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Magnetic structure of bixbyite α-Mn2O3: A combined DFT+U and neutron diffraction study
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First-principles density functional theory DFT+U calculations and experimental neutron diffraction structure
analyses were used to determine the low-temperature crystallographic and magnetic structure of bixbyite α-
Mn2O3. The energies of various magnetic arrangements, calculated from first principles, were fit to a cluster-
expansion model using a Bayesian method that overcomes a problem of underfitting caused by the limited number
of input magnetic configurations. The model was used to predict the lowest-energy magnetic states. Experimental
determination of magnetic structure benefited from an optimized sample synthesis, which produced crystallite
sizes large enough to yield a clear splitting of peaks in the neutron powder diffraction patterns, thereby enabling
magnetic-structure refinements under the correct orthorhombic symmetry. The refinements employed group
theory to constrain magnetic models. Computational and experimental analyses independently converged to
similar ground states, with identical antiferromagnetic ordering along a principal magnetic axis and secondary
ordering along a single orthogonal axis, differing only by a phase factor in the modulation patterns. The
lowest-energy magnetic states are compromise solutions to frustrated antiferromagnetic interactions between
certain corner-sharing [MnO6] octahedra.
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I. INTRODUCTION

Manganese is a multivalent element. Associated with each
valence state is a characteristic stoichiometric oxide phase
or phases. Mn ion magnetism and electron correlations of
Mn d states make it challenging to accurately determine
the electronic structure of Mn oxides using the density
functional theory (DFT) approach. Franchini et al.1 explored
various manganese oxides using DFT and showed that the
electronic structure as well as the magnetic ground state
depend sensitively on the details of the DFT calculation, such
as the exchange-correlation functional used.

The α-Mn2O3 phase, with the bixbyite structure, is par-
ticularly challenging to model because of its complicated,
and not yet completely solved, magnetic structure. In the
bixbyite structure (Fig. 1), the Mn3+ ions are octahedrally
coordinated, while the O ions have four Mn neighbors. The
bixbyite structure can be viewed as a close-packed lattice
of Mn with O ions filling three-fourths of the tetrahedral
interstitials in a pattern with Ia3 symmetry. Below about
300 K, α-Mn2O3 transforms from a cubic to an orthorhombic
structure with Pbca symmetry.2 The rhombohedral distortion
increases with decreasing temperature, with lattice parameters
at 81 K approximately a = 9.41 Å, b = 9.45 Å, and c =
9.37 Å (Refs. 2–4). Geller5 rationalized the low-temperature
orthorhombic distortion of bixbyite as a consequence of a Jahn-
Teller instability of [MnO6] octahedra toward elongation along
any one of the three Cartesian axes. In the cubic bixbyite phase,
24 of 32 Mn atoms exhibit distorted coordination, whereas the
remaining eight Mn atoms, which occupy fixed-coordinate
high-symmetry positions, retain regular coordination environ-
ments. The orthorhombic phase accommodates Jahn-Teller
distortion of the remaining eight octahedra (see Figs. 2 and 3).

The magnetic structure of Mn2O3 has long been of interest,
but it is not completely solved. Computationally, Franchini
et al. found a preference for either antiferromagnetic or
ferromagnetic ordering in α-Mn2O3, depending on the type of

DFT exchange-correlation functional used.1 Experimentally,
Regulski et al.6 found evidence for various antiferromagnetic
ordering transitions within the orthorhombic phase, which
occur without any apparent change in symmetry.

Grant et al.7 suggested that the magnetic ordering of
orthorhombic α-Mn2O3 can be predicted from the cubic
Ia3 symmetry because the orthorhombic distortion is small.
They proposed a noncollinear ordering model with magnetic
moments on the Mn 8(b) sites [4(a) and 4(b) in Pbca] aligned
with the body diagonals of the pseudocubic cell and those on
the Mn 24(d) sites [8(c) in Pbca] directed perpendicular to one
of the two orthogonal 21 screw axes passing through each 24(d)
site. However, Regulski et al. demonstrated that this model
is incompatible with the neutron powder diffraction data.6

They further identified an alternative, better-fitting, collinear
model which featured antiferromagnetic ordering on each
of the five inequivalent Mn sublattices of the orthorhombic
structure. However, the orthorhombic distortion could not be
resolved in the diffraction patterns used by Regulski et al. and,
therefore, the atomic positions had to be refined according
to the high-temperature cubic Ia3 structure. No refinements
of the nuclear and magnetic structures of the magnetic
phase under the correct orthorhombic symmetry have been
reported.

In this paper, we address deficiencies in both the com-
putational and experimental studies of the magnetic ground
state of α-Mn2O3. Computationally, we use density functional
theory at the DFT + U + J level in concurrence with a
cluster-expansion model to investigate candidate ground-state
models until the correct DFT ground state is established.
Experimentally, we use optimized conditions to synthesize
α-Mn2O3 with crystallite sizes large enough to yield visible
splitting of reflection peaks in the neutron diffraction patterns
of the orthorhombic phase, and thus refine the magnetic
ordering within orthorhombic symmetry. Both approaches give
very similar results for the magnetic ordering, suggesting that
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FIG. 1. (Color online) Topology of bixbyite phase. Mn in dark
blue; O in medium red; unfilled tetrahedral interstitials indicated in
light yellow. The four nearest Mn to a given O are drawn in the upper
left.

the ground-state magnetic structure of α-Mn2O3 is largely
solved.

