

Magnetic structures in $R\text{Ni}_4\text{B}$ ($R=\text{Nd, Tb, Ho, Er}$)

E. Alleno ^{a,*}, C. Mazumdar ^b

^a ICMPE, UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320 Thiais, France

^b Saha Institute of Nuclear Physics, Sector-1, Block-AF, 700064 Kolkata, India

ARTICLE INFO

Article history:

Received 12 December 2012

Received in revised form

22 February 2013

Accepted 1 March 2013

Available online 13 March 2013

Keywords:

Rare earth intermetallics

Ferromagnetism

Neutron scattering

Crystal electric field

ABSTRACT

Neutron diffraction has been performed on $R\text{Ni}_4\text{B}$ ($R=\text{Nd, Tb, Ho, Er}$) polycrystals. The orthorhombic structure for NdNi_4B and the CeCo_4B structure type (hexagonal) for TbNi_4B and HoNi_4B are confirmed. Our data also show that this last structure is currently the best approximant for ErNi_4B . The $R\text{Ni}_4\text{B}$ ($R=\text{Nd, Tb, Ho, Er}$) order ferromagnetically at respectively 11.0, 18.1, 6.2 and 10.0 K. The crystal electric field (CEF) interaction controls the magnetic anisotropy in this series leading to an easy axis ~30 deg above the basal plane in $R\text{Ni}_4\text{B}$ ($R=\text{Nd, Tb, Ho}$) and parallel to the c -axis in ErNi_4B at 1.6 K. The $R\text{Ni}_4\text{B}$ ($R=\text{Nd, Tb, Ho}$) display a spin re-orientation below T_c which arises from a competition between the second order term and the higher order terms of the CEF hamiltonian.

© 2013 Elsevier Inc. All rights reserved.

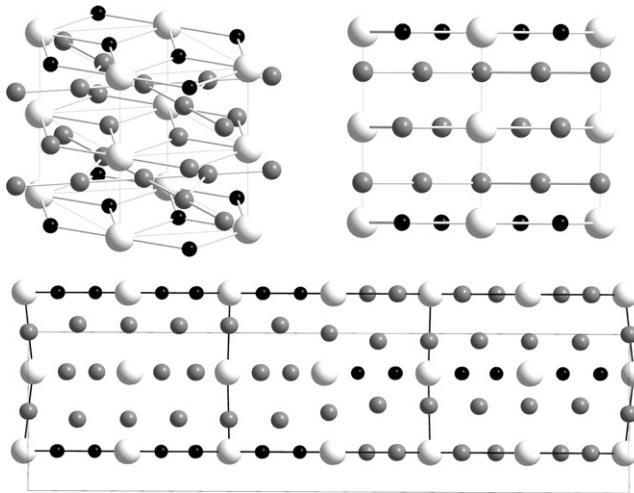
1. Introduction

The compounds forming in the CaCu_5 type of structure (space group $P6/mmm$) and their derivatives have been studied for a long time due to various interesting phenomena. Out of these compounds, the $R\text{Co}_5$ ($R=\text{rare earth}$) may get a special mention for their magnetic properties leading to SmCo_5 as an excellent material for high-coercivity magnet applications [1,2] and the $R\text{Ni}_5$ for their hydrogen absorption capabilities leading to Ni-MH battery applications [3,4]. In contrast to the $R\text{Co}_5$ compounds where Co atoms are a primary contributor to magnetism, the magnetic properties of the $R\text{Ni}_5$ compounds are quite different. Unlike Co in $R\text{Co}_5$, the Ni atoms (2c and 3g sites) in $R\text{Ni}_5$ are non-magnetic [5–9,10,11] either because the Ni d-band is almost filled or because the exchange is too weak to polarize sufficiently the d-band. As a result, the source of magnetism in the $R\text{Ni}_5$ compounds is the rare-earth (1a site) and the R-R indirect exchange interaction (RKKY). Only this results in ferromagnetic ordering at quite low temperatures (33 K in GdNi_5) [12]. The interaction between the rare-earth 4f electrons and the crystal electric field (CEF) controls the magnetic anisotropy of these compounds. In $R\text{Ni}_5$ ($R=\text{Nd, Ho}$), the a axis is the easy magnetization axis [6,8,10,11,13,14] while in $R\text{Ni}_5$ ($R=\text{Sm, Er, Tm}$) the easy axis is the c axis [5,7,9]. This is in agreement with the sign of the Stevens coefficient of the rare-earth (α_f) [15] when considering a negative sign for the second order CEF parameter V_2^0 across the whole series of compounds. TbNi_5 exhibits a more complex behavior with an incommensurate fan-like structure with two wave

vectors ($\mathbf{q}_1=(0, 0, 0)$ and $\mathbf{q}_2=(0, 0, 0.019)$) [16] for magnetic fields smaller than 400 Oe [17] and a fully ferromagnetic structure for $H > 400$ Oe [16].

In the $R\text{Co}_5$ and $R\text{Ni}_5$ compounds, the substitution of the transition metal by other 3d-elements (Mn, Fe, Cu) or light elements (B, Al, C, Si) leads to modified hydrogen absorption capabilities and/or modified magnetic properties. The $R\text{Ni}_4\text{B}$ compounds are such examples with on the one side, reduced hydrogen absorption capacity and thus no interest for this purpose [18] and on the other side, more complex magnetic behaviors. The $R\text{Ni}_4\text{B}$ with magnetic rare-earths display a ferromagnetic ground state with Curie temperatures in the same range (4–36 K) [19–27] as in the $R\text{Ni}_5$ series ($T_c=36$ K in GdNi_4B) except in SmNi_4B where T_c is anomalously large ($T_c=39$ K) [21,24,28]. This last compound also exhibits a large magnetic hysteresis due to the presence of mono-atomic like domain layers [28].

Given the experimental magnetization results [19–27] and the similarities between the $R\text{Ni}_4\text{B}$ and the $R\text{Ni}_5$, it is very unlikely that in the ferromagnetic $R\text{Ni}_4\text{B}$ compounds, the Ni atoms carry a “large” ($> 0.5 \mu_B$) magnetic moment. However, the question of a “small” magnetic moment ($< 0.1 \mu_B$) on the Ni atoms has been raised theoretically and experimentally in these compounds. Band structure calculations reveal that the total density of states at the Fermi level contain mainly 3d-states of Ni atoms [29]. Such calculations are supported by valence band XPS spectra on several members of the $R\text{Ni}_4\text{B}$ family [29–34]. Spin-resolved band structure calculations suggest weak Ni-3d ferromagnetism with an ordered nickel moment of 0.08 μ_B at 0 K in GdNi_4B . [35,36]. Experimentally, YNi_4B which incidentally led to the discovery of the superconducting $\text{RNi}_2\text{B}_2\text{C}$ borocarbides [37,38], exhibits a Pauli paramagnetic behavior with an effective paramagnetic moment of 0.24 μ_B per formula


* Corresponding author. Fax: +33 1 49 78 12 03.

