

Neutron diffraction studies of CaMn_2Ge_2 and BaMn_2Ge_2 compounds: first examples of antiferromagnetic Mn planes in ThCr_2Si_2 -type structure compounds

B. Malaman^{a,*}, G. Venturini^a, R. Welter^a and E. Ressouche^b

^aLaboratoire de Chimie du Solide Minéral, Université de Nancy I, associé au CNRS, UA 158, B.P. 239, 54506 Vandoeuvre les Nancy Cedex (France)

^bCEA/Département de Recherche Fondamentale sur la Matière Condensée/SPSMS-MDN, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

(Received January 4, 1994)

Abstract

The magnetic properties of ThCr_2Si_2 -type structure CaMn_2Ge_2 and BaMn_2Ge_2 compounds have been investigated by neutron diffraction experiments. In the whole temperature range studied (2–270 K), both compounds are purely collinear antiferromagnets (not detected by bulk magnetometric measurements) characterized by a stacking of antiferromagnetic (001) Mn planes. This peculiar Mn-sublattice magnetic behaviour seems to be related to the valency of the large metal. At 2 K, the total Mn moments are about $2.7 \mu_B$ and $3.6 \mu_B$ for CaMn_2Ge_2 and BaMn_2Ge_2 , respectively. The results are compared with those of closely related RMnSi and RMnGe compounds and the isotopic alkali-metal manganese pnictides. The magnetic properties of the ThCr_2Si_2 -type structure RMn_2X_2 ($\text{X} \equiv \text{Si, Ge}$) compounds are discussed.

1. Introduction

CaMn_2Ge_2 and BaMn_2Ge_2 crystallize in the tetragonal ThCr_2Si_2 -type structure ($I4/mmm$) [1]. In spite of the very exciting magnetic behaviour of the Mn sublattice in this class of pseudo-lamellar materials (for a long review, see ref. 2), their magnetic properties have never been studied.

Recently, neutron diffraction studies on rare-earth manganese silicides and germanides $\text{RMnSi}(\text{Ge})$ ($\text{R} \equiv \text{La-Nd}$) have shown that most of these CeFeSi -type structure compounds are antiferromagnetic and characterized by antiferromagnetic (AF) Mn (001) planes [3, 4]. This result was rather surprising since the closely related ThCr_2Si_2 and TbFeSi_2 -type structure compounds, *i.e.* $\text{RMn}_2\text{Si}(\text{Ge})_2$ (for a review see ref. 2) and RMnSi_2 [5], were characterized by ferromagnetic (F) Mn planes. Furthermore, in these $\text{RMnSi}(\text{Ge})$ series, the ferri- or ferro-magnetic behaviour of GdMnSi [6] and YMnSi [7] has led us to point out that the Mn–Mn intralayer distance ($d_{\text{Mn–Mn}}^a$) would control the appearance of AF or F states in the (001) Mn planes. According to the antiferromagnetic behaviour of SmMnSi ($d_{\text{Mn–Mn}}^a = 2.86 \text{ \AA}$) and the ferrimagnetic be-

haviour of GdMnSi ($d_{\text{Mn–Mn}}^a = 2.84 \text{ \AA}$), the critical distance in the CeFeSi -type structure compounds seems to be about 2.85 \AA . It is noteworthy that this criterion is fulfilled for all the isotopic alkali-metal manganese pnictides [8, 9].

Until now, all the magnetic structures of ThCr_2Si_2 -type structure manganese silicides and germanides compounds have been said to be characterized by ferromagnetic (001) Mn planes, whatever the intralayer Mn–Mn spacing, *i.e.* ($d_{\text{Mn–Mn}}^a$)_{max.} = 2.97 \AA in LaMn_2Ge_2 [2]. In order to check whether a similar criterion would apply in this family (but with a greater value), we decided as a first step to study the magnetic properties of BaMn_2Ge_2 , *i.e.* the largest unit cell of the family: $d_{\text{Mn–Mn}}^a = 3.15 \text{ \AA}$. Since antiferromagnetic (001) Mn–Mn layers were detected in this compound, we decided to complete this work by studying CaMn_2Ge_2 ($d_{\text{Mn–Mn}}^a = 2.93 \text{ \AA}$; *i.e.* smaller than in the ferromagnetic lanthanum compound) in order to determine whether the Mn–Mn intralayer spacing or the valency of the alkaline-earth element is responsible for this unusual behaviour.

