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Abstract. Neutron diffraction data of DyCrO4 oxide, prepared at 4 GPa and 833 K from
the ambient pressure zircon-type, reveal that crystallize with the scheelite-type structure, space
group I 41/a. Accompanying this structural phase transition induced by pressure the magnetic
properties change dramatically from ferromagnetism in the case of zircon to antiferromagnetism
for the scheelite polymorph with a TN = 19 K. The analysis of the neutron diffraction data
obtained at 1.2 K has been used to determine the magnetic structure of this DyCrO4-scheelite
oxide which can be described with a k = [0, 0, 0] as propagation vector, where the Dy and Cr
moments are lying in the ab-plane of the scheelite structure. The ordered magnetic moments
are 10 µB and 1µB for Dy+3 and Cr+5 respectively.

1. Introduction
Phase transitions induced by pressure have been studied for the zircon mineral ZrSiO4 and
the analogous zircon-types of RXO4 (X= As and V) which transform the tetragonal space
group I 41/amd into a scheelite-type structure, space group I 41/a. Recently for YbPO4 and
LuPO4, it was revealed using in-situ synchrotron x-ray diffraction experiments that the pressure-
induced zircon-to-scheelite transition is reversible and the scheelite high-pressure phase cannot be
quenched to ambient conditions in these phosphates [1]. In the case of vanadates and arsenates,
this phase transition from zircon to scheelite, with an increase in the density of 11%, takes place
at 8 GPa and 773 K [2, 3]. Regarding the high pressure phase transformations in RCrO4, in which
we are interested, only few studies have been reported. This could be due to the high instability
of Cr+5 and its tendency to be reduced to give the most stable distorted phase of perovskite
RCrO3. However, it has been recently reported by our research group that zircon-RCrO4 phases
transform to a scheelite polymorph at 4 GPa and 813 K for the HoCrO4 and TbCrO4 compounds,
which are quenchable after releasing the pressure [4, 5]. Accompanying this structural phase
transition from zircon to scheelite the magnetic properties change dramatically. In this sense,
most of the zircon-type RCrO4 oxides being ferromagnetic become antiferromagnetic for the
corresponding known scheelite polymorph. Detailed structural analysis by x-ray diffraction
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Figure 1. Rietveld refinement of
the DyCrO4 scheelite polymorph at
80 K for TOF neutron diffraction
data. First raw of the vertical
bars (i) corresponds to the DyCrO4

scheelite. Second line (ii) is for
DyCrO3 distorted perovskite.

(XRD) and neutron diffraction (NPD) allow us to establish structure-magnetic properties
relationships, which represents one of the main interests in the solid-state science. In this work,
we aim to study the scheelite-DyCrO4 oxide through investigating the structural and magnetic
properties. Therefore, we focus first on the structural phase transition from the zircon-like to
the scheelite-like structure under pressure and temperature. Second, we report the study of the
magnetic properties of this DyCrO4 from magnetization and neutron diffraction measurements.

2. Experimental
The DyCrO4 zircon-phase sample, which was prepared by a precursor method described
elsewhere, has been treated at 4 GPa and 833 K and 35-50 minutes in a CONAC-type press.
DyCrO4 scheelite oxide was first studied by X-ray powder diffraction using a Philips X’Celerator
diffractometer with a primary beam monochromator consisting of a curved Ge (1 1 1) crystal
aligned to obtain CuKα1 radiation. A range of 2θ-angle between 10◦ and 90◦ was recorded with
a step size of 0.0167◦ collected for 150s. Neutron diffraction experiments were done at the ISIS
facility in the UK using the WISH cold-neutron time of flight (TOF) powder diffractometer.
All obtained diffraction patterns were analyzed using the FullProf Suite Program. Magnetic
susceptibility and magnetization measurements were performed in a Squid Quantum Design
MPS XL from 300 K to 2 K temperature range in different magnetic fields up to 5T.

3. Results and discussion
3.1. Structural characterization
The structure of the DyCrO4 compound obtained after treating the DyCrO4-zircon polymorph
at 4 GPa and 833 K has been refined from the X-ray and neutron diffraction data using the
Rietveld method with the Fullprof program. As it is shown in Figure 1 the neutron diffraction
data obtained at 80 K show the reflections conditions compatible with the space group I 41/a
characteristic of the scheelite type structure.

The refined atomic positions are Dy at 4b (0, 1/4, 5/8), 4a (0, 1/4, 1/8) for Cr and the
oxygen atoms are located at the 16f (x, y , z). The lattice parameters and main bond angles
and interatomic distances are given in Table 1.

It is worth noting that small amount of impurities such as DyCrO3 has also been include in
the refinement, 8.98 (57) %. The zircon-type structure of RCrO4 can be described as formed by
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Table 1. Control sequences to describe lines and symbols in figure captions.