E-mail address: eric.alleno@icmpe.cnrs.fr (E. Alleno).

unit without any magnetic ordering [39]. Similarly, a Magnetic X-Ray Circular Dichroism study [40] on intermediate valence CeNi₄B [21,23,32,41,42] did not reveal a spontaneous Ni moment: only a very small $\sim 0.01 \mu_B$ nickel moment could be observed under a 4 T field. All these results point to an enhanced paramagnetic behavior or at most, to a very weak ferromagnetic behavior of the magnetic Ni sub-system in the RNi₄B series. Since the limit of detection of a moment measured by neutron powder diffraction is at most $0.2\text{--}0.3 \mu_B/\text{atom}$, we will not draw any conclusion on this subject. We simply considered the possibility of a Ni moment in the RNi₄B compounds in the process of Rietveld refining our neutron data for the sake of completeness. We obtained values of Ni moment $|\mu_{Ni}| \leq 0.2 \mu_B \pm 0.07 \mu_B$ smaller than the detection limit and this is consistent with experiments and calculations reported in literature [19–27,35,36,39,40].

Substitution of nickel by boron also brings structural complexity in the RNi₄B. This series of compounds was initially thought to be isostructural to the hexagonal CeCo₄B type of structure (space group $P6/mmm$) (see e.g., [43]), where the rare earth atoms occupy the 1a (0, 0, 0) and 1b (0, 0, 1/2) sites (labeled R1a and R1b hereafter), nickel atoms occupy the 2c (1/3, 2/3, 0) and 6i (1/2, 0, 0.28) sites (labeled Ni2c and Ni6i) while boron atoms occupy the 2d (1/3, 2/3, 1/2) position (see Fig. 1, top panels). However, it was later observed that for several members of this series, the CeCo₄B unit cell can only be considered as a subcell. For example, diffraction patterns could only be respectively indexed in a 3-fold, 6-fold and 8-fold supercell in the cases of YNi₄B [44], LaNi₄B [44], and CeNi₄B [45]. The complete structure of annealed YNi₄B (nominal) [46] and as-cast NdNi₄B [47] were subsequently solved by single crystal techniques and these works confirmed that the CeCo₄B structure is only an approximant for these compounds. The case of ErNi₄B is more controversial: as-cast ErNi₄B (nominal) was found to crystallize in a complex hexagonal structure [48] similar to that of YNi₄B while more recently, annealed ErNi₄B was found to crystallize in the simple CeCo₄B structure [49].

In the literature, all the conventional magnetization and susceptibility measurements were carried out on polycrystalline RNi₄B. The knowledge of the magnetocrystalline anisotropy is thus

Fig. 1. Comparison between the TbNi₄B (CeCo₄B type) and NdNi₄B structures. White spheres: Tb atoms; gray spheres: Ni atoms; black spheres: B atoms. Top left panel: extended hexagonal unit cell (thin gray lines) of TbNi₄B; extra atoms selected from neighboring cells to match part of the NdNi₄B larger unit cell; arbitrarily chosen in-plane bonds represented by thick white lines. Top right panel: same extended TbNi₄B hexagonal unit cell projected along the [1 -1 0] direction. Bottom panel: extended (1 \times 1.5 \times 1) orthorhombic NdNi₄B unit cell projected along the [1 0 0] direction to better understand its relation to the TbNi₄B structure. The thin lines represent the NdNi₄B unit cell. The thick lines represent the same or similar extended TbNi₄B unit cell as in the top panels.

currently poor and we thought that a neutron diffraction experiment would be a good means of gaining information on this matter. In this work, we report on the first direct measurement of the magnetic structures of some members of the RNi₄B ($R=\text{Nd, Tb, Ho, and Er}$) series of compounds using enriched ¹¹B. Neutron diffraction helped us to confirm the crystallographic structure of RNi₄B ($R=\text{Nd, Tb, Ho}$) and a ferromagnetic ordering for all of them. The easy magnetization axis was determined and it shows a common trend with the homologous RNi₅ series of compounds. However, unlike in the RNi₅ series, a spin-reorientation of the rare-earth moments occurs for $R=\text{Nd, Tb, Ho}$ analogs as temperature is varied below T_c .

2. Experimental

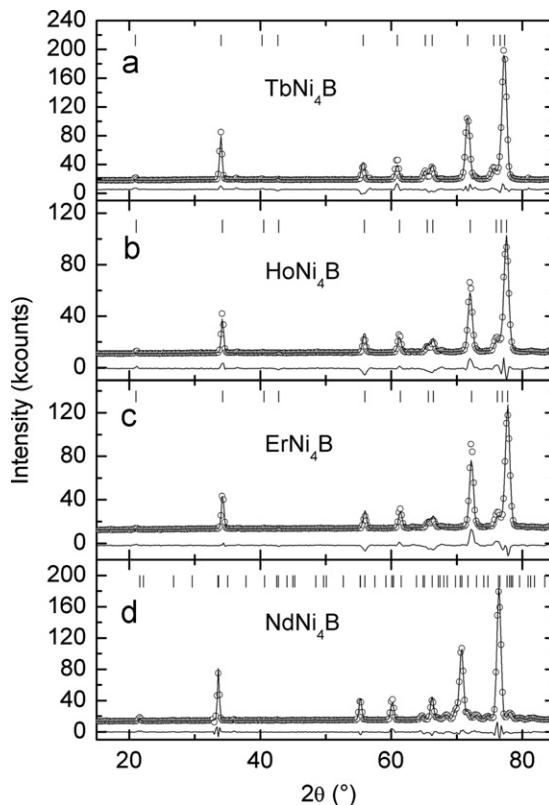
Every compound was melted in an induction furnace under vacuum. Stoichiometric amounts of Nd, Tb, Ho, Er (> 99.9%), Ni (> 99.9%) and ¹¹B (Eurisotop, 99.8% chemically pure, 97.5% isotopically enriched) were used to synthesize the compounds. The ingots thus obtained were flipped-over and melted several times to achieve homogeneity. Weight loss ranged from 0 (NdNi₄B) to 30 mg (HoNi₄B) for 12 g samples. No annealing was carried out neither after melting nor after powdering. The composition of the resultant materials was checked by carrying out powder X-ray diffraction (XRD) at room temperature using a Bruker D8 diffractometer (Cu $K\alpha$ radiation). The neutron diffraction experiments were carried out at the neutron powder diffractometer beamline D1B at Institut Laue-Langevin (ILL) in Grenoble, France, using the wavelength of 2.52 Å. The sample was held in a cylindrical vanadium can in a cryostat and was measured as a function of temperature [1.5–35 K] in the angular range of 5 to 85°. The patterns were recorded in constant temperature mode after a stabilization time of 5 minutes. Rietveld refinements of both the X-ray as well as the neutron diffraction pattern were carried out using the program FULLPROF [50]. Because of the presence of 2.5% of ¹⁰B, the neutron linear absorption coefficient (μ_R) was computed according to Ref. [51]: the values are reported in Table 1. The scale factor, the profile parameters, the lattice parameters and the magnetic moments were refined parameters. The atomic coordinates, the site occupation factors and thermal displacement parameters were held fixed. The profile reliability factor and the integrated intensity reliability factor are hereby respectively noted R_p and R_I .

