

Magnetic order of YNi_4Si -type TbNi_4Si

A.V. Morozkin ^{a,*}, Fang Yuan ^b, Y. Mozharivskyj ^b, O. Isnard ^{c,d}

^a Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow, 119992, Russia

^b Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1

^c Université Grenoble Alpes, Inst NEEL, BP166, F-38042 Grenoble, France

^d CNRS, Institut NEEL, 25 Rue Des Martyrs, F-38042 Grenoble, France

ARTICLE INFO

Article history:

Received 4 November 2013

Received in revised form

6 March 2014

Keywords:

Rare-earth compound

Magnetic property

Magnetocaloric effect

Neutron diffraction

Magnetic structure

ABSTRACT

Magnetic measurements and neutron powder diffraction investigation of the magnetic structure of the YNi_4Si -type TbNi_4Si compound are presented. The magnetocaloric effect of TbNi_4Si is calculated in terms of the isothermal magnetic entropy change and it reaches the maximum value of -6.3 J/kg K for a field change of $0-50 \text{ kOe}$ near T_c of $\sim 37 \text{ K}$.

Below $\sim 37 \text{ K}$ and in a zero applied magnetic field, TbNi_4Si exhibits a commensurate b -axis collinear ferromagnetic ordering with the **Cmm'm** magnetic space group. At 1.5 K , the terbium magnetic moment reaches the value of $8.66(6) \mu_B$.

© 2014 Published by Elsevier B.V.

1. Introduction

Recently, the orthorhombic derivative of the CaCu_5 -type structure namely the YNi_4Si -type RNi_4Si compounds ($\text{R}=\text{Y}, \text{La}-\text{Ce}, \text{Sm}, \text{Gd}-\text{Ho}$) was reported [1]. Perhaps, the orthorhombic distortion of initial CaCu_5 -type compounds is a prospective route for optimization of their magnetic and hydrogen storage properties [2–4]. Furthermore, the modification of the type structure of rare earth compounds via solid solution is useful method for the improvement of their magnetocaloric properties as clearly shown for the $\text{Gd}_5\text{Si}_2\text{Ge}_2$ -based and LaCo_{13} -based solid solutions [5–7].

The initial CaCu_5 -type TbNi_5 shows ferromagnetic ordering below $T_c \sim 26 \text{ K}$ with isothermal magnetic entropy change -11.5 J/kg K for a field change of $0-5 \text{ T}$ [8]. In the zero applied field, TbNi_5 has a modulated ferromagnetic structure that is the superposition of the collinear ferromagnet with $\mathbf{K}_1=[0, 0, 0]$ and transverse spin wave with $\mathbf{K}_2=[0, 0, 0.018]$ in the basal plane. Two spontaneous transitions were observed in the TbNi_5 single crystal. At $T_c=24 \text{ K}$, a second-order transition from the paramagnetic state to the incommensurate structure occurs. This is followed by a transition from the incommensurate structure to the lock-in type structure at $T_{SR}=10 \text{ K}$. At 2 K an external magnetic field of 0.4 T is strong enough (when H is parallel to the c -axis) to induce a transition to a collinear ferromagnetic structure, which remains stable even when the external field is switched off [9].

One can speculate that the orthorhombic distortion achieved through the elemental substitution will influence the magnetic properties of the initial CaCu_5 -type phases. This work aims to understand such changes in the YNi_4Si -type TbNi_4Si compound, an orthorhombic derivative of the original CaCu_5 -type TbNi_5 phase, through the magnetic measurements and neutron powder diffraction.

2. Material and methods

The TbNi_4Si sample was prepared by arc melting of the stoichiometric amounts of Tb (99.9 wt%), Ni (99.95 wt%) and Si (99.99 wt%). The sample was annealed at 1070 K for 200 h in an argon-filled and sealed quartz tube and subsequently quenched in ice-cold water. The structure, purity and composition of the polycrystalline sample were evaluated using powder X-ray diffraction (XRD) and electron microprobe analysis. The X-ray data were obtained on a Rigaku D/MAX-2500 diffractometer ($\text{CuK}_{\alpha 1}$ radiation, $2\theta=10-80 \text{ deg}$, step 0.02 deg , 1 s/step). An INCA-Energy-350 X-ray EDS spectrometer (Oxford Instruments) on the Jeol JSM-6480LV scanning electron microscope (20 kV accelerating voltage, beam current 0.7 nA and beam diameter 50 μm) was employed to perform the microprobe analyses of the sample. Signals from three points were averaged and estimated standard deviations were 1 at % for Tb (measured by L-series lines), 1 at% for Ni and 1 at% for Si (measured by K-series lines).