In this paper, we report on a study of the magnetic structures of BaMn_2Ge_2 and CaMn_2Ge_2 compounds by neutron diffraction experiments.

*Author to whom correspondence should be addressed.

2. Experimental procedures

The compounds were prepared from commercially available high-purity elements. Pellets of stoichiometric mixture were compacted into a glove box, using a steel die, and then introduced into silica tubes sealed under argon (100 mmHg). The samples were first heated at 1073 K for preliminary homogenization treatment and then melted in an induction furnace. Purity of the final product was checked by powder X-ray diffraction (Guinier Cu $\text{K}\alpha$).

The magnetic measurements were carried out on a Faraday balance (between 300 and 800 K) and on a MANICS magneto-susceptometer (between 4.2 and 300 K), in fields up to 1.5 T.

Neutron diffraction experiments were carried out at the Siloe Reactor of the Centre d'Etude Nucléaire de Grenoble. Several patterns were collected in the temperature range 2–270 K with the one-dimension curved multidetector DN5 ($\lambda = 2.4895 \text{ \AA}$). Long-duration patterns were recorded at 2 K. In order to correct for texture effects, following a procedure described in ref. 10, we used during the refinements a fitted coefficient (r_{cor}) which reflects the importance of preferential ori-

entation. The values of r_{cor} obtained (see below) strongly support the validity of this correction.

Using the scattering lengths $b_{\text{Ge}} = 8.185 \text{ fm}$, $b_{\text{Mn}} = -3.73 \text{ fm}$, $b_{\text{Ba}} = 5.07 \text{ fm}$ and $b_{\text{Ca}} = 4.70 \text{ fm}$ and the form factor of Mn from ref. 11, the scaling factor, the z_{Ge} atomic positions, r_{cor} and the Mn magnetic moments were refined by the MiXeD crystallographic executive for diffraction (MXD) least-squares fitting procedure [12]. The MXD program allows simultaneous fitting of the calculated nuclear and magnetic intensities to the observed ones.

In the ThCr_2Si_2 -type structure (space group: $I4/mmm$), the rare-earth and germanium atoms occupy the 2(a) (0, 0, 0) and 4(e) (0, 0, z) with $z \approx 0.38$ sites, respectively. The manganese atoms occupy the special position 4(d) (0, 1/2, 1/4) with an additional C translation mode. Thus, it is important to stress that the magnetic contributions to the observed intensities, due to a ferromagnetic ordering of the Mn sublattice, affect only the nuclear lines obeying the limiting reflection condition: (hkl) with $h+k=2n$. On the other hand, in each case, attempts made to fit the nuclear lines by interchanging the position of the Mn and Ge atoms always led to a poorer agreement and gave no evidence for

