A. J., PYOC. R. Sot. 180,277 (1942.A). 
16. PLUMIER R., J. Phys. Radium, Paris 24, 741 (1963). 
17. BERTAUT E. F., C.V. hebd. sbnc. Acad. Sci. Paris 

246, 3335 (1958). 
18. BERTAUT E. F., J. Phys. Radium, Par& 13, 499 

(1952) Phys. Rev. 91,414 (1953). 
19. BIELEN H., MAREXHAL J. et SIVAR~I~RE J., Con- 

ference de Diffraction Neutronique, Jiilich (1967). 

APPENDICE A 
Evaluation de <Q,, * Q,, + ,,,* > 

Soit F, le facteur de structure de la r&en= maille 

F, = +‘(A) -I- iQ(ZZ) (A.11 

Ici F(A) est celui du plan A, iF(B) celui du plan B, 
eIl et ‘I,, sont des signes + ou - correspondant aux 
quatre structures possibles (15). On a alors: 

(9, * Q,+,” > = <F, * F,,,,,,* 

- VL * ML. m* * 4 > 

= P’(412-VV) * e121,,“n+, 

-+ VW2 -VW * e121G 
-t-#F(A) * F(B)-(F(A) + e) 

x (W) * 41 (rln’n+m -En7ln+m) (A.9 
Or on a: 

= 2pm-1 = rlnrln+m (A.3) 
inaG!pendamment de n; comme on a certainement: 

-- 
%fn+m = 77&n-m 

- - 
et l n7ln+m= en* - m7)n’ = en- m3n (A.41 

<On * On+ m* > se rt!duit B la formule (20) du texte. 

APPENDICB B 

Evaluation de XI (23) 
Avec les abreviations (B.2) et (B.3) 

q = (1 - 2a)exp(2~~~~) 

2 = 3 pm = @I-l)/(q-1) (B.3) 
n=l 
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En posant hr = hi,+ E (&, entier) avec l’approxi- 
mation co8 27~ N l -2ases et en ne retenant que les 
coefficients proportioonels a Nr, on obtient pour 8, 
l’approximation Lorentzienne (25) du texte. 

1 z (N/x)/[1 +dz2(1 -2a)/cc2] (B.4) 
1 

APPENDICE C 

Forme de la faction q(h) (Iformule (28)] 
cp(/z) est la transforme de Fourier d’une fonction 

arbitraire c(y) mais assujettie a &tre sphbrosymetrique, 
normalisb, identiquement nulle B l’exterieur d’une 
sphere de diametre 2R, et ayant un gradient nul sur la 
sphere. Ici 2R, est la plus petite distance entre atomes 
porteurs de moments. Nous avons pris R, = 1,54A. 

Nous avons choisi la fonction (C.l) 

cl(r) = &-Ro)2 (C-1) 
0 

La transformee de Fourier est (C.2) avec l’abreviation 

(C.3) 

v(h) = 60(a cos a +2a - 3 sin a)/a” (C-2) 

a = 27rjhjR, (C-3) 

L’avantage de la methode reside dans sa program- 
mation facile et la convergence rapide de Iq(h)l”. Le 
calcul a et6 effect& a l’aide de la calculatrice C.A.E. 510 
du C.N.R.S. 