DC magnetization of the polycrystalline TbNi_4Si sample (mass $\sim 0.01 \text{ g}$) was measured on a commercial MPMS SQUID magnetometer (Quantum Design) in the temperatures range of

* Corresponding author.

E-mail address: morozkin@general.chem.msu.ru (A.V. Morozkin).

5–300 K with an applied magnetic field of 100 Oe in the zero-field-cooled and field-cooled modes. The isothermal saturation magnetization was measured for the magnetic field change from 0 till 50 kOe and for the temperature range 10–60 K with a 5 K step.

Neutron diffraction experiments were carried out at the high flux reactor of the Institut Laue Langevin (Grenoble, France). The data were collected in a zero magnetic field on the two-axis D1B powder diffractometer equipped with a 1300 cell curved detector spanning the 2θ range of 130 deg [10]. The temperature ranges were 198–64 K with a step of \sim 10 K and 64–1.5 K with a step of \sim 5 K. The neutron wavelength of 2.52 Å was selected by the (002) reflection of a pyrolytic graphite monochromator and the 2θ step was 0.1 deg.

3. Theory/calculation

The unit cell data were derived from the powder XRD using the Rietan program [11,12] in the isotropic approximation at room temperature. The paramagnetic susceptibility was fitted to the Curie–Weiss law, the effective magnetic moment and paramagnetic Curie temperature were obtained from the fit [13]. Magnetocaloric effect (MCE) was calculated in terms of the isothermal magnetic entropy change, ΔS_{mag} , using the magnetization vs. field data obtained near the magnetic transition and employing the thermodynamic Maxwell equations [14]. The neutron diffraction data were refined with the FULLPROF program [15]. The “colorless” space groups and “black-white” magnetic space group [16–18] were used for the analysis of neutron diffraction data.

4. Results

4.1. Crystal structure

Both the microprobe and X-ray powder analyses showed that TbNi₄Si is a single-phase sample. The microprobe analysis yielded the Tb₁₆₍₁₎Ni₆₈₍₁₎Si₁₆₍₁₎ composition, and the X-ray powder analysis confirmed the YNi₄Si-type structure with the *Cmmm* space group. The refined lattice parameters were $a=0.50577(2)$ nm, $b=0.82131(3)$ nm, $c=0.39484(1)$ nm, $V=0.16401(4)$ nm³ and $b/(3^{1/2} \cdot a)=0.93755(3)$ and the atomic sites were Tb1 (2a) [0, 0, 0], Ni1 (4i)

[0, 0.3453(5), 0], Ni2 (4f) [1/4, 1/4, 1/2] and Si (2c) [0, 1/2, 1/2], $R_F=4.9\%$. The atomic positions for the Tb 2a site in the *Cmmm* space group with the corresponding symmetry operators are given in Table 1.

4.2. Magnetic properties and magnetocaloric effect

The zero-field-cooled (ZFC) and field-cooled (FC) magnetization data recorded during heating in 100 Oe are shown in Fig. 1a. The FC data are indicative of a typical ferromagnet, while the ZFC data suggest presence of weak competing antiferromagnetic