3. Results

3.1. Crystallographic structures

TbNi₄B is reported to form in the hexagonal CeCo₄B type of structure (space group $P6/mmm$) [52]. A very good agreement was obtained by Rietveld refining the room temperature XRD pattern of TbNi₄B with this structure. No secondary phase peak could be

Table 1


Parameters relevant to the magnetic Rietveld refinements (Fig. 4) of the neutron patterns measured at 1.6 K in the ferromagnetic state. Neutron absorption coefficient (μ_R), moment per rare atom (μ_R), angle (θ) between the moment direction and the c -axis of the hexagonal unit cell (CeCo₄B) or the b -axis of the orthorhombic unit-cell (NdNi₄B, marked with *), profile reliability factor (R_p) and integrated intensity reliability factor (R_I).

RNi ₄ B	μ_R	μ_R (μ_B)	θ (deg)	R_p (%)	R_I (%)
Nd	1.0	3.1(1)	59(4)*	3.1	9.0
Tb	0.8	5.7(1)	62(2)	3.0	6.0
Ho	1.0	6.7(1)	62(2)	3.1	2.4
Er	1.45	8.7	0	4.9	7.0

detected and we obtained $a=4.992(1)$ Å and $c=6.945(1)$ Å as lattice parameters at 300 K, in good agreement with published values [49,52]. The good quality of the neutron pattern refinement ($R_p=3.2\%$ and $R_l=7.9\%$) shown in Fig. 2a confirms the CeCo₄B type of structure for TbNi₄B with $a=4.97(1)$ Å and $c=6.92(1)$ Å at 33 K.

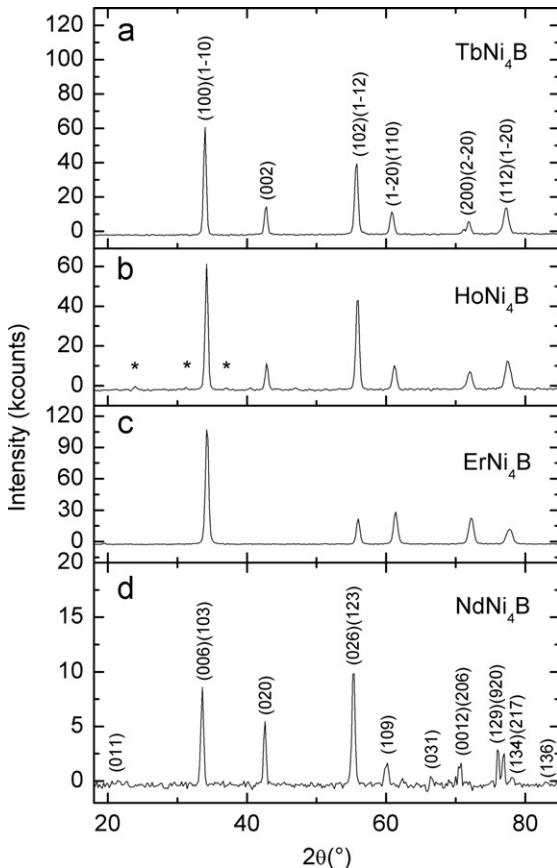
HoNi₄B is also reported to form in the hexagonal CeCo₄B type of structure [53,54]. A good agreement was obtained by refining the room temperature XRD pattern of HoNi₄B with this structure and we obtained $a=4.967(1)$ Å and $c=6.937(1)$ Å as lattice parameters at room temperature. However faint peaks (4% in intensity of the largest peak in the pattern) were left unindexed and after adding 2% (mass fraction) Ho₂O₃ and 1% (mass fraction) Ho₂Ni₂₁B₆ [55] as secondary phases, only three faint peaks remained unindexed. The corresponding peaks were also left unindexed in the neutron pattern (19 K) and attempts to index these peaks with other known structures of the RNi₄B, e.g. the Y_{0.9}Ni_{4.1}B [46] and Er_{0.9}Ni_{4.1}B [48] structure types degraded the reliability factors. This strongly suggests that these faint peaks belong to an unknown impurity phase. We hence further proceeded using the CeCo₄B type of structure for HoNi₄B. The resulting refinement of the neutron pattern ($R_p=3.4\%$; $R_l=11.0\%$) is shown in Fig. 2.b and we obtained $a=4.96(1)$ Å and $c=6.92(1)$ Å as lattice parameters at 19 K.

ErNi₄B is reported to crystallize either in the hexagonal CeCo₄B [49] or in the more complex Er_{0.9}Ni_{4.1}B [48] structure types. This last structure ($P6/mmm$, $a=14.840$ Å, $c=6.919$ Å) derives from the simpler CeCo₄B by tripling the lattice parameter a , keeping c constant and by partially replacing erbium atoms by nickel atoms. We refined our XRD pattern with the two structure types and obtained the following lattice parameters and reliability factors:

Fig. 2. Rietveld refinement of the neutron pattern of TbNi₄B, HoNi₄B and ErNi₄B respectively at 33 K, 19 K, 24 K (paramagnetic state) using the hexagonal CeCo₄B structure type. Panel a: TbNi₄B; panel b: HoNi₄B; panel c: ErNi₄B. Panel d: Rietveld refinement of the neutron pattern of NdNi₄B at 24 K (paramagnetic state) using the complex orthorhombic structure described in Ref. [47]. Faint peaks characteristic of this structure can be noticed in the angular range [65–80 deg]. The open circles are the experimental data, the line is the calculated pattern, the bottom line is the difference pattern (exp.–calc.) and the upper ticks are the Bragg angles.

