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a b s t r a c t

The novel R3CoGe2 compounds adopt the La3NiGe2-type structure (space group Pnma) with the following
cell parameters: a ¼ 1.1706(1), b ¼ 0.42267(5), c ¼ 1.1242(1) nm for Sm3CoGe2; a ¼ 1.15845(5),
b ¼ 0.41905(2), c ¼ 1.12088(5) nm for Gd3CoGe2; a ¼ 1.14942(4), b ¼ 0.41705(2), c ¼ 1.11030(4) nm for
Tb3CoGe2 and a ¼ 1.1431(2), b ¼ 0.41500(5), c ¼ 1.1040(2) nm for Dy3CoGe2. The R3CoGe2 compounds
undergo a ferrimagnetic type ordering (TCN ¼ 150 K for Gd3CoGe2). Neutron diffraction studies show that
Pr3CoGe2 and Nd3CoGe2 have a commensurate ferromagnetic component along the a axis and
a commensurate antiferromagnetic component along the c axis (Pn’ma magnetic space group):
(MPr

F )a ¼ 2.59(9) mB, (MPr
AF)c ¼ 1.58(4) mB, rMPrr ¼ 3.03(9) mB for Pr3CoGe2 and (MNd

F )a ¼ 2.6(1) mB,
(MNd

AF )c ¼ 1.65(6) mB, rMNdr ¼ 3.1(1) mB for Nd3CoGe2 at 2 K.
Magnetocaloric effect of Gd3CoGe2 in terms of the isotherm entropy change, DSiso, was derived

from the magnetization measurement, and it reaches the maximum value of DSiso ¼ �4.9 J/kg�K in the
139e144 K temperature range.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The R3NiGe2 and R3NiSi2 compounds with R ¼ LaeSm, GdeEr
adopt the La3NiGe2 (Gd3NiSi2)-type structure (space group Pnma)
[1,2,3]. Recently, three novel Co-containing Ce3CoGe2, Pr3CoGe2 and
Nd3CoGe2 compounds with the same structure have been obtained
[4]. The La3NiGe2 structure is amember of the family of the two-layer
orthorhombic structureswith the Pnma symmetryand a set of special
4(c) sites (x,1/4, z) derived from the hexagonalMg structure. TheMg-
type rare-earth unit cell in the La3NiGe2 structure can be represented
as follows: the rare-earth atoms occupy three special positions 4(c)
(1/3, 1/4, 0), 4(c) (�1/6, 1/4, �1/6) and 4(c) (1/3, 1/4, 1/3), and the
cell parameters are aLa3NiGe2 ¼ aMg$ð3Þ1=2, bLa3NiGe2 ¼ cMg, and
cLa3NiGe2 ¼ 3$aMg, space group Pnma (No 62). Insertion of the
transition metal and p-element atoms into the Mg-type rare-earth
structure leads to an orthorhombic distortion of this structure and
formation of the La3NiGe2 structure. Such transformation from the
.V. Morozkin).
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rare-earth structure to that of La3NiGe2 results in the change of
their magnetic properties: the Ce, Pr and Nd substructures in
R3CoGe2 exhibit ferromagnetic orderings (in addition to lower-
temperature antiferromagnetic ones for the Ce and Nd compounds)
[4,5] while only antiferromagnetic transitions are present in
elemental Ce, Pr, Nd [6], and the magnetic ordering temperatures
of the Gd3NiSi2 and Gd3NiGe2 [7,8] are lower than that of pure Gd
[9] (Table 1).

In the present work, neutron diffraction studies and magnetic
measurements on R3CoGe2 have been carried out to establish the
nature of magnetic interactions in this class of intermetallics.
2. Experimental

The R3CoGe2 samples were prepared by arc-melting weighed
amounts of rare earths (99.9% wt. purity), Co (99.99% wt. purity)
and Ge (99.99% wt. purity). The arc-melted Pr3CoGe2 and Nd3CoGe2
samples were wrapped in a Ta foil, sealed in a silica tube under
vacuum and annealed at 1000 �C for 1 month. The {Sm, GdeDy}3-
CoGe2 samples were annealed at 800 �C for 200 h in an argon
atmosphere and quenched in ice-cold water.
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Table 1
Crystallographic and magnetic properties of La3NiGe2-type compounds.

a, nm b, nm c, nm RF, % QP, K Meff/R, mB TCN, K eDSm,
J/kg�K

DTad, K Magnetic structure Refs.