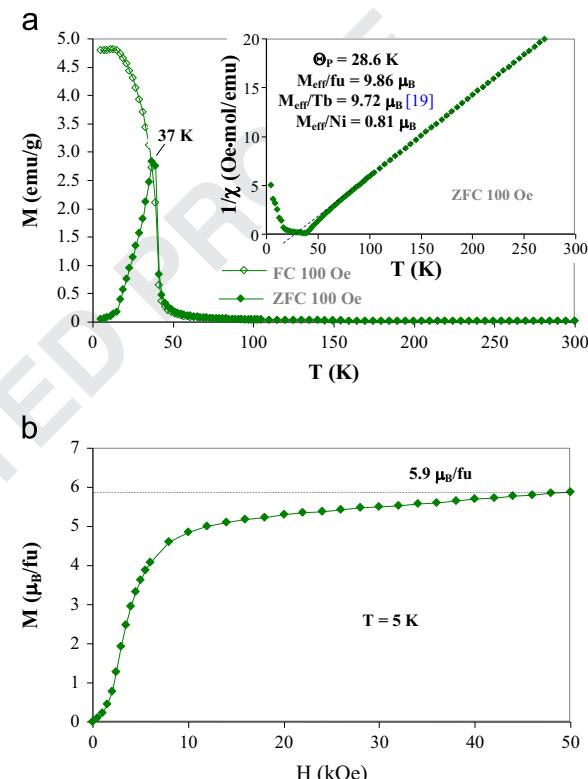


Fig. 1. (a) Magnetization and inverse magnetic susceptibility as a function of temperature, (b) magnetization vs. magnetic field at 5 K of TbNi₄Si.

Table 1

Atomic positions for the 2a, 4i and 4f sites of the *Cmmm*^a space group (retained by TbNi₄Si) with the corresponding symmetry operators and magnetic space group *Cmm'm*^b (retained by *b*-axis collinear ferromagnetic ordering of TbNi₄Si) with corresponding magnetic symmetry operators.

Site	Atom	x/a	y/b	z/c	Symmetry operator	Magnetic symmetry operator
2a	Tb ¹	0	0	0	$Pmmm$ ^c	$Pmm'm$ ^f
	Tb ²	1/2	1/2	1/2	$Pmmm/[1/2 0 1/2]$	$Pmm'm \times 1/[1/2 0 1/2]$
4i	Ni1 ¹	0	y	0	$Pm2m$ ^d	$Pm2m$ ^g
	Ni1 ²	0	-y	0	{ $2_x, m_y, 2_z, \bar{1}$ }	$1' \times \{2_x, m_y, 2_z, \bar{1}\}$
	Ni1 ³	1/2	1/2+y	0	$Pm2m/[1/2 1/2 0]$	$Pm2m \times 1/[1/2 1/2 0]$
	Ni1 ⁴	1/2	1/2-y	0	{ $2_x, m_y, 2_z, \bar{1}$ }/[1/2 1/2 0]	$1' \times \{2_x, m_y, 2_z, \bar{1}\}/[1/2 1/2 0]$
4f	Ni2 ¹	1/4	1/4	1/2	$P2_1/n$ ^e	$P2_1/n$ ^h
	Ni2 ²	-1/4	1/4	1/2	{ $m_x, 2_x/[1/2 1/2 0], 2_y, m_y/[1/2 1/2 0]$ }	$\{m_x, 1' \times 2_x/[1/2 1/2 0], 2_y, 1' \times m_y/[1/2 1/2 0]\}$
	Ni2 ³	1/4	-1/4	1/2	{ $m_x/[1/2 1/2 0], 2_x, 2_y/[1/2 1/2 0], m_y$ }	$\{m_x/[1/2 1/2 0], 1' \times 2_x, 2_y/[1/2 1/2 0], 1' \times m_y\}$
	Ni2 ⁴	-1/4	-1/4	1/2	$P2_1/n/[1/2 1/2 0]$	$P2_1/n/[1/2 1/2 0]$

^a $Cmmm = \{1, m_x, m_y, m_z, \bar{1}, 2_x, 2_y, 2_z\} \times \{1, 1/[1/2, 1/2, 0]\} = Pmmm \times \{1, 1/[1/2, 1/2, 0]\}$;

^b $Cmm'm = \{1, m_x, 1' \times m_y, m_z, 1' \times \bar{1}, 1' \times 2_x, 2_y, 1' \times 2_z\} \times \{1, 1/[1/2, 1/2, 0]\} = \{1, m_x, 2_y, m_z\} \times \{1, 1' \times \bar{1}\} \times \{1, 1/[1/2, 1/2, 0]\} = Pmm'm \times \{1, 1/[1/2, 1/2, 0]\}$;

^c $Pmmm = \{1, m_x, m_y, m_z, \bar{1}, 2_x, 2_y, 2_z\}$;

^d $Pm2m = \{1, m_x, 2_y, m_z\}$;

^e $P2_1/n = \{1, m_z, 2_z/[1/2 1/2 0], \bar{1}/[1/2 1/2 0]\}$;

^f $Pmm'm = \{1, m_x, 1' \times m_y, m_z, 1' \times \bar{1}, 1' \times 2_x, 2_y, 1' \times 2_z\} = Pm2m \times \{1, 1' \times m_y\}$;