$a=4.957(1)$ Å, $c=6.932(1)$ Å; $R_p=11.7\%$, $R_l=11.9\%$ for the CeCo₄B structure type and $a=14.870(2)$ Å, $c=6.931(1)$ Å; $R_p=20.9\%$, $R_l=29.7\%$ for the Er_{0.9}Ni_{4.1}B structure type. A similar work was carried out for the neutron pattern measured at 24 K (paramagnetic state): $R_p=3.5\%$, $R_l=14.6\%$ and $R_p=5.6\%$, $R_l=28.4\%$ were respectively obtained for the CeCo₄B structure type and for the Er_{0.9}Ni_{4.1}B structure type. The fairly good agreement between the calculated neutron pattern with the CeCo₄B structure type and the experimental neutron pattern measured at 24 K can be seen in Fig. 2c. These results strongly suggest that the Er_{0.9}Ni_{4.1}B structure type [48] is not a good description of the structure of ErNi₄B. Few faint lines were left unindexed in the XRD pattern by the CeCo₄B structure and similarly to HoNi₄B, after adding 2% Er₂O₃ and 1% Er₂Ni₂₁B₆ [55] as secondary phases, three to four weak lines (3% in intensity of the largest peak of the pattern) remained unindexed. Some of these remaining lines could indeed be indexed by taking the larger hexagonal unit cell of the Er_{0.9}Ni_{4.1}B structure. We thus considered the possibility of dimorphism in our sample, e.g. a mixture of the CeCo₄B-type and Er_{0.9}Ni_{4.1}B-type of structures which might originate from differing cooling rates in the induction furnace. A refinement of the XRD pattern led to only marginal improvements of the reliability factors ($R_p=11.4\%$; $R_l=10.9\%$ for the CeCo₄B structure type; $R_l=21.5\%$ for the Er_{0.9}Ni_{4.1}B structure) with poor agreement between the experimental and calculated intensity of the remaining lines. Moreover, this fit indicated that at most, only a small amount of Er_{0.9}Ni_{4.1}B phase (13% mass fraction) might be present in our sample. Given these uncertainties, we think that the simple hexagonal CeCo₄B structure type is currently the best approximation to the structure of ErNi₄B, but we cannot conclude as in Ref. [49] that it crystallizes in the CeCo₄B structure type.

Because of the preceding ErNi₄B case, we also attempted in a preliminary trial to refine the XRD pattern of NdNi₄B using the CeCo₄B structure type. But several peaks remained unindexed (18% in intensity of the largest peak) showing that the CeCo₄B structure is not relevant in this case. In fact the orthorhombic unit cell corresponding to the more complex structure reported by Salamakha et al. [47] (space group *Imma*, $Z=12$, $a=5.057$ Å, $b=6.980$ Å, $c=26.271$ Å) was required to index every XRD peak, leaving no unindexed peak. A representation of this structure is shown in Fig. 1 (bottom panel). Its unit cell (a , b , c) derives from the hexagonal CeCo₄B unit cell (a_0 , b_0 , c_0) with $a=a_0$, $b=c_0$ and c parallel to a_0+b_0 with $c=3a_0\sqrt{3}/3$. In Fig. 1, along the orthorhombic c -axis, one can find three contiguous hexagonal unit cells deriving from the CeCo₄B unit cell: the left one is very close to the CeCo₄B structure and only differs by the positions of the Ni atoms in the Ni layer; the right one derives from the left one by shifting its atom positions by a vector $1/2c_0=1/2b$; the central one is a mixture of the half of the left and half the right hexagonal unit cell. Moreover, the Ni layers are no more located in a single plane but are rippled. The peak positions and intensities of the XRD data of NdNi₄B taken at 300 K were very well matched by this orthorhombic structure, leaving no peak unindexed and the lattice parameters thus obtained are $a=5.052(1)$ Å, $b=6.974(1)$ Å, and $c=26.251(3)$ Å, in good agreement with the published values. As in the case of the powder XRD pattern of this compound, several weak neutron lines of the “high temperature” neutron pattern cannot be indexed using the CeCo₄B hexagonal cell. Our neutron data were also satisfactorily refined ($R_p=2.9\%$ and $R_l=5.7\%$) by the structure reported by Salamakha et al. [47] as exemplified in Fig. 1d by the 24 K pattern (paramagnetic state) which yielded $a=5.02(1)$ Å, $b=6.95(1)$ Å, and $c=26.21(1)$ Å. This confirms that NdNi₄B crystallizes in this orthorhombic structure.


3.2. Magnetic structures

The neutron diffraction measurements carried out on the RNi₄B compounds (Nd, Tb, Ho, Er) only showed a major enhancement of

some peak intensities for the patterns taken below their respective magnetic transition temperatures. The absence of any additional peaks clearly indicates that no change of the unit cell occurs on magnetic ordering. Rietveld refinements and comparison with magnetization measurements showed that only a ferromagnetic arrangement of the rare-earth moments is compatible with the neutron patterns.

3.2.1. $TbNi_4B$

The difference between the pattern taken at the lowest temperature of our experiment, e.g. 1.6 K and the pattern taken at 35 K is shown in Fig. 3 for $TbNi_4B$. It completely can be indexed with the $CeCo_4B$ unit cell as expected for a ferromagnetically ordered compound. The observation of the (00l) peaks in the difference pattern of $TbNi_4B$ indicates that the moments make an angle θ with the c-axis at 1.6 K. With neutron powder diffraction, we cannot determine the orientation of the component of the moment parallel to the (a, b) hexagonal plane. But in analogy with what is observed in $TbNi_5$ [11], we refined the pattern with the moments parallel to the a-axis. We initially assumed that the rare earth atoms bear the same moment on both the R1a and R1b sites. For the sake of completeness, we considered the possibility of a magnetic moment on the nickel atoms (both Ni2c and Ni6i sites). We obtained $\mu_{Ni2c}=+0.0\pm 0.07 \mu_B$, $\mu_{Ni6i}=-0.2\pm 0.06 \mu_B$, and this shows that if the nickel sites bear a moment, it is smaller than $0.2 \mu_B$ in $TbNi_4B$. We further refined the pattern by taking $\mu_{Ni}=0.0 \mu_B$ and leaving the moments of the two rare earth site evolve separately in the refinement (modulus and direction).