Ce3CoGe2 1,1951 0,4302 1,1477 �59 2,62 TC ¼ 6 K
TN ¼ 3.4 K

[4]

Pr3CoGe2 1,1942 0,4293 1,1418 18 3,63 TCN ¼ 28 K (FaeAFc)K0, K0 ¼ [0, 0, 0],
(MPr

F )a ¼ 2.59(9) mB, (MPr
AF)c ¼ 1.58(4)

mB, rMPrr ¼ 3.03(9) mB at 2 K

[4] This work

Nd3CoGe2 1,1856 0.427 1136 21 3,87 TCN ¼ 35,5 K (FaeAFc)K0, K0 ¼ [0, 0, 0],
(MNd

F )a ¼ 2.6(1) mB, (MNd
AF )c ¼ 1.65(6) mB,

rMNdr ¼ 3.1(1) mB at 2 K

[4] This work

Sm3CoGe2 1.1706(1) 0.42267(5) 1.1242(1) 3.9 This work
Gd3CoGe2a- 1,15845(5) 0,41905(2) 1,12088(5) 2.4 TCN ¼ 150 K �4.9(5T) This work
Tb3CoGe2a- 1,14942(4) 0,41705(2) 1,11030(4) 3.8 TCN ¼ 110 K This work
Dy3CoGe2 1.1431(2) 0.41500(5) 1.1040(2) 2.1 This work
Ce3NiGe2 1,1924 0,4311 1,1624 TN ¼ 6.2

TC ¼ 5.2 K
[1, 5]

Gd3NiGe2 1,1473 0,41963 1,1328 TC ¼ 193 K �13(7.5 T) [1, 7]
Gd3NiSi2 1,1378 0,41494 1,1325 TC ¼ 215 K �6.3(4.6 T) 5 (4.6 T) [1, 3, 8]

a- The crystallographic data used with permission - � JCPDS - International Centre for Diffraction Data.

Table 2
Atomic positions in Pr3CoGe2 and Gd3CoGe2.a) Pr3CoGe2 at 35 K b) Gd3CoGe2 at
300 K.

Atom Site x/a y/b z/c x/a y/b z/c

R1 4c 0.376(2) 1/4 0.440(2) 0.3784(8) 1/4 0.4399(8)
R2 4c 0.064(2) 1/4 0.364(2) 0.0522(8) 1/4 0.3730(8)
R3 4c 0.220(2) 1/4 0.707(2) 0.2207(8) 1/4 0.6972(9)
Co 4c 0.150(5) 1/4 0.127(5) 0.136(2) 1/4 0.126(2)
Ge1 4c 0.473(1) 1/4 0.679(1) 0.481(1) 1/4 0.689(2)
Ge2 4c 0.307(1) 1/4 0.010(2) 0.304(1) 1/4 �0.002(2)
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The quality of the samples was evaluated using X-ray diffraction
and electron microprobe analysis. The X-ray data were obtained on
a DRON-3.0 diffractometer (Cu Ka radiation, 2Q ¼ 5e120 deg, step
0.02 deg, 10 s per step) and on a Guinier camera with silicon as
standard (a ¼ 5.4308 Å and CuKa1 radiation). The unit cell data
were derived using the Rietan-program [10] in the isotropic
approximation (Tables 1 and 2). A «Camebax» microanalyser was
employed to perform microprobe X-ray spectral analysis of the
samples. The quantitative microprobe analysis of the samples gave
50 � 1.2 at % of rare earth, 16 � 1% at. of cobalt and 33 � 1 at % of
germanium.

The neutron powder diffraction studies of Pr3CoGe2 and
Nd3CoGe2 were carried out from 35 to 40 K down to 2 K in a zero
Table 3
Interatomic distances, D� 5 � 10�4 nm, in the Gd3CoGe2, their ratio to sum of the me
numbers d.