II. COMPUTATIONAL METHODS

First-principles density functional theory (DFT) calcula-
tions, as encoded in the VASP software,8,9 were used to
calculate the relaxed configurations investigated here and their
electronic structures. The generalized gradient approximation
(GGA) for the exchange-correlation functional was used
throughout, within the “Perdew-Burke-Ernzerhof revised for
solids” or “PBEsol” parametrization.10

The PBEsol exchange-correlation functional has been
found to give excellent results compared with experiment for
the lattice parameters and bulk moduli of both metals and
nonmetals.11 As is generally true for DFT, however, calculated
band gaps are too small. This error can lead to qualitative errors
for narrow band-gap materials and for materials with magnetic

FIG. 2. (Color online) Cubic α-Mn2O3 viewed along the c axis;
regular octahedra surrounding high-symmetry Mn sites are shown in
columns with two octahedra per repeat unit along c. Blue balls are
Mn; red balls O.

FIG. 3. (Color online) Orthorhombic α-Mn2O3: octahedra shown
in Fig. 2 have undergone Jahn-Teller distortion.

ions, both which are true for α-Mn2O3. We compensated for
this error by including on-site Coulomb terms (the “GGA+U”
approximation). In a previous study of MnO2 phases,12 we
found that the experimental volume and band gap of β-MnO2

could both be reproduced using the rotationally invariant
DFT+U of Liechtenstein et al.13 with an on-site Coulomb
parameter U = 2.8 eV and on-site exchange parameter14

J = 1.2 eV for Mn d electrons. Remarkably, these same values
used for the Mn4+ ion of the β-MnO2 ion were found to be
transferable to the Mn3+ ion of α-Mn2O3, giving excellent
agreement with experiment, as shown below. Ex post facto
investigations of the effects of varying the Mn U and J

parameters, or adding U or J parameters for oxygen, led to
little, if any, improvement.

Sufficient convergence in total energies and lattice pa-
rameters was achieved with a plane-wave cutoff energy of
500 eV and a 2 × 2 × 2 Monkhorst-Pack grid of k points. An
8 × 8 × 8 Monkhorst-Pack grid was used for density of states
calculations. The magnetic ordering of each of the 32 Mn
atoms in the unit cell could be set either “up” or “down”
as desired. Spin-orbit coupling was neglected. Only collinear
magnetic structures were computed using VASP.

The aim of the computational work was to find the DFT
ground-state magnetic ordering of α-Mn2O3. The cluster-
expansion concept, as developed for interatomic alloys,15,16

was used to identify candidate states to explore. The formal
mathematics of the spin-state problem is identical to that of the
alloy problem. Each site i is given a parameter σi , where σi = 1
for spin up (species A in the alloy problem) and σi = −1 for
spin down (species B in the alloy problem).

The total energy U of a configuration {σi} is written as

U ({σi}) =
∑

α

Jαξα, (1)

where α are the symmetry distinct geometric clusters, Jα is
the effective spin interaction parameter for cluster α, and
ξα is the average spin product over all symmetry-equivalent
occurrences of this cluster.17

In practice, one calculates individual U for various config-
urations, determines the values of the Jα according to some
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fitting procedure, and then uses these values to estimate the
energies of any configuration, including those that are not part
of the fit. Errors in the determination of the Jα due to the finite
set of included energies lead to errors in the predictions. While
any method for determining the Jα should eventually converge
to the same result given a sufficiently large number of input
configurations, in this work we employ the cluster expansion
method formulated by Cockayne and van de Walle.18 This
method uses DFT results to fit a number of Jα parameters that
is much larger than the number of results. The mathematical
problem of overfitting the data (that is, the nonuniqueness of
the solution) is controlled using a Bayesian approach.18,19 A
physically motivated probability distribution of all Jα values is
the Bayesian prior. The DFT results are a series of constraints
used to update the probability distribution via Bayes’ theorem.
The posterior distribution of the Jα gives the most probable
values of the Jα and their standard deviations. Additionally,
the method of Ref. 18 reproduces all of the DFT energies
used to generate the cluster expansion exactly, and gives
self-consistent error estimates for all predictions.

All results were calculated within an identical 80-atom, 32
Mn cell. The cluster interactions that can be determined are
limited to those contained within one unit cell. The model is
valid for predictions of other configurations within the same
cell, but cannot be applied to larger supercells; thus if the
ground-state magnetic state has a larger periodicity than the
crystallographic one, it will be missed.

There are 232 collinear magnetic states for the 32 Mn atoms
in the α-Mn2O3 unit cell. Time reversal and crystallographic
symmetry reduce the number of symmetry-independent
configurations to about 3 × 108, which, according to a
one-to-one correspondence with the number of cluster
terms,15,20 yield about 3 × 108 unknown cluster terms.
Solving linear sets of equations with order 108 unknowns is
not computationally feasible. To simplify the problem, we
truncated the interaction terms at fourth order (time-reversal
symmetry forbids linear or cubic terms in the magnetic
interactions). There is one constant term, 73 independent
pair cluster terms, and 4632 four-body cluster terms in our
model. For sets of n DFT total energy results, we solved n

equations in 4706 unknowns using a Bayesian prior to weight
the parameters and standard singular value techniques for
solving underdetermined sets of linear equations.