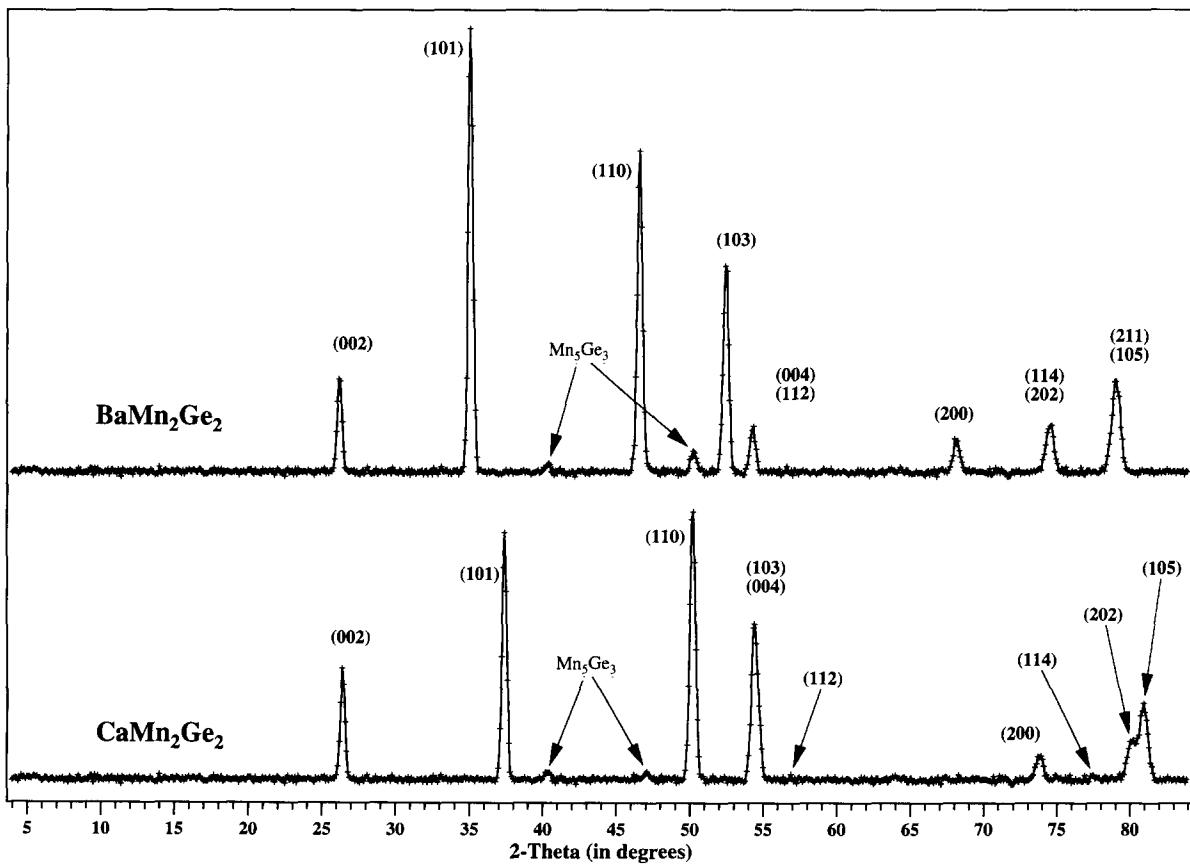


Fig. 1. Neutron diffraction patterns of CaMn_2Ge_2 and BaMn_2Ge_2 at 2 K.

any mixing between Mn and Ge atoms in 4d and 4e sites.

3. Magnetic measurement

As observed in the previously studied AMnX pnictides [8, 9], the present compounds do not exhibit any magnetic transition in the whole temperature range studied (4.2–800 K). Nevertheless, it is noteworthy that very small anomalies are detected at 465 K and 546 K for the barium and calcium compounds, respectively. The occurrence of small amounts of ferromagnetic Mn_5Ge_3 impurity prevents an accurate study of the paramagnetic state.

4. Neutron diffraction study

The neutron diffraction patterns of both compounds (Fig. 1) are similar over the whole temperature range studied (2–270 K).

They are characterized by an increase of only those nuclear lines which obey the rule (hkl) with $h+k=2n+1$. This is particularly obvious for the (101) line, for which the observed intensity is much greater than the purely nuclear calculated intensity. This result indicates an anti-C ordering, giving evidence of an antiferromagnetic arrangement of the Mn moments within the (001) planes. The best refinements lead to moments aligned along the *c*-axis and give Mn moment values of 2.67(5) μ_{B} and 3.66(3) μ_{B} for CaMn_2Ge_2 and BaMn_2Ge_2 , respectively (Tables 1 and 2). The magnetic structure is drawn in Fig. 2. It consists of a stacking of antiferromagnetic (001) Mn layers, the manganese moments being antiferromagnetically coupled with their direct neighbours situated in each adjacent plane along the *c*-axis, in agreement with the remaining *I* translation mode (Tables 1 and 2). It is noteworthy that this magnetic behaviour is not detected in the bulk susceptibility measurements. Therefore, a neutron diffraction study, above room temperature, would be necessary to determine the corresponding Néel temperatures.

Tables 1 and 2 give, in each case, the observed and calculated intensities together with the lattice constants and the various adjustable parameters at 270 and 2 K.

5. Discussion

The occurrence of antiferromagnetic Mn layers in CaMn_2Ge_2 and BaMn_2Ge_2 compounds indicates that this peculiar Mn-sublattice magnetic ordering previously encountered in the RMnSi [3] series and in the AMnX

TABLE 1. Calculated and observed intensities, lattice constants and adjustable parameters in BaMn_2Ge_2 at 270 and 2 K