Atom -Atom D, nm D d Atom -Atom D, n

Gd1- 2Co 0.2961 0,97 Gd2- 1Co 0.2
1Ge1 0.3022 1.00 2Ge1 0.2
1Ge1 0.3035 1,00 2Ge2 0.3
2Ge2 0.3046 1,01 1Ge2 0.3
1Co 0.3074 1,01 2Gd2 0.3
1Gd3 0.3414 0,95 1Gd1 0.3
2Gd3 0.3621 1,01 2Gd3 0.3
2Gd1 0.3761 1,05 2Gd3 0.3
1Gd2 0.3853 1,07 1Gd3 0.4
1Gd2 0.4044 1,12 14 1Gd1 0.4

Coe 1Ge2 0.2418 0,98 Ge1 - 2Co 0.2
2Ge1 0.2593 1,05 1Gd2 0.2
2Gd3 0.2790 0,92 1Gd3 0.3
1Gd2 0.2934 0,96 2Gd1 0.3
1Gd1 0.2961 0,97 1Gd1 0.3
1Gd1 0.3074 1,01 8 1Gd3 0.3
magnetic field at the Institute Laue-Langevin, Grenoble, France,
using the high resolutionpowder diffractometerD1B [11], operating
at a wavelength l ¼ 0.2525 nm (2q ¼ 4.6e87 deg). The diffraction
patterns were refined with the FULLPROF 98-program [12].

The dc magnetisation was measured on a commercial SQUID
magnetometer (Quantum Design) in the temperature range of
5e300 K in the applied field up to 5 T.
3. Results and discussion

3.1. Crystal structure

The X-ray diffraction patterns of present R3CoGe2 showed that
they adopt the La3NiGe2 (Gd3NiSi2)-type structure [3]. The refined
unit cell data of R3CoGe2 are given in Table 1. The refined atomic
positions of R3CoGe2 are close to those of Pr3CoGe2 and Gd3CoGe2
(Table 2). Interatomic distances in R3CoGe2 are summarized in
Table 3 and they close to the sum of metallic radii [13].

The La3NiGe2-type R3CoGe2 structure (sp. group Pnma) consists
of the rare-earth, cobalt and germanium substructures with the
mmm (D2h) point group containing the following symmetry
operators: {1, 2x, 2Y, 2Z, 1,mx,mY,mZ} [14]. The D2h point group has
seven invariant subgroup of index 2:N1¼ {1, 2x, 2Y, 2Z},N2¼ {1,mx,
mY, 2Z},N3 ¼ {1,mY,mZ, 2x}, N4 ¼ {1,mx,mZ, 2Y}, N5 ¼ {1,mx, 2x, 1},
tallic radii of the corresponding atoms D ¼ D/(Ratom1 þ Ratom2) and coordination

m D d Atom -Atom D, nm D d

934 0,96 Gd3- 2Co 0.2790 0,92
965 0,98 1Ge1 0.3017 1.00
021 1.00 1Ge1 0.3056 1,01
218 1,06 2Ge2 0.3075 1,02
736 1,04 1Gd1 0.3414 0,95
853 1,07 2Gd1 0.3621 1,01
873 1,08 1Ge2 0.3507 1,16
898 1,08 2Gd2 0.3873 1,08
125 1,15 2Gd2 0.3898 1,08
044 1,12 15 1Gd2 0.4125 1,15 15

593 1,05 Ge2 - 1Co 0.2418 0,98
965 0,98 2Gd2 0.3021 1.00
017 1.00 2Gd1 0.3046 1,01
022 1.00 2Gd3 0.3075 1,02
035 1,00 1Gd2 0.3218 1,06
056 1,01 8 1Gd3 0.3507 1,16 9
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Fig. 1. (a) Magnetization vs. temperature and (b) vs. magnetic field around the magnetic transition for Gd3CoGe2.

Table 4
Atomic positions of the Rj atoms (j ¼ 1, 2, 3) in the La3NiGe2-type R3CoGe2 unit cell (space group Pnma) with the corresponding symmetry operators.