The prior that we used for the pair terms was

P =
∏
ij

exp
[−J 2

ij

/(
2w2

ij

)]
, (2)

with

w(i,j ) = A

(
d0

dij

)2

, (3)

where dij is the distance between the Mn at site i and j ,
d0 ≈ 3.3 Å = √

2a0/4 is the approximate nearest-neighbor
Mn-Mn distance, and A is an unknown constant. The prior for
the four-body terms were of similar form, with

w(i,j,k,l)

= A

(
d0

dij

)2(
d0

dik

)2(
d0

dil

)2(
d0

djk

)2(
d0

djl

)2(
d0

dkl

)2

. (4)

The physical motivation behind the form of this interaction was
to weaken cluster terms involving Mn ions that are farther apart
from each other. Although superexchange spin interactions
are short-range, we expect that strain coupling effects may
mediate longer range interaction; thus the (dij )−2 form for
our relative interaction terms in the prior. The value of A

was determined self-consistently by the leave-one-out cross-
validation method.18 This value was scaled such that the root-
mean-square error in the predicted energies equalled the root
mean square of the predicted errors.18

We studied the magnetic states in an iterative manner.
After calculating an initial set of energies versus magnetic
orderings for a few simple configurations, additional structures
were investigated, with, in rotating turns, (i) the minimum
predicted energy among untested structures, (ii) the maximum
predicted energy among untested structures, and (iii) the
maximum predicted uncertainty in energy. The parameters Jα

were recalculated after each step and then used to predict
the energies and energy uncertainties for all order 3 × 108

symmetry-independent configurations. The model was refined
iteratively until there were no more predicted states within two
standard deviations of uncertainty of the tenth lowest-energy
state found, at which point it was concluded that the collinear
ground state was probably found. A total of 76 structures in
all were calculated.

III. EXPERIMENTAL METHODS

The α-Mn2O3 powder sample was prepared by heating
MnCO3 (analytical reagent) at 800 ◦C in air for 12 h, which was
the highest temperature to yield phase-pure α-Mn2O3 devoid
of Mn3O4 traces. The sample was characterized using x-ray
powder diffraction in an instrument equipped with an incident-
beam monochromator (Cu Kα1 radiation) and a position-
sensitive detector. The heating temperature and time were
selected to minimize the width of the 222 peak, which remains
nonsplit in the orthorhombic phase and, therefore, reflects
the size of the coherently scattering domains in the sample.
(Phase-pure α-Mn2O3 can be obtained by heating MnCO3 at
temperatures between 600 and 800 ◦C, but lower temperatures
produced considerably broader peaks.) No changes in the peak
widths were observed after the second heating at 800 ◦C for
12 h.

Neutron powder diffraction measurements were performed
using both the time-of-flight HIPD diffractometer at the Lujan
Center of the Los Alamos National Laboratory and the BT-1
constant-wavelength (Cu 311 monochromator, λ = 1.5405 Å,
15’ collimation) diffractometer at the NIST Center for Neutron
Research. For these measurements, the α-Mn2O3 powder was
loaded in vanadium cans. In each experiment, the data were
collected at a series of temperatures (HIPD: 300, 200, 150,
100, 60, 40, and 5 K; and BT-1: 300, 100, 40, 10, and 2 K).
Rietveld refinements of the nuclear and magnetic structures
were performed using GSAS.21

The magnetic-structure models were selected according to
representational analyses performed by SARAH;22 likewise,
SARAH was used for symmetry-constrained refinements in
GSAS. First, the magnetic basis-vector coefficients were
refined using a reverse Monte Carlo (RMC) algorithm im-
plemented in SARAH with the magnitudes of all the magnetic
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TABLE I. DFT crystal structure for ferromagnetic α-Mn2O3 in
cubic Ia3 phase. Lattice constant a0 = 9.4090 Å.

Species Site x y z

Mn(1) 8(a) 0 0 0
Mn(2) 24(b) 0 1/4 0.2848
O(1) 24(b) 0.4162 0.1286 0.3555
O(2) 24(b) 0.3714 0.1445 0.0838

moments constrained to be equal. The best-fit model was fur-
ther refined in GSAS (i.e., using least-squares minimization)
by keeping the basis-vector coefficients fixed but allowing
for distinct ordered magnetic moments on inequivalent Mn
sites. The HIPD and BT-1 data produced consistent structural
parameters.