^g $Pm2m = Pm2m = \{1, m_x, 2_y, m_z\}$; and

^h $P2_1/n = \{1, m_z, 1' \times 2_z/[1/2 1/2 0], 1' \times \bar{1}/[1/2 1/2 0]\} = \{1, m_z\} \times \{1, 1' \times 2_z/[1/2 1/2 0]\}$.

interactions, which can be easily overcome in small magnetic fields. The paramagnetic susceptibility of TbNi_4Si follows the Curie-Weiss law in the temperature range 90–300 K (inset in Fig. 1a). The fit to the Curie-Weiss law yields a positive paramagnetic Weiss temperatures $\theta_p=28.6$ K and the effective moment per formula unit (M_{eff} /f.u.) of 9.86 μ_B . If Tb atoms are assumed to carry the theoretical Tb^{3+} effective moment of $\mu_{\text{eff}}=gJ(J+1)^{1/2} \mu_B=9.72 \mu_B$ [19], Ni atoms will have an effective paramagnetic magnetic moment of 0.81 μ_B in TbNi_4Si . Such magnetic moment is little more than the theoretical magnetic moment of elemental Ni (0.616 μ_B) [19]. However the neutron diffraction studies do not confirm presence of magnetic moments on Ni, and thus only Tb atoms are assumed to carry localized magnetic moments. In this case, the effective magnetic moment of the Tb atoms is 9.86 μ_B , and a slight increase of $\sim 0.14 \mu_B$ over the theoretical value can be attributed to the polarization of conduction electrons, predominantly the Tb 5d ones, through the 4f–5d exchange interactions.

The magnetization vs. magnetic field for TbNi_4Si at 5 K is plotted in Fig. 1b. A rapid increase in the magnetization at low fields is typical for a ferromagnet and is attributed to the domain growth. However, a subsequent slow linear increase and non-saturating behavior is indicative of the competing antiferromagnetic interactions and/or strong anisotropy. Based on the temperature-dependent magnetization data, the antiferromagnetic interactions are weak and easily overcome at fields of 100 Oe. Thus, a strong magnetic anisotropy is likely to be present in the TbNi_4Si structure and does not allow the magnetic moments to be fully oriented in the magnetic field. The saturation magnetic moment reaches the value of 5.9 μ_B/Tb in 50 kOe, which is significantly smaller than the theoretical saturation moment of Tb^{3+} ($\mu=gJ \mu_B=9 \mu_B$ [19]).

The magnetocaloric effect of TbNi_4Si in terms of the isothermal magnetic entropy change, ΔS_{mag} , was calculated from the

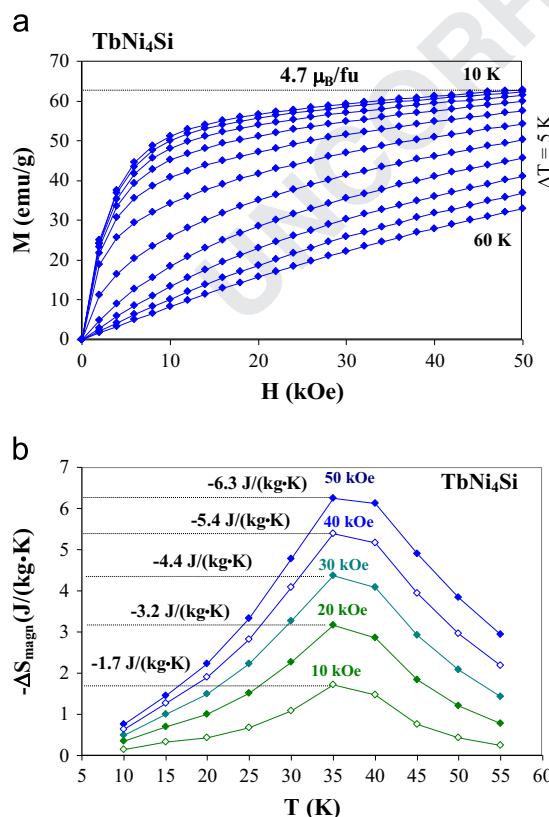


Fig. 2. (a) Magnetization vs. magnetic field and (b) the isothermal entropy change, $-\Delta S_{\text{mag}}$, of TbNi_4Si around the magnetic transitions.

saturation magnetization data (Fig. 2a). A numerical integration is performed using the following formula $\Delta S(T)_{\text{mag}} = \sum_i (M_{i+1} - M_i / T_{i+1} - T_i) \Delta H$, where ΔH is a magnetic field step and M_i and M_{i+1} are the values of magnetization at temperatures T_i and T_{i+1} , respectively [14]. The magnetic entropy change, ΔS_{mag} , for $\Delta H=0-5$ kOe is plotted in Fig. 2b. As expected for a second order magnetic transition, ΔS_{mag} peaks around the Curie temperature and has a maximum value of -6.3 J/kg K .