<i>h k l</i>	2 K		270 K	
	I_c	I_o	I_c	I_o
0 0 2	19.7	20(1)	19.5	20(1)
1 0 1	143.9	144(2)	146.0	146(2)
1 1 0	200.0	201(4)	210.8	212(4)
1 0 3	157.0	156(3)	159.9	160(4)
0 0 4				
1 1 2	40.4	41(2)	40.5	37(3)
2 0 0	46.2	48(6)	48.7	45(6)
1 1 4				
2 0 2	88.5	78(8)	91.7	87(8)
2 1 1				
1 0 5	311.9	290(3)	321.8	299(12)
<i>a</i> (Å)	4.444(6)		4.473(5)	
<i>c</i> (Å)	10.91(1)		10.98(1)	
z_{Ge}	0.3782(7)		0.3778(8)	
r_{cor}	1.014(6)		1.026(7)	
μ_{Mn}	3.66(3)		3.60(4)	
<i>R</i> (%)	5.7		5.8	

TABLE 2. Calculated and observed intensities, lattice constants and adjustable parameters in CaMn_2Ge_2 at 270 and 2 K

<i>h k l</i>	2 K		270 K	
	I_c	I_o	I_c	I_o
0 0 2	131	134(2)	129	131(1)
1 0 1	648	649(4)	597	598(4)
1 1 0	1447	1466(9)	1378	1389(7)
1 0 3				
0 0 4	1071	1051(12)	1189	1117(17)
1 1 2	5		12	
2 0 0	326	285(11)	311	273(15)
1 1 4	47	60(8)	54	56(9)
2 0 2	635	560(14)	553	488(19)
1 0 5	1039	1048(19)	989	907(23)
<i>a</i> (Å)	4.146(2)		4.153(2)	
<i>c</i> (Å)	10.827(5)		10.864(4)	
z_{Ge}	0.382(1)		0.379(2)	
r_{cor}	1.05(1)		1.02(1)	
μ_{Mn}	2.67(5)		2.60(5)	
<i>R</i> (%)	4.0		6.2	

alkali-metal manganese pnictides [8, 9] is not a particular feature of the CeFeSi type of structure.

In the ThCr_2Si_2 -type manganese compounds, the rare-earth compounds are always characterized by ferromagnetic Mn planes [2] whereas with alkaline-earth compounds (this work), antiferromagnetic planes occur. According to the closer Mn–Mn spacing in CaMn_2Ge_2 than in LaMn_2Ge_2 , which was claimed to be purely ferromagnetic [2, 13–17], we have to conclude that, within the ThCr_2Si_2 -type compounds, the sign of the in-plane Mn–Mn exchange integral seems to be related

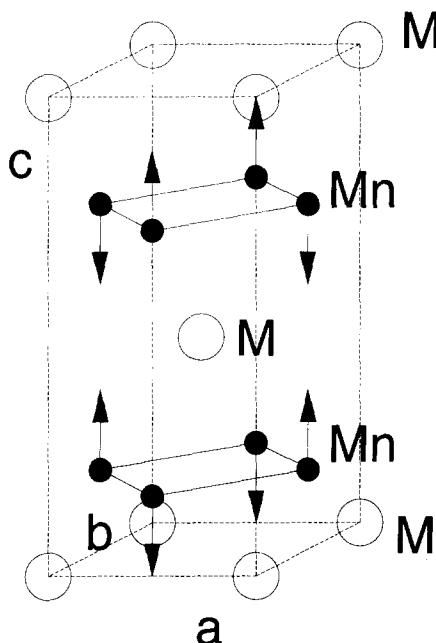


Fig. 2. Magnetic structure of MMn_2Ge_2 at 2 K ($\text{M} \equiv \text{Ca, Ba}$).

to the valency of the large metal (alkaline-earth metal, rare-earth metal or actinide). Under these conditions, it is noteworthy that in EuMn_2Ge_2 the europium is in the +2 valency state according to ^{151}Eu Mössbauer spectroscopy [18], and only small magnetization (2 emu g^{-1}) was observed by Felner and Nowik [18]. This fact is then consistent with a possible occurrence of antiferromagnetic (001) Mn layers in this +2 compound.

The second result concerns the values of the Mn moments in CaMn_2Ge_2 ($2.67(5) \mu_\text{B}$) and BaMn_2Ge_2 ($3.66(3) \mu_\text{B}$). These values are significantly higher than normally observed in the ThCr_2Si_2 -type compounds ($1.5 \mu_\text{B}$ in $\text{LaMn}_2\text{Si}(\text{Ge})_2$ to $2.1 \mu_\text{B}$ in NdMn_2Si_2). Similar effects are observed in the equiatomic RMnX ($\text{R}=\text{alkaline and rare earths, X=elements of groups 15 and 16}$) [3, 4, 8, 9]. This behaviour has been discussed at length in refs. 3 and 9. It was shown that the values of the moments have to be correlated with the Mn-X distances and with the nature of this bond. It is noteworthy that the same explanation [3] holds in both CaMn_2Ge_2 and BaMn_2Ge_2 .