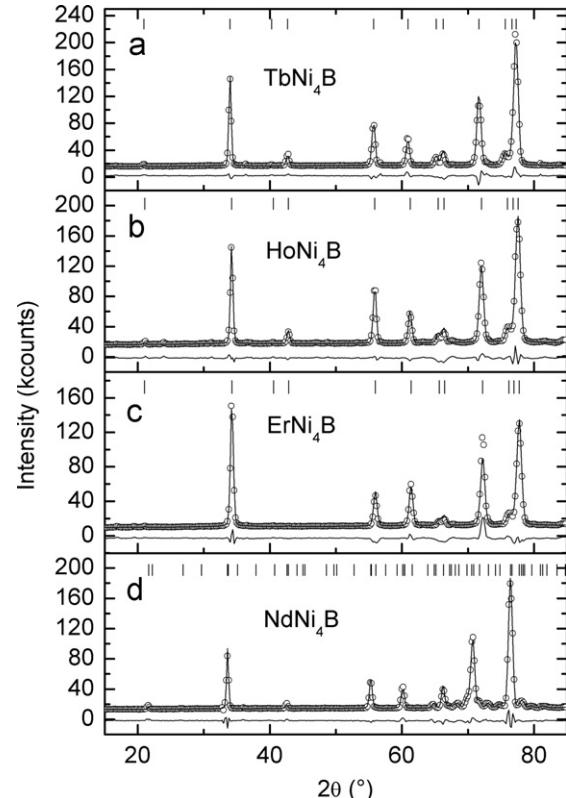
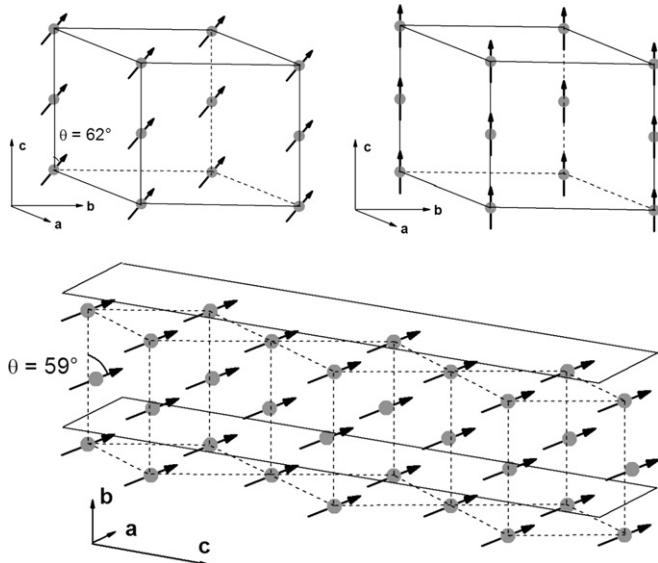


Fig. 3. Magnetic neutron difference patterns of $TbNi_4B$, $HoNi_4B$, $ErNi_4B$ and $NdNi_4B$. Panel a: 1.5 K pattern minus 33 K pattern in $TbNi_4B$, indexed by the hexagonal unit cell. Panel b: 1.6 K pattern minus 19 K pattern in $HoNi_4B$ indexed by the hexagonal unit cell; faint lines marked by asterisks ascribed to a magnetic secondary phase. Panel c: 1.5 K pattern minus 25 K pattern in $ErNi_4B$ indexed as well by the hexagonal unit cell. Panel d: 1.6 K pattern minus 24 K pattern in $NdNi_4B$. The Miller indexes correspond to the orthorhombic unit cell.


This led to the same modulus with a slightly different orientation of magnetic moments (8 deg difference) for the two terbium sites but this did not lead to any improvement of the reliability factors: $R_p=3.0\%$ and $R_l=6.0\%$ when $\theta_1=\theta_2$ and $R_p=3.1\%$ and $R_l=6.1\%$ when $\theta_1\neq\theta_2$. We thus considered that both terbium sites bear the same magnetic moment pointing in the same direction. Fig. 4 shows the final Rietveld refinement and Table 1 gathers the important parameters of this fit. Fig. 5 shows a schematic representation of the magnetic structure of $TbNi_4B$ at 1.6 K with the Tb moments oriented at $\theta=62$ deg from the c-axis. The saturation value $\mu_{Tb}=5.7\pm 0.1 \mu_B$ of the magnetic moment is well below the saturation moment of the free ion ($9 \mu_B$). It is in good agreement with the published values of the saturation moment derived from magnetization measurements on polycrystals: $5.9 \mu_B$ in Ref. [20] and $6.3 \mu_B$ in Ref. [24]. The evolution with temperature of the moment modulus (μ_{Tb}) and angle (θ) are depicted in Fig. 6. Fitting a phenomenological power law to $\mu_{Tb}(T)$ between 1.6 K and 17.9 K yields $T_c=18.1\pm 0.2$ K. This value is consistent the values of T_c reported in literature (19 K in Ref. [20] and 21 K in Ref. [24]). According to Liu et al. [56], a strong deviation of the experimental $\mu(T)$ from a Brillouin function [15] just below T_c indicates the possibility of a first order transition. Fig. 6 shows that $\mu_{Tb}(T)$ varies indeed more abruptly than the fitted Brillouin function, close to T_c . The transition to ferromagnetism thus appears to be a first order transition in $TbNi_4B$. The angle θ strongly varies when the temperature is increased from 1.6 K to T_c . It decreases from 62 deg (corresponding to the Tb moments only ~30 deg out of the (a, b) basal plane) to 0 deg at T_c which corresponds to the moment aligned with the c-axis.

3.2.2. $HoNi_4B$

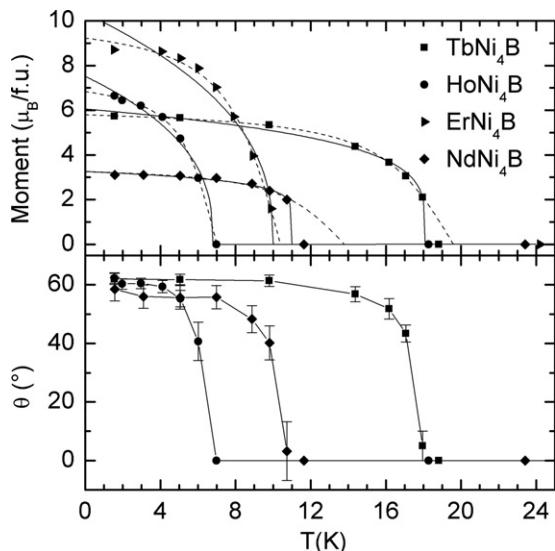

The most intense peaks of the difference pattern (1.6–19 K) of $HoNi_4B$ shown in Fig. 3b can be indexed with the $CeCo_4B$ unit cell

Fig. 4. Magnetic Rietveld refinement of the neutron pattern at 1.5–1.6 K. Panel a: $TbNi_4B$ (1.5 K); panel b: $HoNi_4B$ (1.6 K); panel c: $ErNi_4B$ (1.5 K); panel d: $NdNi_4B$ (1.6 K). The open circles are the experimental data, the passing-through line is the calculated pattern, the bottom line is the difference pattern (exp.–calc.) and the upper ticks are the Bragg angles.