IV. COMPUTATIONAL RESULTS

The α-Mn2O3 bixbyite structure was first investigated with
ferromagnetic ordering. Relaxation under cubic Ia3 symmetry
yielded a0 = 9.409 Å and the structure shown in Table I.
DFT phonon results of this cubic structure show an extremely
strong double instability (ν = 510 icm−1) associated with
Jahn-Teller distortions of the oxygen octahedra centered on the
Mn(1) sites. Full relaxation of the bixbyite structure perturbed
by either mode in the instability doublet, or any linear
combination of the two, leads to an orthorhombic minimum
energy state with Pbca symmetry, explaining the experimental
cubic-orthorhombic transition. In fact, we find that all such
combinations relax to the same ferromagnetic ground-state
structure, differing only with respect to (i) which of the original
cubic axes becomes the short axis of the orthorhombic unit cell,
and (ii) possible translations of the origin by (1/2,1/2,1/2).
Each Mn(1) and Mn(2) in the orthorhombic structure has four
short Mn-O distances and two long Mn-O distances. The
topology of the orthorhombic structure is uniquely defined
by specifying which Mn(1)-O and Mn(2)-O distances are
long. In this work, we arbitrarily choose the setting where

FIG. 4. Lowest-energy collinear magnetic structure found com-
putationally; also the collinear model that gives the best fit (χ2 =
2.54) to experimental results at 2 K. Only Mn atoms shown; dark
spheres represent spin “up” and light spheres spin “down.”

the Mn(1) at (0,0,0) has its far O neighbors at approximately
±(0.139,0.149, − 0.093), and the Mn(2) at (1/2,1/2,1/2) has
its far O neighbors at approximately ±(0.656,0.412,0.641).
The ground-state ferromagnetic structure is shown in the
left-hand side of Table II.

The orthorhombic crystallographic structure of the ferro-
magnetic phase was used as the starting part for relaxation
of each collinear spin combination {σi} studied. The state
that was ultimately identified as the ground state was the
36th studied. In total, 76 states were investigated before the
termination criterion was reached: no new structures with
predicted energies within two standard deviations of the
tenth-lowest-energy structure were found.

The calculated ground-state collinear magnetic structure
is shown in Fig. 4 and listed in Table III and IV. The spin
moments are obtained by taking the difference in the number
of spin-up and spin-down electrons, integrated within spheres
of radius 1.24 Å centered on each Mn, as calculated using VASP.

TABLE II. DFT crystal structures for orthorhombic ferromagnetic and ground-state antiferromagnetic structures. Lattice parameters in Å.
The similarity of a and b for the orthorhombic ferromagnetic structure is coincidental.23

FM AFM ground

a 9.4417 9.4024
b 9.4417 9.4435
c 9.4096 9.3668

Atom Site x y z x y z

Mn(1) 4(a) 0 0 0 0 0 0
Mn(2) 4(b) 1/2 1/2 1/2 1/2 1/2 1/2
Mn(3) 8(c) 0.2563 0.2854 −0.0070 0.2602 0.2848 −0.0102
Mn(4) 8(c) 0.2864 −0.0010 0.2458 0.2857 −0.0034 0.2450
Mn(5) 8(c) 0.0079 0.2478 0.2845 0.0136 0.2457 0.2818
O(1) 8(c) 0.4215 0.1259 0.3510 0.4256 0.1233 0.3502
O(2) 8(c) 0.1358 0.3523 0.4103 0.1409 0.3506 0.4050
O(3) 8(c) 0.3576 0.4180 0.1223 0.3568 0.4187 0.1196
O(4) 8(c) 0.0855 0.3721 0.1414 0.0845 0.3738 0.1395
O(5) 8(c) 0.3791 0.1460 0.0794 0.3815 0.1478 0.0798
O(6) 8(c) 0.1524 0.0859 0.3648 0.1567 0.0873 0.3608
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TABLE III. Ground-state DFT magnetic state and lowest-energy
noncollinear magnetic state found in a Heisenberg model based on
pair interactions determined by fits to DFT results. Magnetic moments
are in μB and canting angles φ in degrees. Only the relative directions
of the magnetic moments are determined; m‖ is the magnetic moment
along the only axis for the collinear DFT ground state and the principal
axis of the noncollinear Heisenberg model ground state; m⊥ is the
magnet moment along a second axis of the Heisenberg model ground
state. Mn positions as in Table II; spin moments for other Mn are
related by applying the factors shown in Table IV.

DFT Heisenberg
Atom m‖ m‖ m⊥ φ

Mn(1) −3.6 −3.6 0.0 0
Mn(2) −3.6 −3.6 0.0 0
Mn(3) 3.6 3.0 −1.9 32
Mn(4) 3.6 3.2 1.6 27
Mn(5) −3.6 −3.6 −0.1 1

The magnitudes are reasonable for high-spin Mn3+ ions, but
are not precisely comparable with experiment because of the
artificial partition of the cell into spherical volumes.

We next investigated possible noncollinear magnetism
using the parameters found in the fit to the computational
results. The obvious way to extend the model is to use
the interaction parameters determined from calculations of
collinear systems with (pseudo)vectorized spins in a Heisen-
berg model approach. That is, instead of using Ising-like
interaction terms Jijσiσj , one uses Heisenberg-like interaction
of spin “vectors” according to the principal axes of “up”
spin: Jij �σi · �σj , with exactly the same set of Jij (note that
the posterior likelihood of coupling parameters Jα is actually
a distribution; in the following, we use only the most probable
set of values for the Jα). For simplicity, we only included
pair interactions in this approach.24 Simulated annealing was
used to find the lowest-energy state of the Heisenberg model.
Random initial spin configurations always converged to an
equivalent noncollinear ground state (right side of Table III),
with a dominant spin axis direction m‖, and all secondary spin
components along the same orthogonal axis m⊥.