T (K) 80 1.2

a (Å) 5.0170(2) 5.0148(2)
b (Å) 11.3079(6) 11.3037(5)
V (Å2) 284.62(2) 284.27(2)
UDy (Å2) 0.0003(8) 0.0002
UCr (Å2) 0.019(3) 0.0002
xo 0.2437(5) 0.2437
yo 0.6091(4) 0.6091
zo 0.5486(2) 0.5486
Uo (Å2) 0.0105(14) 0.0002(8)
dCr−O (Å) 1.7020(22) x 4 1.7020 x 4
dDy−O (Å) 2.3413(22) x 4 2.3413 x 4

2.4177(23) x 4 2.4177 x 4
Cr - O - Dy (deg.) 121.759 (114) 121.759

132.242(82) 132.242
µxy,Dy (µB) —— 9.67(10)
µxy,Cr (µB) —— 0.99(12)
RBragg (%) 2.44 5.49
Rp (%) 3.81 4.02
Rwp (%) 2.10 5.18
χ2 2.62 1.32
Magnetic R-factor (%) —— 6.82

chains of CrO4 and RO8 polyhedra which are parallel to the c-axis and alternating by an edge
sharing as seen in Figure 2a. Adjacent rods are connected along a and b-axis by zig-zag of edge
sharing between RO8 polyhedra. In case of the scheelite structure, CrO4 distorted tetrahedra are
aligned along the a-axis, while RO8 bisdisphenoids are intercalated between the CrO4 tetrahedra
(Figure 2b).

The RO8 polyhedra shares edges with adjacent RO8 polyhedra and form along a-direction
zig-zag chains, which are cross-linked by tetrahedra via corner-sharing (figure 2b). However,
there is no edge-sharing between RO8 and CrO4 polyhedra. The difference in the tilting angle
between different polyhedra, as well as in the packing after the transition provides an remarkable
change in the Cr- O - R angles as it will be discussed later to explain the different magnetic
behavior that presents this scheelite polymorph in comparison with the zircon one.

3.2. Magnetic properties
Figure 3 shows the evolution of the magnetic susceptibility with the temperature and it can
observed that the susceptibility obeys a Curie- Weiss behavior, χ = C/T + θ in the temperature
range 300 - 40 K, see Figure 3 inset.

It is also observed a small anomaly at 150 K due to the presence of the distorted perovskite
DyCrO3 that become antiferromagnetically ordered at this temperature with a small canting.
However the presence of this phase doesn’t affect to the magnetic properties of the scheelite-
DyCrO4 oxide. In this sense, the obtained magnetic moment takes the value of 11.2 µB which
fairly agrees with the expected for this compound is 10.80 µB. The Weiss constant (θ) takes
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a) b)

Figure 2. a) Crystal structure of the zircon-DyCrO4 and b) scheelite-DyCrO4 polymorph.
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Figure 3. ZFC magnetization mea-
surements for DyCrO4 scheelite in a
0.05 T field. The inset shows the tem-
perature dependence of the reciprocal
susceptibility.

the value of -5.6 K which is indicative of the existence of antiferromagnetic interactions in this
oxide. These interactions are fully confirmed the onset of a net maximum at 20 K in the χ vs
T plot, see Figure 3. The increasing of the susceptibility below the TN is due to presence of
the small amount of impurities mentioned earlier. The different magnetic behavior that present
both DyCrO4 polymorphs, the scheelite form is antiferromagnetic, while the zircon-DyCrO4

have been reported to be ferromagnetic [6] can be explained from the analysis of the structure
of both polymorphs. As it was reported previously, these interactions take place through the
superexchange Cr+5-O-Dy+3 pathway in which both Cr and Dy are involved. Since the Cr-O
and Dy-O interatomic distances remain almost constant for both polymorph, the change in the
sign of the exchange integral going from the zircon to scheelite form is mainly due to remarkable
differences found in the Cr+5-O-Dy+3 bond angle found in both polymorphic phases. The
magnetic structure of the DyCrO4-scheelite polymorph has been determined from the analysis
of the neutron diffraction data obtained at 1.2 K. The neutron powder diffraction patterns
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Figure 4. Magnetic structure fit from
the difference between the 1.2 and
80 K neutron diffraction profiles of
DyCrO4. First ticks of vertical marks
(i) corresponds to the magnetic contri-
bution from the DyCrO4 scheelite and
second line (ii), magnetic contribution
from the DyCrO3 distorted perovskite.

Figure 5. Magnetic structure of
the DyCrO4 scheelite. Blue and
yellow arrows stem for the Dy and Cr
magnetic moments respectively.

show the onset of new reflections forbidden for the space group I 41/a along with a progressive
increase of certain reflections below TN = 20 K. These magnetic reflections, see Figure 4, have
been indexed on the basis of the coincidence between the crystal and magnetic cells, with the
propagation vector k = [0, 0, 0].

The thermal evolution of the integrated intensity of the (002) and (110) magnetic reflections
reveals that these magnetic reflections disappear at 22 K, a higher ordering temperature than the
observed one from the magnetic susceptibility measurements. The magnetic structure is defined
in the primitive P1 space group and the best agreement (RM= 0.068) between the experimental
and calculated neutron diffraction profiles was obtained when Cr+5 and Dy+3 magnetic moments
are aligned parallel to the ab-plane in the same manner like for GdCrO4 scheelite [7],see Figure
5.

The saturation magnetic moments obtained from the Rietveld refinement are 9.67(10)µB

and 0.99(12)µB for Dy+3 and Cr+5 respectively. As it can be observed in Figure 5 the magnetic
moments of Dy+3 are antiferromagnetically coupled between the (Dy2O14) dimers resulting from
the two (DyO8) bisdiphenoids sharing a edge in the ab-plane of the scheelite structure. The
Cr+5 moments are also antiferomagnetically coupled in the ab-plane of the structure given as
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result the collinear magnetic structure depicted in Figure 5.
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