4.3. Magnetic structure

Above 38 K, the neutron diffraction patterns of TbNi_4Si in a zero applied field correspond to the paramagnetic state, and at

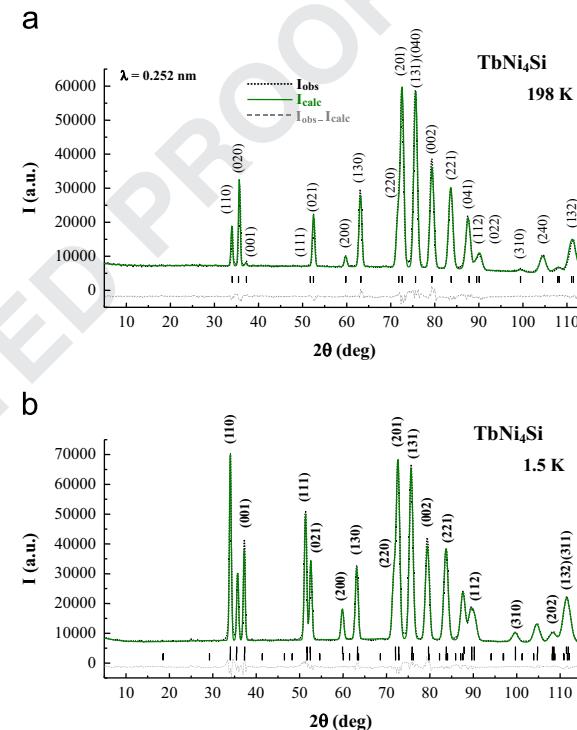


Fig. 3. Neutron diffraction patterns of TbNi_4Si (a) at 198 K (paramagnetic state) and (b) at 1.5 K (b-axis ferromagnet with $\mathbf{K}=[0, 0, 0]$ wave vector). The first row of ticks refers to the nuclear Bragg peaks whereas the second row of lines refers to the magnetic reflections. The (hkl) of strongest magnetic reflections are indicated in (b).

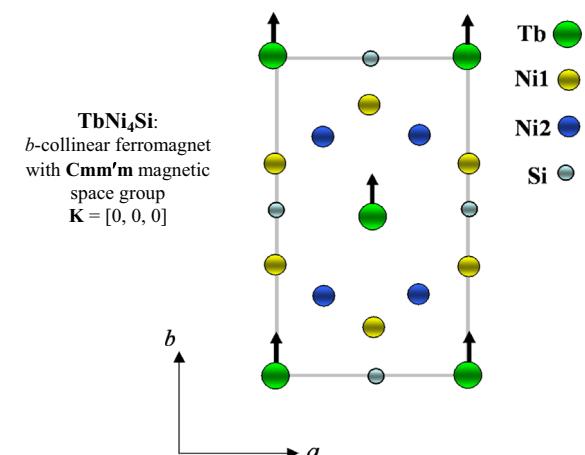


Fig. 4. The image of magnetic structure of YNi_4Si -type TbNi_4Si with b -axis collinear ferromagnetic ordering of Tb sublattice below ~ 38 K of Cmm'm magnetic space group ($\mathbf{K}=[0, 0, 0]$ wave vector).

$T_C^{ND}=38$ K a set of commensurate magnetic reflections with a $\mathbf{K}=[0, 0, 0]$ wave vector indicates the magnetic ordering of TbNi_4Si (Fig. 3). The ordering temperature found from the neutron diffraction study is in good agreement with the value deduced from the magnetization measurements of $T_C \sim 37$ K.

A commensurate b -axis collinear ferromagnetic model of TbNi_4Si fits best with the NDP data (Fig. 4).