The band structure for the lowest-energy collinear magnetic
state found is shown in Fig. 5. The structure has some similar-
ities to that of Franchini et al.1 using the PBE0 approximation,
including a band gap at the Fermi level (0.6 eV in our case). Our
results differ from theirs in that our antiferromagnetic structure
(as opposed to their ferromagnetic structure) results in a band
structure without a global distinction between majority and
minority spins. Locally, around the magnetic Mn sites, one
spin direction dominates. In Fig. 6, we show the integrated

TABLE IV. Effects of Pbca symmetry generators on the magne-
tization components of the theoretical α-Mn2O3 magnetic structures
listed in Table III.

Generator m‖ m⊥

(x,1/2 − y,1/2 + z) −1 −1
(1/2 + x,y,1/2 − z) −1 −1
(1/2 − x,1/2 + y,z) + 1 −1
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FIG. 5. Calculated density of states (DOS) for α-Mn2O3 in
ground-state collinear magnetic structure.

DOS around each distinct Mn site, broken down into majority
and minority spins. We find a remarkable signature of the
combination of octahedral crystal-field splitting and effects of
Jahn-Teller distortion in the nature of the highest occupied
levels: they are split off from the other occupied 3d states.
The highest valence band is an isolated band associated with
3d electrons of the Mn(1) and Mn(2). A second split band
at around EF − 0.8 eV is associated with Mn(3), Mn(4), and
Mn(5) 3d electrons (Fig. 6).

V. EXPERIMENTAL RESULTS

Room-temperature diffraction patterns (Fig. 7) exhibit no
clear reflection splitting indicative of an orthorhombic distor-
tion. However, the peaks are broad and the cubic Ia3 model
fits poorly yielding abnormally large atomic displacements
parameters Uiso for the oxygen atoms, which suggests that the
structure is distorted. The data (not shown) can be fitted sat-
isfactorily using the orthorhombic Pbca structure reported in

Mn(1)

Mn(2)

Mn(3)

Mn(4)

Mn(5)

-10  -8  -6  -4  -2   0   2   4   6   8
E - EF (eV)

FIG. 6. Integrated density of states (DOS) for α-Mn2O3 in
ground-state collinear magnetic structure, within spheres of radius
1.24 Å centered on each Mn site. Integrated DOS of local majority
spins above the line and local minority spins below the line.
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FIG. 7. (Color online) A trace of the 622 cubic reflection at three
different temperatures. This reflection appears as a single peak at
300 K but exhibits pronounced splitting at subambient temperatures.
Similar trends are observed for other reflections.

the literature with sensible Uiso values. The refined lattice dis-
tortion at 300 K differed considerably between the HIPD data
(b/c = 1.0007) and BT-1 data (b/c = 1.0036), presumably
because of the close proximity of the phase transition which
leads to relatively large changes in the lattice distortion even
for small temperature differences. The distortion increases
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FIG. 8. (Color online) Temperature dependence of the (a) or-
thorhombic lattice parameters and (b) unit-cell volume and b/c ratio
which characterizes the magnitude of the orthorhombic distortion.
The behavior of the orthorhombic distortion changes across the
magnetic transition at approximately 80 K. The error bars are within
the size of the symbols.
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FIG. 9. (Color online) Experimental (red dots) and calculated
(blue line) neutron diffraction profiles (BT-1) for α-Mn2O3 at 100 K.
The residual is indicated below (green line). The agreement factors
are χ 2 = 1.16 and Rwp = 4.79%.

rapidly on cooling to b/c = 1.0085 at 100 K and the reflection
splitting becomes evident (Fig. 7). For these temperatures, the
lattice parameters refined using the HIPD and BT-1 data were
in good agreement. Temperature dependencies of the lattice
parameters, unit-cell volume, and b/c data are summarized
in Fig. 8. Figure 9 displays the experimental and calculated
diffraction profiles for T = 100 K, while Table V summarizes
the results of the nuclear-structure refinements at 100 and 2
K. The MnO6 octahedra exhibit strong Jahn-Teller distortions
already at 300 K (Table VI).

Below 100 K, a series of strong reflections appears at
lower angles, which signifies magnetic ordering (Fig. 10).
The b/c ratio decreases slightly below the magnetic transition
[Fig. 8(b)] to 1.0079 at 2 K. The patterns remain qualitatively
unchanged from 60 K down to 2 K. The magnetic reflections
can be accounted for by a propagation vector k = 0. All
eight symmetry elements of the space group Pbca leave
this propagation vector invariant. Group-theory analysis yields
eight irreducible representations (IRs) (
i , i = 1,8), each
having an order of 1. Only four of these IRs (
1, 
3, 
5,
and 
7) are common to all five of the inequivalent Mn sites.

Regulski et al.6 presented their collinear magnetic-ordering
model in the form of schematic drawings for each Mn
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TABLE V. Parameters of the nuclear structures of paramagnetic (T = 100 K) and antiferromagnetic (T = 2 K) α-Mn2O3 obtained by
Rietveld refinements using neutron powder diffraction data (BT-1). In both cases, the space group is Pbca (no. 61). The model assumed
isotropic atomic displacement parameters (Uiso), which were constrained according to the atom type (i.e., Mn or O). The refined values were
Uiso(Mn) = 0.0031(2) Å2 and Uiso(O) = 0.0049(1) Å2 at 100 K and Uiso(Mn) = 0.0021(3) Å2 and Uiso(O) = 0.0040(1) Å2 (O) at 2 K. Numbers
in parentheses refer to one standard deviation as calculated in GSAS.