6. Conclusion

The determination of the magnetic properties of CaMn_2Ge_2 and BaMn_2Ge_2 provides new information on the magnetic interactions in rare-earth manganese silicides and germanides and enables comparisons to be made with the closely related CeFeSi -type RMnX

compounds. Both compounds are purely antiferromagnet down to 2 K. They are characterized by strongly coupled antiferromagnetic (001) Mn layers since no magnetic transitions are detected by magnetometric measurement. Comparison with the previously published magnetic properties of the isotopic rare-earth manganese germanides and silicides indicates that valency effects influence the Mn-Mn exchange.

However, in view of the unusual reduced Mn moments ($1.5 \mu_\text{B}$), deduced from magnetization measurements in the ferromagnetic RMn_2Ge_2 and LaMn_2Si_2 compounds, it clearly appeared necessary to check the magnetic structures of these compounds by neutron diffraction experiments. Such a study has been done and the surprising conclusions will be reported elsewhere [19].

References

- 1 W. Dörrscheidt, N. Niess and H. Schäfer, *Z. Naturforsch.*, **31B** (1976) 890.
- 2 A. Szytula and J. Leciejewicz, Magnetic properties of ternary intermetallic compounds of the RT_2X_2 type, in K.A. Gschneidner Jr. and L. Eyring (eds.), *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 12, Chapter 83, Elsevier Science Publishers, 1989, p. 133.
- 3 R. Welter, G. Venturini, E. Ressouche and B. Malaman, *J. Alloys Comp.*, **206** (1994) 55.
- 4 R. Welter, G. Venturini, E. Ressouche and B. Malaman, to be published.
- 5 B. Malaman, G. Venturini, L. Pontonnier and D. Fruchart, *J. Magn. Magn. Mater.*, **86** (1990) 349.
- 6 S.A. Nikitin, T.I. Ivanova, O.V. Nekrasova, R.S. Torchinova, Yu.F. Popov, O.N. Koryasova and Ye.A. Klyuchnikova, *Fiz. Metal. Metaloved.*, **64**(6) (1987) 1071.
- 7 H. Kido, T. Hoshikawa, M. Tagami, M. Shimada and M. Koizumi, *J. Ceram. Assoc. Jpn.*, **94**(1) (1986) 232.
- 8 W. Bronger, P. Muller, R. Hoppner and H.U. Schuster, *Z. Anorg. Allg. Chem.*, **539** (1986) 175.
- 9 R. Muller, M. Kuckel, H.U. Schuster, P. Muller and W. Bronger, *J. Alloys Comp.*, **176** (1991) 167.
- 10 R. Welter, G. Venturini and B. Malaman, *J. Alloys Comp.*, **189** (1992) 49.
- 11 C.G. Shull and Y. Yamada, *J. Phys. Soc. Jpn.*, **22** (1962) 1210.
- 12 P. Wolfers, *J. Appl. Crystallogr.*, **23** (1990) 554.
- 13 K.S.V.L. Narasimhan, V.U.S. Rao, R.L. Bergner and W.E. Wallace, *J. Appl. Phys.*, **46** (1975) 4957.
- 14 K.S.V.L. Narasimhan, V.U.S. Rao, W.E. Wallace and I. Pop, *AIP Conf. Proc.*, **29** (1975) 594.
- 15 A. Szytula and I. Szott, *Solid State Comm.*, **40** (1981) 199.
- 16 T. Shigeoka, N. Iwata, H. Fujii and T. Okamoto, *J. Magn. Magn. Mater.*, **53** (1985) 83.
- 17 S. Ishida, S. Asano and J. Ishida, *J. Phys. Soc. Japan*, **55**(3) (1986) 936.
- 18 I. Felner and I. Nowik, *J. Phys. Chem. Solids*, **39** (1978) 763.
- 19 G. Venturini, R. Welter, E. Ressouche and B. Malaman, *J. Alloys Comp.*, **210** (1994) 213.