Fig. 5. Top left panel: schematic representation of the ferromagnetic structure in TbNi_4B and HoNi_4B at 1.6 K. The Tb or Ho moments are in the (a, c) plane and oriented at 62 deg from the c-axis. The gray spheres represent the Tb or Ho atoms. Top right panel: schematic representation of the ferromagnetic structure in ErNi_4B at 1.6 K. The Er moments are parallel to the c-axis. Bottom panel: schematic representation of the ferromagnetic structure in NdNi_4B . The Nd moments are in the (b, c) plane of the orthorhombic structure and are oriented at 59 deg from the b-axis. The gray spheres represent the Nd atoms, the top and bottom planes represent the orthorhombic unit cell and the dashed lines represent the pseudo CeCo_4B unit cells.

Fig. 6. Thermal variations of the magnetic moment μ_R (upper panel) and angle θ (lower panel) between the moment direction and the c-axis of the hexagonal unit cell ($R=\text{Tb, Ho, Er}$) or the b-axis of the orthorhombic unit-cell ($R=\text{Nd}$) in RNi_4B . For μ_R , the error bars are smaller than or as large as the symbols. In the upper panel, the $\mu_R=0$ line is a guide to the eyes. The solid lines were obtained by fitting a phenomenological power law to the data while the dashed lines corresponds to a fit of a Brillouin function.

but very faint magnetic peaks marked with an asterisk remain unindexed. These faint peaks do not correspond to any nuclear peaks of HoNi_4B and do not appear at $\sim 6-7 \text{ K} = T_c$ like the CeCo_4B -like peaks but rather at $5 \text{ K} \neq T_c$. Moreover, we cannot index these peaks within the $\text{Y}_{0.9}\text{Ni}_{4.1}\text{B}$ [46] nor within the $\text{Er}_{0.9}\text{Ni}_{4.1}\text{B}$ [48] structures. This again strongly suggest that they belong to an unknown magnetic impurity phase and that the magnetic peaks of HoNi_4B can be indexed using the CeCo_4B unit cell. Similarly to

TbNi_4B , the observation of (00l) peaks in the difference pattern indicates that in HoNi_4B , the moments make an angle θ with the c-axis at 1.6 K. Based on the results of TbNi_4B , we constrained the two rare earth sites to display the same moments and tested again the possibility of Ni moments. We obtained too small values for the Ni moments ($\mu_{\text{Ni}2c}=0\pm 0.07 \mu_B$ and $\mu_{\text{Ni}6i}=+0.2\pm 0.07 \mu_B$) to be considered as genuine: here again, none of the nickel sites bears a “large” moment in HoNi_4B , if any. We obtained at $T=1.6 \text{ K}$, $\mu_{\text{Ho}}=6.7(1) \mu_B$ and $\theta=62$ deg. **Fig. 4** shows the Rietveld refinements and **Table 1** gathers the relevant parameters to this fit finally described. Here again, the saturation value $\mu_{\text{Ho}}=6.7(1) \mu_B$ of the magnetic moment is well below the saturation moment of the free Ho^{3+} ion ($10 \mu_B$). It is however in line with the published values of the saturation moment derived from magnetization measurements: $7.5 \mu_B$ in Ref. [20] and $7.8 \mu_B$ in Ref. [24]. The evolutions with temperature of the moment modulus (μ_{Ho}) and angle (θ) with the c-axis of the HoNi_4B hexagonal unit cell are displayed in **Fig. 6**. A power law fit of $\mu_{\text{Ho}}(T)$ between 1.6 K and 6.0 K yields $T_c=6.2\pm 0.2 \text{ K}$, in agreement with the published values (6 K in Ref. [24]). Contrarily to TbNi_4B , there is no strong deviation between $\mu_{\text{Ho}}(T)$ and the fitted Brillouin function, indicating a second order transition. Similarly to TbNi_4B , the angle θ decreases from 62 deg at 1.6 K ($\mu_{\text{Ho}}\sim 30$ deg out of the (a, b) plane) to 0 deg at T_c ($\mu_{\text{Ho}}/\text{c-axis}$).

3.2.3. ErNi_4B

Despite the uncertainty on the crystallographic structure of ErNi_4B , the magnetic neutron data were processed by taking the simple CeCo_4B -type of structure which can be currently considered as the best description for this crystal. This choice will further be supported by the simplicity of the arrangement of the Er moments and also by the simplicity of the magnetic structure in NdNi_4B discussed hereafter. Indeed, despite the complexity of its crystallographic structure, NdNi_4B displays a magnetic structure as simple as that of TbNi_4B . But given this uncertainty, we will neither discuss the presence of a moment on the Ni atoms nor the magnitude of the Er moments. The difference pattern (1.5–19 K) of ErNi_4B is shown in **Fig. 3**. All these magnetic peaks could easily be indexed within the CeCo_4B unit cell, indicating a ferromagnetic arrangement of the moment. Since no magnetic peak with (00l) indexes can be observed, the magnetic moments are oriented along the c-axis of the hexagonal CeCo_4B structure type (**Fig. 1**). Based on the previous results obtained for TbNi_4B and HoNi_4B , we performed a Rietveld refinement of the neutron pattern measured at 1.5 K assuming the same orientation and magnitude for the Er moments and no magnetic moments on the Ni sites. The result of this fit can be seen in **Fig. 4** and the values of the resulting magnetic moment (μ_{Er}) and reliability factors are gathered in **Table 1**. The evolution of μ_{Er} with temperature is shown in **Fig. 6** and a power law fit yields $T_c=10.0\pm 0.2 \text{ K}$. This value is slightly different from the 12 K reported in Ref. [24] but in close agreement with the 11 K reported in Ref. [22]. Similarly to HoNi_4B , there is no strong deviation between $\mu_{\text{Er}}(T)$ and the fitted Brillouin function, indicating a second order transition.