100 K (χ 2 = 1.16) 2 K (χ 2 = 2.54)

a 9.4104(1) 9.4078(1)
b 9.4509(1) 9.4488(1)
c 9.3706(1) 9.3739(1)

Atom Site x y z x y z

Mn(1) 4(a) 0 0 0 0 0 0
Mn(2) 4(b) 1/2 1/2 1/2 1/2 1/2 1/2
Mn(3) 8(c) 0.2598(5) 0.2854(3) −0.0105(5) 0.268(1) 0.280(1) −0.011(1)
Mn(4) 8(c) 0.2867(3) 0.0017(8) 0.2436(4) 0.2880(9) 0.009(2) 0.246(1)
Mn(5) 8(c) 0.0127(5) 0.2456(6) 0.2827(3) 0.012(1) 0.237(1) 0.2833(9)
O(1) 8(c) 0.4253(3) 0.1241(4) 0.3511(4) 0.4276(8) 0.1240(9) 0.3502(8)
O(2) 8(c) 0.1399(3) 0.3509(4) 0.4068(2) 0.1395(8) 0.3513(9) 0.4074(7)
O(3) 8(c) 0.3579(3) 0.4175(4) 0.1218(3) 0.3586(9) 0.4169(9) 0.1209(7)
O(4) 8(c) 0.0838(3) 0.3725(4) 0.1402(3) 0.0738(7) 0.3712(9) 0.1385(9)
O(5) 8(c) 0.3797(3) 0.1477(4) 0.0789(3) 0.3821(8) 0.1509(9) 0.0803(7)
O(6) 8(c) 0.1554(3) 0.0882(3) 0.3609(4) 0.1563(8) 0.0882(9) 0.3586(8)

sublattice; no symmetry analysis was performed. According
to our representational analysis, the ordering types for their
sublattices 1 [combined Mn 4(a) and 4(b) sites], 2, and 4
belong to the 
3 representation. However, the ordering on
their sublattice 3 is incompatible with any of the IRs; that
is, the model, at least as presented, is not compatible with
orthorhombic crystallographic symmetry (possibly there is a
drawing error). The spin arrangement for their sublattice 3 can
be made compatible with the structural symmetry by flipping
the directions of two spins. The resulting ordering patterns
belong to either the 
3 or 
6 representations, depending on
which two spins are flipped. We fitted both models (i.e., 
3

and 
3 + 
6) to our data. A collinear pattern with magnetic
moments directed along one of the orthorhombic axes was
assumed. The 
3 model with all the moments parallel to

TABLE VI. Mn-O distances at 300 and 100 K (in Å). Numbers
in parentheses refer to one standard deviation as calculated in GSAS.

Atom 300 K 100 K

Mn(1) 2.03(2) (×2) 1.949(3) (×2)
2.02(1) (×2) 1.944(3) (×2)
1.97(2) (×2) 2.129(3) (×2)

Mn(2) 2.04(2) (×2) 1.953(3) (×2)
1.90(1) (×2) 2.117(3) (×2)
2.04(2) (×2) 1.923(3) (×2)

Mn(3) 2.17(2) 1.88(1) 2.200(5) 1.879(5)
2.03(2) 2.31(2) 1.987(5) 2.327(5)
1.92(1) 2.00(2) 1.915(5) 1.961(5)

Mn(4) 2.00(2) 2.20(2) 2.033(6) 2.181(7)
1.90(1) 1.96(2) 1.934(5) 1.959(6)
2.35(2) 1.88(1) 2.269(7) 1.859(5)

Mn(5) 1.90(2) 1.96(2) 1.889(5) 1.943(5)
2.26(2) 1.91(2) 2.358(6) 1.916(5)
1.98(2) 2.18(2) 2.026(5) 2.134(5)

the c axis produced a superior fit of quality comparable to
that reported by Regulski et al. However, examination of the
misfit between the calculated and experimental profiles reveals
significant discrepancies for several magnetic reflections that
become split in the orthorhombic structure [Fig. 10(a)], which
indicates that the intensity distribution among the split-peak
components is incorrect. Conceivably, these deficiencies were
obscured by the insufficient resolution in the data used by
Regulski et al.

As the literature model failed to describe the data, we
considered collinear models corresponding to other repre-
sentations (i.e., 
1, 
5, and 
7). The 
1 model with the
magnetic moments directed along the a axis provided a
satisfactory fit to the neutron data of quality far superior
to that obtained for any of the 
3 models [Fig. 10(b)]; the
collinear 
1 models with magnetic moments directed along
the b and c axes yielded considerably worse agreement factors.
Models generated according to the 
5 and 
7 representations
generated poor fits and were discarded. Refinements of the
magnetic-moment magnitudes (m) independently for each Mn
site significantly improved the fit. The resulting m values,
which at 2 K range from approximately 3μB to 4μB , are
consistent with those expected for Mn3+ ions. The collinear
model most consistent with the experimental results is shown
in Table III. It is identical to that determined computationally
(Fig. 4).