Atom X/a Y/b Z/c Symmetry operation

Rj1 XRj 1/4 ZRj Rj1 ¼ (1/0)Rj1 ¼ (mY/[0 1/2 0])Rj1

Rj2 1/2 - XRj 3/4 1/2 þ ZRj Rj2 ¼ (2Z/[1/2 0 1/2])Rj1 ¼ (mx/[1/2 1/2 1/2])Rj1

Rj3 1/2 þ XRj 1/4 1/2 e ZRj Rj3 ¼ (mZ/[1/2 0 1/2])Rj1 ¼ (2x/[1/2 1/2 1/2])Rj1

Rj4 eXRj 3/4 eZRj Rj4 ¼ (1/0)Rj1 ¼ (2Y/[0 1/2 0])Rj1
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N6 ¼ {1, mY, 2Y, 1}, N7 ¼ {1, mZ, 2Z, 1}: {D2h} ¼ {N1, mZ�N1} ¼ {N2,
mZ�N2} ¼ {N3, mx�N3} ¼ {N4, mY�N4} ¼ {N5, mY�N5} ¼ {N6,
mx�N6} ¼ {N7, mx�N7}. The Pnma space group contains the
following symmetry operations with fractional translations: n ¼
(mx/[1/2 1/2 1/2]), m ¼ (mY/[0 1/2 0]), a ¼ (mZ/[1/2 0 1/2]), 2x* ¼
(2x/[1/2 1/2 1/2]), 2Y* ¼ (2Y/[0 1/2 0]) and 2Z* ¼ (2Z/[1/2 0 1/2])
(Table 4).
3.2. Magnetization

According to the magnetization measurements, Gd3CoGe2
undergoes a ferromagnetic-type transition at 150 K (Fig. 1a) and
Tb3CoGe2 at 110 K [15]. The saturation magnetisation values at 5 T
(M ¼ 9.7 mB/FU and M w 3.2 mB/Gd at 130 K) are indicative of the
presence of an antiferromagnetic component in the magnetic
structure of Gd3CoGe2 and, potentially, of other R3CoGe2
compounds. The magnetic transition temperatures in Ce3CoGe2,
Pr3CoGe2 and Nd3CoGe2 do not follows the de Gennes rule (Fig. 2).
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Fig. 2. Magnetic ordering temperatures of R3CoGe2 vs. de Gennes factor. The tentative
magnetic ordering temperatures of Tb3CoGe2 and Dy3CoGe2 are derived from the de
Gennes rule.
3.3. Magnetocaloric effect

Themagnetocaloric effect,MCE, forGd3CoGe2was evaluated from
themagnetization vs. field (M vs.H) datameasured around the Curie
temperature with 5 K increments. The magnetic field changed from
0 to 5 T in 0.2 T steps.MCE in terms of the isothermal entropy change,
DS, can be calculated from the magnetization data through the
Maxwell equation [16]: ðvSðT ;HÞvH ÞT ¼ ðvMðT ;HÞ

vT ÞH . Integration of the
partial derivative ofmagnetization,M, with respect to temperature, T,
over a change in themagneticfield,H, yields the following expression
for DS: DSðTÞDH ¼ RH2

H1
ðvMðT ;HÞ

vT ÞH;PdH. In practice a numerical inte-
gration is performed: DSðTÞDH ¼ P

i

Miþ1�Mi
Tiþ1�Ti

DH, where DH is
a change in magnetic field and Mi and Miþ1 are the values of
magnetization at temperatures Ti and Tiþ1, respectively.

The magnetocaloric effect for Gd3CoGe2 in terms of the
isothermal entropy change, -DS, (Fig. 3) reaches the maximum
value of 4.9 J/kg,K in the 139e144 K temperature region (Fig. 3).
The maximum |DS| value is lower than those observed for iso-
structural Gd3NiGe2 and Gd3NiSi2 [7,8] (Table 1).
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3.4. Magnetic structure