Within this model, the calculated magnetic moments for the Ni1 and Ni2 sublattices are close to or within the error bar ($M_{\text{Ni}} \sim 0.12(12) \mu_B$) meaning that the significance of such ordered magnetic moment on Ni cannot be confirmed. The other tested commensurate variants yielded no magnetic ordering for the Ni sublattices. The b -collinear magnetic ordering of the Tb sublattice corresponds to the **Cmm'm** magnetic space group as shown in Table 1. The terbium magnetic moment reaches $8.66(6) \mu_B$ at 1.5 K, a value close to the theoretical value of $9 \mu_B$ expected for Tb magnetic moment [19] (Fig. 5 and Table 2).

The temperature-dependant changes in the lattice parameters are presented in Fig. 6. The unit cell of TbNi_4Si undergoes anisotropic distortion down to temperature of ferromagnetic transition, the cell parameters decrease with $a_T/a_{298 \text{ K}} < c_T/c_{298 \text{ K}} < b_T/b_{298 \text{ K}}$; whereas $b/3^{1/2} \cdot a$ increases and below ferromagnetic ordering the cell parameters remain almost constant. As the TbNi_4Si structure is an orthorhombically distorted variant of the hexagonal CaCu_5 structure, the $b/3^{1/2} \cdot a$ ratio can be used to estimate the degree of the distortion and its progression with temperature. The $b/3^{1/2} \cdot a$ ratio increases upon cooling from $0.93755(3)$ at 298 K up to $0.93832(8)$ at 36 K and it stays almost constant below the Curie

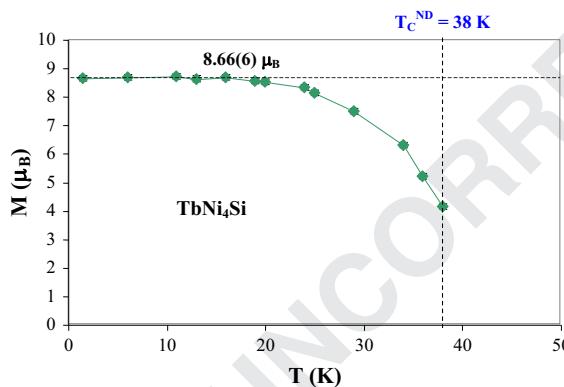


Fig. 5. The thermal evolution of Tb magnetic moment in the TbNi_4Si compound from the ND data.