3.2.4. NdNi_4B

To be indexed, the magnetic difference pattern (1.6–25 K) required the orthorhombic cell [47] of the nuclear structure, as shown in **Fig. 3**. Here again, since there is no additional peaks other than those from the nuclear structure, the magnetic moments are ferromagnetically aligned. Based on the TbNi_4B results, we considered that only the atoms of the 3 Nd sites (Nd1, Nd2, Nd3, same notations as in ref. [47]) and the atoms of the Ni1, Ni2, Ni3 and Ni7 nickel sites of the orthorhombic structure, which have an atomic environment similar to the atoms

of the Ni6i site of the CeCo₄B approximate structure, bear a magnetic moment. We also forced the 3 Nd moments to be equal to one value as well as the 4 Ni moments to be equal to another value and globally all the moments to be parallel and contained in the (b, c) plane of the orthorhombic structure which is equivalent to the (c₀, a₀+b₀) plane of the CeCo₄B structure. The low value of the Ni moment that we obtained ($\mu_{\text{Ni}} = -0.25 \pm 0.07 \mu_{\text{B}}$) after Rietveld refinement again indicates that the Ni atoms do not carry a large moment, if any, in NdNi₄B. Similar to TbNi₄B, we refined the magnetic structure of NdNi₄B with only the Nd atoms being magnetic. Relaxing the constraints $\mu_{\text{Nd}1} = \mu_{\text{Nd}2} = \mu_{\text{Nd}3}$ degraded the quality of the fit: $R_p = 3.1\%$ and $R_I = 9.0\%$ when $\mu_{\text{Nd}1} = \mu_{\text{Nd}2} = \mu_{\text{Nd}3}$ while $R_p = 3.1\%$ and $R_I = 10.0\%$ when $\mu_{\text{Nd}1} \neq \mu_{\text{Nd}2} \neq \mu_{\text{Nd}3}$. We thus kept the constraint $\mu_{\text{Nd}1} = \mu_{\text{Nd}2} = \mu_{\text{Nd}3}$ in all our subsequent refinements. Fig. 4 shows the final Rietveld refinement at $T = 1.6\text{ K}$ and the relevant parameters of this fit are also gathered in Table 1. Fig. 5 shows a schematic representation of the magnetic structure of NdNi₄B at 1.6 K with the Nd moments oriented at $\theta = 59\text{ deg}$ from the *b*-axis of the orthorhombic structure, which is parallel to the *c*-axis of the approximant hexagonal CeCo₄B structure type. The moment orientation is thus very similar to that of Tb (62 deg) in TbNi₄B. The saturation value $\mu_{\text{Nd}} = 3.1(1) \mu_{\text{B}}$ of the magnetic moment is very close to the saturation moment of the free ion ($3.3 \mu_{\text{B}}$). It is at odds with the published values of the saturation moment derived from magnetization measurements: $1.6 \mu_{\text{B}}$ in Ref. [20] and $1.7 \mu_{\text{B}}$ in Ref. [24]. Fig. 6 shows the thermal variation of μ_{Nd} and θ , the angle with the *b*-axis of the orthorhombic structure. $\theta(T)$ decreases from $\theta = 59\text{ deg}$ to 0 deg when the temperature is varied from 1.6 K to $T_c = 11\text{ K}$. $\mu_{\text{Nd}}(T)$ is well fitted by a power law which yields $T_c = 11.0 \pm 0.2\text{ K}$, consistent with values from the literature ($T_c = 11.7\text{ K}$ in Ref. [20], $T_c = 12\text{ K}$ in Ref. [24]). Similarly to TbNi₄B, $\mu_{\text{Nd}}(T)$ varies more abruptly close to T_c than the fitted Brillouin function and this indicates the possibility of a first order transition in NdNi₄B. To summarize, NdNi₄B magnetically behaves very similarly to TbNi₄B despite the differences in their crystallographic structures.

4. Discussion

Table 2 shows a comparison between the Curie temperatures, the moment orientation (θ), the saturated moment per rare-earth atom derived from magnetization measurements (M_{sat}) and the rare-earth moment derived from neutron scattering experiments in RNi₅ and RNi₄B ($R = \text{Nd, Tb, Ho, Er}$) (μ_R). For both series of compounds, the experimental Curie temperature (T_c exp.) is compared to a Curie temperature (T_c DG) obtaining by scaling T_c of GdNi₅ (33 K in Ref. [12]) or GdNi₄B (36 K in Ref. [22]) by the de Gennes factor $(g_J - 1)^2 J(J + 1)$ where g_J is the Landé factor and J the total momentum quantum number of the rare earth R . Good agreement between the two temperatures would indicate a preponderance of the RKKY interaction over the CEF interactions.

Table 2

Comparison of the experimental Curie temperature (T_c exp.) and Curie temperature obtained by de Gennes scaling (T_c DG), saturation magnetization (M_{sat}) derived from magnetometry (on single crystals for the RNi₅, on polycrystals for the RNi₄B series), moment per rare atom (μ_R) derived from neutron experiments and moment orientation (θ) in the RNi₅ and RNi₄B ($R = \text{Nd, Tb, Ho, Er}$) compounds.

Compound	RNi ₅				RNi ₄ B			
R	Nd	Tb	Ho	Er	Nd	Tb	Ho	Er
T_c (K) exp.	7	23	4.5	10	11.0	18.1	6.2	10.0
T_c (K) DG	4	22	9	5	4	24	10	6
M_{sat} (μ_{B})	2.9	8.4	9.2	7.8	1.6–1.7	5.9–7.3	7.5–7.8	5.0–7.7
μ_R (μ_{B})	3.7	8.4	–	–	3.1	5.7	6.7	8.7
θ (deg)	90	90	90	0	59	62	62	0
Ref.	[8,11,13]	[6,10,11,14]	[6,11]	[5]	[23]	[20,24]	[20,24]	[22,24]

There is obviously a discrepancy between the experimental values and the scaled values, even for the heavy rare-earth and this is an indication of the importance of the CEF interactions over the RKKY interaction to determine the magnetic properties in both these series. The saturation moment M_{sat} is below the free rare earth ion value and this is another indirect indication of the importance of the CEF interactions. Since the spread between T_c exp. and T_c DG is similar in both series, a similar magnitude for the CEF interactions is also expected in both series. Usually a large discrepancy (~ factor of 2) between M_{sat} measured on a polycrystal and μ_R indicates a strong magneto-crystalline anisotropy because the magnetometer only measures a projection of the easy axis magnetization on the direction of the field (see for instance ref. [57]). This is effectively what is observed in NdNi₄B but there is no large discrepancy between M_{sat} and μ_R in TbNi₄B and HoNi₄B. These diverging results thus prevent a more detailed comparison between the intensity of CEF interactions in the RNi₄B and in the RNi₅ compounds.