Figs. 4 and 5 show the neutron diffraction patterns of Pr3CoGe2
and Nd3CoGe2 recorded at different temperatures in zero magnetic
field. Both compounds show commensurate magnetic ordering
below TCNw 28 K (Pr3CoGe2) and TCN w 35 K (Nd3CoGe2).
Symmetry of the R1, R2 and R3 substructures in the R3CoGe2
is identical to the symmetry of {R1i, R2i, R3i}j ¼ 1, 2, 3, 4 clusters
(Fig. 6a). The cobalt substructure consists of isolated atoms (the
shortest CoeCo distance, DCo�Co, is the b parameter and
D ¼ DCo�Co/(2RCo) ¼ 1.67) and no magnetic ordering with the
cobalt substructure is expected. Refinement of the neutron



Table 5
Crystallographic and magnetic parameters of the Pr3CoGe2 and Nd3CoGe2 phases: Lattice parameters a, b, c at different temperatures, antiferromagnetic (MZ

AF) and ferro-
magnetic (Mx

F) components of the magnetic moment M for the Pr and Nd atoms. Reliability factors RF (crystal structure) and RF
m (magnetic structure) are given in percents (%).

State T, K Cell parameters RF, % Atom Mc
AF, mB Ma

F, mB |M|, mB RF
m, %

a) Pr3CoGe2
Para 300a- a ¼ 1.1942(3) nm

b ¼ 0.4293(2) nm
c ¼ 1.1418(4) nm

35 a ¼ 1.1909(4) nm 7.6
b ¼ 0.4292(1) nm
c ¼ 1.1343(4) nm

F-AF 2 a ¼ 1.1896(4) nm 3.9 Pr11,14,22,23,32,33 �1.58(4) 2.59(9) 3.03(9) 5.7
b ¼ 0.4283(1) nm Pr12,13,21,24,31,34 1.58(4) 2.59(9) 3.03(9)
c ¼ 1.1317(4) nm

b) Nd3CoGe2
Para 300a- a ¼ 1.1856(4) nm

b ¼ 0.4270(1) nm
c ¼ 1.1360(5) nm

40 a ¼ 1.1823(5) nm 7.6
b ¼ 0.4261(2) nm
c ¼ 1.1321(5) nm

F-AF 2 a ¼ 1.1819(4) nm 3.9 Nd11,14,22,23,32,33 �1.65(6) 2.6(1) 3.1(1) 7.7
b ¼ 0.4254(1) nm Nd12,13,21,24,31,34 1.65(6) 2.6(1) 3.1(1)
c ¼ 1.1320(3) nm

a- X-ray data.
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diffraction patterns showed that both Pr3CoGe2 and Nd3CoGe2
have a ferromagnetic component along the a axis and an anti-
ferromagnetic component along the c axis (Fig. 6a and b). Both
components have the same magnetic point group. The unprimed
point group coincides with the N3 invariant subgroup of index 2
whereas the primed subgroup is mx�N3 (see the Crystal struc-
ture section above): m’mm ¼ {N3 þ mx�N3�1’} ¼ {1, mY, mZ,
2x} þ {1, mx, 2Y, 2Z}� 1’. So, Pr3CoGe2 and Nd3CoGe2 demon-
strate the commensurate ferrimagnetic type ac ordering with the
magnetic point group m’mm and the magnetic space group
Pn’ma (Fig. 6c). Details on the magnetic structures are given in
Table 5.

The refined magnetic moment are 3.03(9) mB/Pr3þ and 3.19
(1) mB/Nd3þ at 2 K, and they are close to the theoretical magnetic
moments of the Pr3þ and Nd3þ ions: MPr ¼ gJ ¼ 3.20 mB (Pr) and
MNd ¼ gJ ¼ 3.27 mB (Nd) [9].
4. Conclusions

The ferrimagnetic nature of novel La3NiGe2-type R3CoGe2 is
evident both from the magnetic and neutron diffraction studies.
Pr3CoGe2 and Nd3CoGe2 exhibit a commensurate ferrimagnetic
ordering in the ac plane (Pn’ma magnetic space group). According
to the de Gennes rule, the magnetic structures of {Gd, Tb,
Dy}3CoGe2 should differ from those of {Pr,Nd}3CoGe2. The mag-
netocaloric effect of Gd3CoGe2 is smaller than that of isostructural
Gd3NiGe2 and Gd3NiSi2.
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