We explored potential deviations from the collinearity using
the algorithms implemented in SARAH. A relatively large
number of RMC cycles (3000 for two basis-vector mixing
coefficients per site and 10 000 for three coefficients per
site) were found necessary to locate a model that provides
an adequate fit (a goodness-of-fit χ2 � 3) to the data. Detailed
refinements of the magnetic structure were performed at
40 and 2 K. Multiple refinements that start from randomly
selected values of the mixing coefficients were run to verify
the robustness of the best-fit structural model at 2 K.
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FIG. 10. (Color online) A low-angle portion of the neutron
diffraction pattern collected at 2 K showing experimental (red dots)
and calculated (blue line) neutron diffraction profiles. Note that all
the reflections with 2θ � 32◦ were absent at 100 K (Fig. 9); these
reflections, all indexable according to the primitive nuclear-structure
unit cell, originate from magnetic ordering. The calculated profiles
correspond to (top) the 
3 model by Regulski et al. with magnetic
moments aligned with the c axis, (middle) the 
1 model with magnetic
moments collinear with the a axis, and (bottom) the 
1 model with
noncollinear magnetic moments residing in the ac plane. The 
1

models provide a superior fit relative to the 
3 model. A noncollinear
alignment of magnetic moments significantly improves the fit for
several magnetic reflections (outlines using a dashed line).

The best fit was obtained by restricting the magnetic
moments to the orthorhombic (010) plane. The fit of the
several magnetic reflections was visibly improved in the
noncollinear model [Figs. 10(c) and 11]. The best-fit 
1 models
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FIG. 11. (Color online) Experimental (red dots) and calculated
(blue line) neutron diffraction profiles (BT-1) for α-Mn2O3 at 40 K
(top) and 2 K (bottom). The calculated profiles correspond to the

1 model with the noncollinear array of magnetic moments in the ac

plane. The agreement factors are χ 2 = 1.22 and Rwp = 5.21% (40 K)
and χ 2 = 2.53 and Rwp = 6.89% (2 K).

at both 40 and 2 K feature similar patterns of magnetic
ordering (Table VII and VIII). No additional improvement
was obtained by varying all three mixing coefficients per
site after 20 000 RMC cycle; possibly, even this number of
cycles was insufficient to identify a global minimum. In the
best-fit noncollinear model, the magnetic moments are aligned
preferentially with the a axis but exhibit significant (up to 32◦)
deviations from this direction; the deviations from collinearity
become especially pronounced at 2 K.

VI. DISCUSSION

The theoretical lattice parameters of orthorhombic α-
Mn2O3 change significantly when the magnetic structure
changes from ferromagnetic to the antiferromagnetic lowest-
energy collinear state (Table II), demonstrating significant
spin-strain coupling. The ground-state lattice parameters are
within about 0.1% of experiment, phenomenally good agree-
ment that demonstrates the accuracy of DFT calculations using
the PBEsol exchange correlational along with on-site U and J

parameters to treat d-electron correlations in Mn.

TABLE VII. Effects of generators of Pbca symmetry on mag-
netic moments refined experimentally.

Generator mx mz

(x,1/2 − y,1/2 + z) −1 −1
(1/2 + x,y,1/2 − z) −1 + 1
(1/2 − x,1/2 + y,z) + 1 −1
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TABLE VIII. Magnetic-moment (m) components for the Mn
atoms in the best-fit 
1 models at 2 and 40 K. The atomic coordinates
at 2 K are given in Table V. The magnetic-ordering model assumed
my = 0. The refined magnitudes of m (units of μB ) are indicated for
the inequivalent Mn sites. Magnetic moments for the remaining Mn
sites are generated as described in Table VIII. The refinements at 2
and 40 K were performed independently with the random starting
models for the basis-vector mixing coefficients. The angle between
the mtot and the a axis is defined as φ (deg). Numbers in parentheses
refer to one standard deviation as calculated in GSAS.

2 K 40 K

Atom mx mz mtot φ mx mz mtot φ

Mn(1) −2.6 1.6 3.1(1) 32 −2.3 1.4 2.7(1) 32
Mn(2) −3.4 −0.7 3.5(1) 12 −3.0 −0.8 3.1(1) 15
Mn(3) 3.2 −1.4 3.5(1) 23 3.0 −0.3 3.0(1) 5
Mn(4) 3.0 1.3 3.3(1) 24 2.9 0.3 2.9(1) 6
Mn(5) −3.5 −2.3 4.2(1) 34 −3.4 −1.0 3.5(1) 16

The lowest DFT collinear state found and the best low-
temperature experimental fit to a collinear model are identical,
although they were achieved completely independently, sug-
gesting that the nature of the magnetism in α-Mn2O3 is largely
solved. The secondary components of the best noncollinear
spin arrangements of model and experiment (Tables III and
VII) appear different at first glance, but in fact the two
are related by the approximate relationship m⊥(model) ≈
cos(2πx)m⊥(expt.), with x the crystallographic positional
coordinate. The source of the discrepancy is not clear, but the
agreement is noteworthy given the approximations involved in
the computational approach. Note that the experimental results
show clear preferences for magnetic moments along particular
directions; the DFT approach neglected spin-orbit coupling,
and thus the effect of magnetic moment direction could not be
studied.