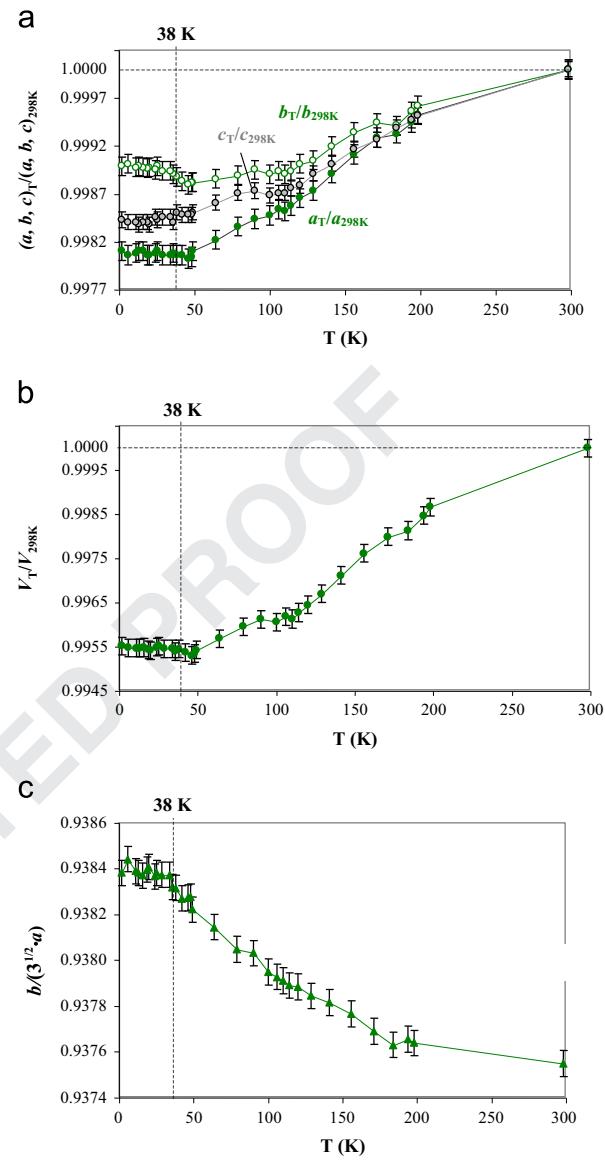


Fig. 6. Thermal variation of relative cell parameters (a) $a_T/a_{298 \text{ K}}$, $b_T/b_{298 \text{ K}}$ and $c_T/c_{298 \text{ K}}$, (b) $V_T/V_{298 \text{ K}}$ and (c) $b/(3^{1/2} \cdot a)$. Here a_T , b_T , c_T , V_T , $a_{298 \text{ K}}$, $b_{298 \text{ K}}$, $c_{298 \text{ K}}$ and $V_{298 \text{ K}}$ are cell parameters and unit cell volume of TbNi_4Si at temperature T and at 298 K , respectively. The $b/3^{1/2} \cdot a$ ratio is the degree of the distortion of initial CaCu_5 -type lattice.

Table 2
Crystallographic and magnetic parameters of YNi_4Si -type TbNi_4Si at different temperatures: cell parameters a , b and c , unit cell volume V , $b/(3^{1/2} \cdot a)$ ratio, the atomic position of Ni1 atom y_{Ni1}^a , \mathbf{M}_b^{KO} the magnetic moments of Tb, Ni1 and Ni2 along the b -axis with $\mathbf{K}_0=[0, 0, 0]$ wave vector. Reliability factors are: R_F for the crystal structure and R_F^m for the magnetic structure.

T (K)	Cell parameters (nm)	V (nm ³)	$b/(3^{1/2} \cdot a)$	y_{Ni1}	R_F (%)	Atom	$\mathbf{M}_b^{\text{KO}} (\mu_B)$	R_F^m (%)
298 ^b	$a=0.50577(2)$ $b=0.82131(3)$ $c=0.39484(1)$	0.16401(4)	0.93755(3)	0.3453(5)	4.9			
198	$a=0.50543(3)$ $b=0.82090(6)$ $c=0.39458(2)$	0.16371(8)	0.93771(7)	0.3407(2)	3.9			
1.5	$a=0.50481(4)$ $b=0.82048(6)$ $c=0.39422(2)$	0.16328(8)	0.93838(7)	0.3403(3)	2.9	Tb ¹ , Tb ²	8.66(6)	3.3

^a Atomic sites of YNi_4Si -type TbNi_4Si (space group **Cmm'm**): Tb1 (2a) [0, 0, 0], Ni1 (4i) [0, 0.3453(5), 0], Ni2 (4f) [1/4, 1/4, 1/2] and Si (2c) [0, 1/2, 1/2].

^b X-ray data.

1 temperature ($b/3^{1/2} \cdot a = 0.92838(7)$) at 1.5 K). The obtained value of
 2 $b/3^{1/2} \cdot a$ ratio too far from the value 1 that corresponds to the
 3 transformation of orthorhombic YNi_4Si -type lattice in to hexagonal
 4 $CaCu_5$ -type lattice.

5. Discussion

6 The saturation magnetization at 5 K and in 50 kOe yielded a
 7 magnetic moment of $5.9 \mu_B$ per terbium atom (Fig. 1b); whereas
 8 neutron diffraction studies at 1.5 K and in a zero applied field
 9 indicated a complete ferromagnetic ordering of $TbNi_4Si$ with
 10 $8.66 \mu_B/Tb$ (Fig. 5). Most likely, a large magnetic anisotropy pre-
 11 vents a parallel alignment of all the Tb moments in the poly-
 12 crystalline sample with the magnetic field even at 50 kOe.

13 Thus, we cannot unambiguously claim for the influence the
 14 orthorhombic distortion for magnetocaloric effect of $TbNi_5$. Mean-
 15 time, orthorhombic distortion of unit cell (compression of unit cell
 16 along the b -orthorhombic axis) leads to the change in the Tb
 17 environment: Tb–2Tb 0.3966 nm and Tb–6Tb 0.4894 nm of $TbNi_5$
 18 transform in to Tb–Tb2 0.39484 nm, Tb–4Tb 0.48227 nm and
 19 Tb–Tb2 0.50577 nm of $TbNi_4Si$ (the interatomic distances are given
 20 at 298 K). This distortion of unit cell leads to the disappearance of
 21 the incommensurate component in the initial $TbNi_5$ magnetic
 22 structure, increasing of temperature of magnetic ordering from
 23 24 K up to 37 K and reorientation the terbium moments in the *ab*-
 24 plane normal to the compression of unit cell.

25 Thus from present experimental data the orthorhombic distortion
 26 of initial $CaCu_5$ -type unit cell of $TbNi_5$ leads to the suppression
 27 of the incommensurate magnetic component, increase of Curie
 28 temperature and a decrease of magnetocaloric effect in YNi_4Si -
 29 type $TbNi_4Si$.

6. Conclusions

30 This work suggests possible existence of other YNi_4Si -type solid
 31 solutions with such orthorhombic distortion of initial $CaCu_5$ -type
 32 unit cell. Perhaps, the orthorhombic distortion of initial $CaCu_5$ -
 33 type compounds is a prospective route for optimization of their
 34 magnetic and hydrogen storage properties.

Acknowledgments

This work was supported by the Russian Fund for Basic Research through the project N° 12-03-00428-a. The Institute Laue Langevin (Grenoble, France) is warmly acknowledged for the use of the neutron diffraction beam. The author A.V.M. thanks R. Nirmala (*Indian Institute of Technology Madras, Chennai 600 036, India*) for some useful discussions.

References

- [1] A.V. Morozkin, A.V. Knotko, V.O. Yapaskurt, Fang Yuan, Y. Mozharivskyj, R. Nirmala, *J. Solid State Chem.* 208 (2013) 9–13.
- [2] K.J. Strnat, *Ferromagnetic Materials*, in: 131th ed., in: E.P. Wohlfarth, K.H.J. Buschow (Eds.), Elsevier Science, North-Holland, Amsterdam, 1988.
- [3] E. Burzo, A. Chelkowski, H.R. Kirchmayr, *Magnetic Properties of Metals*, 248th ed., Springer-Verlag, Landolt-Bornstein, 1990.
- [4] S.N. Klyamkin, V.N. Verbetsky, A.A. Karih, *J. Alloys Compd.* 231 (1–2) (1995) 479–482.
- [5] V.K. Pecharsky, K.A. Gschneidner Jr., *J. Magn. Magn. Mater.* 167 (1997) L179–L184.
- [6] V.K. Pecharsky, K.A. Gschneidner Jr., *Phys. Rev. Lett.* 78 (23) (1997) 4494–4497.
- [7] A. Yan, K.H. Müller, O. Gutfleisch, *J. Alloys Compd.* 450 (2008) 18–21.
- [8] P.J. von Ranke, M.A. Mota, D.F. Grangeia, A.M.G. Carvalho, F.C.G. Gandra, A.A. Coelho, A. Caldas, N.A. de Oliveira, S. Gama, *Phys. Rev. B* 70 (2004) 134428.
- [9] Seongsu Lee, A.N. Pirogov, A.A. Podlesnyak, K. Prokes, Yu.A. Dorofeev, A.E. Teplykh, I.P. Swainson, J.-G. Park, *Physica B* 385–386 (2006) 349–352.
- [10] www.ill.eu, Yellow Book.
- [11] F. Izumi, in: R.A. Young (Ed.), *The Rietveld Method*, Oxford University Press, Oxford, 1993, p. 13.
- [12] F. Izumi, *Rigaku J.* 6 (1) (1989) 10–20.
- [13] R.A. Levy, *Principles of Solid State Physics*, Academic Press, 1968.
- [14] A.M. Tishin, Y.L. Spichkin, *The Magnetocaloric Effect and Its Applications*, Institute of Physics Publishing, Bristol, Philadelphia (2003) 2003480.
- [15] J. Rodriguez-Carvajal, *Physica B* 192 (1993) 55–69.
- [16] P.S. Kireev, *Introduction to the Theory Group and its Application in Solid State Physics*, Moscow, High School, 1979 (In Russian).
- [17] C.J. Bradley, A.P. Cracknell, *The Mathematical Theory of Symmetry in Solids*, Clarendon, Oxford, 1972.
- [18] O.V. Kovalev, *Representations of the Crystallographic Space Groups*, second edition, Gordon and Breach Science Publishers, 1993.
- [19] S. Legvold, *Rare Earth Metals and Alloys, Ferromagnetic Materials*, in: E.P. Wohlfarth (Ed.), North-Holland Publishing Company, Amsterdam, 1980, pp. 183–295.