The experimental results (Table VII) for total magnetic
moment per site, mtot, are more variable than the computational
values (Table III), which are similar for all Mn sites. As noted
above, the theoretical moments are simply the differences in
the number of spin-up and spin-down electrons within spheres
of somewhat arbitrary radius 1.24 Å centered on each Mn;
therefore the calculated moments are not directly comparable
with the experimental values. Also, thermal spin fluctuations
at 40 K decrease the experimentally measured mtot from
the values measured at 2 K and increase the differences in
measured mtot among the different Mn sites (Table VII). The
values of the experimental and computed magnetic moments
are reasonable for high-spin Mn3+ ions.

The pair magnetic parameters, as determined from the fit to
the DFT results, are shown as a function of Mn-Mn distance
in Fig. 12. The strongest terms are antiferromagnetic terms for
exactly those Mn-Mn pairs that (i) are approximately 3.5–3.6 Å
apart, (ii) share one close O atom bonded to each, and (iii) have
a Mn-O-Mn angle for these bonds less than 125◦. These Mn-
O-Mn pairs involve two Mn(3), Mn(4), or Mn(5) atoms and
have very unequal Mn-O distances. Within the Mn-Mn pairs,
the magnitude of the antiferromagnetic interaction strictly
decreases with increasing length of the longer Mn-O distance.
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FIG. 12. (Color online) Calculated magnetic interaction param-
eters between Mn ions in α-Mn2O3. Positive values for J favor
antiferromagnetic alignment. Mn subscripts refer to the different Mn
sites in the orthorhombic phase. Error bars indicate plus and minus
one standard deviation of the parameter, based on cross-validation
calculations.

Aside from the Mn(1,2)-Mn(1,2) interaction at about 4.7 Å,
which differs from zero by six standard deviations, all interac-
tions beyond 4.0 Å are within about two standard deviations
of zero. The calculated four-body terms are all within two
standard deviations of zero, and only a single such term is more
than one standard deviation away from zero. Note that negli-
gible four-body interactions are deduced from the calculations
rather than being assumed a priori. Conversely, by not assum-
ing that all strong magnetic interactions are mediated by shared
oxygen atoms, a significant interaction between Mn(1,2)-
Mn(1,2) pairs at about 4.7 Å separation is discovered here.

Two pair interactions of approximate magnitude 0.085 eV
per pair are nearly degenerate in energy and Mn-Mn distance,
such that they cannot be distinguished in Fig. 12. If the
Mn-Mn links corresponding to the three strongest terms
and one of the 0.085 eV terms are drawn (Fig. 13), then
the magnetic structure for the Mn(3), Mn(4), and Mn(5)

FIG. 13. Linkages between Mn in α-Mn2O3 limited to a subset
of those with strong antiferromagnetic interactions as determined in
this work give the lowest-energy collinear magnetic structure on the
Mn(3), Mn(4), and Mn(5) sites.
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FIG. 14. Similar to Fig. 13, with the Mn-Mn pairs with the five
strongest AFM interactions shown. One additional interaction, not
shown in Fig. 13, is indicated by dotted lines here, and leads to
frustrated triangles, which presumably is the origin of the noncollinear
ground-state magnetism.

sites based on these interactions, all antiferromagnetic, is
completely determined to be that of the computational and
experimental collinear ground state. On the other hand, if links
corresponding to both 0.085 eV terms are drawn (Fig. 14),
then there are frustrated triangles where antiferromagnetic
interactions cannot be satisfied for all bonds. A triangle of
vector spins with frustrated antiferromagnetic interactions has
a (possible degenerate) ground state with a noncollinear spin
arrangement; we believe this is the origin of the noncollinear
antiferromagnetism of α-Mn2O3.

We only looked at the ground-state magnetic structure,
but the finite-temperature magnetic correlations could also be
investigated using the DFT-based model, which would allow
the nature of possible AFM-AFM transitions in α-Mn2O3 (6)
to be determined.

VII. CONCLUSIONS

First-principles density functional theory DFT+U and
cluster expansion model calculations, along with independent
experimental neutron diffraction structure analyses, were
used to determine the low-temperature crystallographic and
magnetic structure of bixbyite α-Mn2O3. Both approaches
independently gave nearly identical crystallographic and
magnetic structures, with identical antiferromagnetic ordering
along a principal magnetic axis and secondary ordering along
a single orthogonal axis, differing only by a phase factor
in the modulation patterns. The agreement between the two
approaches suggests that the ground magnetic state of α-
Mn2O3 is largely solved.

The computational methods exploited a Bayesian approach
that allows the number of parameters in the cluster expansion
model to exceed the number of input structure energies
without sacrificing energy predictability. The individual mag-
netic coupling parameters were determined, showing that
specific frustrated antiferromagnetic interactions determine
the magnetic structure. The experimental approach benefited
from optimized sample synthesis, which produced crystallite
sizes large enough to yield a clear splitting of peaks in
the neutron powder diffraction patterns, thereby enabling
magnetic-structure refinements under the correct orthorhom-
bic symmetry.

The approaches used here should prove suitable for similar
problems of magnetic ordering in other complex oxides whose
magnetic states are determined by a large and frustrated set of
antiferromagnetic interactions.
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