Table 2 shows that there is also a strong analogy between the easy axis direction in the RNi₅ series and the RNi₄B series. At 1.5 K, the easy axis is the *c*-axis both in ErNi₅ and ErNi₄B while it is the *a*-axis in RNi₅ ($R = \text{Nd, Tb, Ho}$) and it is only $\sim 30^\circ$ away from the (a, b) plane in RNi₄B ($R = \text{Nd, Tb, Ho}$). The easy and hard axes of magnetization are determined by the CEF interaction acting on the rare earth 4f shell. The point symmetry group of the R1a or R1b sites is $6/mmm$. The corresponding CEF perturbing Hamiltonian acting on the ground state multiplet of the rare earth ions can thus be written [15] as:

$$H_{\text{CEF}} = \alpha_J V_2^0 O_2^0 + \beta_J V_4^0 O_4^0 + \gamma_J (V_6^0 O_6^0 + V_6^6 O_6^6)$$

where the O_l^m are the Stevens operators, the V_l^m are the CEF parameters which depend on the surroundings and α_J , β_J , γ_J are the multipoles of the 4f shell or the "Stevens coefficients". In the RNi₅ series, the second order CEF parameter $\alpha_J V_2^0$ is three orders of magnitude larger than the fourth and sixth order terms (see for instance Ref. [6]) and the easy magnetization axis is fully determined by this former term and the sign of the second order Stevens coefficient of the rare-earth (α_J) across the series. Assuming $V_2^0 < 0$ in the RNi₅, the easy magnetization axis is the *a*-axis when $\alpha_J < 0$ e.g. $R = \text{Nd, Tb, Ho}$ and the easy magnetization axis is the *c*-axis when $\alpha_J > 0$ e.g. $R = \text{Er}$. The situation is different in the RNi₄B ($R = \text{Nd, Tb, Ho, Er}$) since the easy axis at T_c is systematically the *c*-axis of the hexagonal CeCo₄B structure, whatever the sign of the second order Stevens coefficient of the rare-earth (α_J) across the series. This shows the importance of fourth and sixth order terms of the Hamiltonian in the RNi₄B series to determine the easy axis at temperature close to T_c . The moment re-orientation towards a direction at 30° from the (a, b) plane which occurs in RNi₄B ($R = \text{Nd, Tb, Ho}$) when temperature is lowered below T_c indicates that the second order term of the CEF hamiltonian competes with the higher order terms and recovers some importance at lower temperature. This competition does not occur in

ErNi₄B since the second order and higher order terms of the CEF hamiltonian favor the *c*-axis as the easy axis. No sign of a spin reorientation below T_c can be found in the various experimental data (magnetization, electronic transport, neutrons ...) published in literature on the RNi₅ compounds. Such a phenomenon should not be confused with the spin re-orientation which occurs for instance in the RCo_5 compounds. In this last case, the spin re-orientation arises from the strong interaction between magnetic cobalt and rare earth atoms which tends to align the moments of the two sub-systems and the competition between the magneto-crystalline anisotropies of cobalt and rare earth atoms which tends to disalign the moments (see for instance [58,59]). The spin re-orientation which occurs in the RNi₄B ($R=Nd, Tb, Ho$) is rather similar to what is seen in NdNi [60] where a reorientation of the Nd moments occurs when temperature is lowered below T_c because of the competition between the CEF terms. The RNi₄B series thus bears its originality in its complex CEF interactions leading to the spin re-orientation.

5. Summary

Our neutron data confirm that NdNi₄B crystallizes in an orthorhombic structure while TbNi₄B and HoNi₄B crystallize in the classical CeCo₄B-type of structure. In the case of ErNi₄B, the proposed Er_{0.9}Ni_{4.1}B-type of structure cannot account for our data and the CeCo₄B structure currently remains the best approximant. The RNi₄B ($R=Nd, Tb, Ho, Er$) are ferromagnetic and respectively order at 11.0, 18.1, 6.2 and 10.0 K. It is a first order transition for $R=Nd, Tb$ and a second order transition for $R=Ho, Er$. The CEF interaction leads to a moment per rare earth atom smaller than the free rare earth ion and to magnetocrystalline anisotropy. The RNi₄B ($R=Nd, Tb, Ho$) display a spin re-orientation below T_c which arises from a competition between the second order term and the higher order terms of the CEF hamiltonian which cannot be neglected in this series.

Acknowledgments

The authors wish to thank J.L. Soubeyroux and O. Isnard for their technical help during the experiment at the ILL (Grenoble). They also acknowledge fruitful discussions with V. Paul-Boncour (ICMPE, Thiais) and G. André (LLB, Saclay).

References

- [1] E.A. Nesbitt, H.J. Williams, J.H. Wernick, R.C. Sherwood, *J. Appl. Phys.* 33 (1962) 1674.
- [2] K. Strnat, G.I. Hoffer, J.C. Olson, W. Ostertag, J.J. Becker, *J. Appl. Phys.* 38 (1967) 1001.
- [3] J.H.N. Van Vucht, F.A. Kuijpers, H.C.A.M. Bruning, *Philips Res. Rep.* 25 (1970) 133.
- [4] F.A. Kuijpers, H.H. Van Mal, *J. Less-Common Met.* 23 (1971) 395.
- [5] P. Escudier, D. Gignoux, D. Givord, R. Lemaire, A.P. Murani, *Physica B+C* 86 (1977) 197.
- [6] D. Gignoux, A. Nait-Saada, R. Perrier de la Bâthie, *J. Phys. Colloq.* 40 (1979) C5.
- [7] R. Ballou, V.M.T.S. Barthem, D. Gignoux, *Physica B+C* 149 (1988) 340.
- [8] V.M.T.S. Barthem, D. Gignoux, A. Nait-Saada, D. Schmitt, A.Y. Takeuchi, *J. Magn. Magn. Mater.* 80 (1989) 142.
- [9] V.M.T.S. Barthem, D. Gignoux, D. Schmitt, G. Creuzet, *J. Magn. Magn. Mater.* 78 (1989) 56.
- [10] C. Carboni, D. Gignoux, A. Tari, *Phys. Rev. B* 52 (1995) 9486.
- [11] L. Morellon, P.A. Algarabel, A. del Moral, D. Gignoux, D. Schmitt, *J. Magn. Magn. Mater.* 153 (1996) 17.
- [12] W.E. Wallace, M. Aoyagi, *Monatsh. Chem.* 102 (1971) 1455.
- [13] J.I. Espeso, N. Marcano, A. Señas, J.A. Blanco, M. Reiffers, J.C. Gomez Sal, *J. Magn. Magn. Mater.* 226–230 (2001) 1150, Part 2.
- [14] R. Lizarraga, A. Bergman, T. Björkman, H.-P. Liu, Y. Andersson, T. Gustafsson, A. G. Kuchin, A.S. Ermolenko, L. Nordström, O. Eriksson, *Phys. Rev. B* 74 (2006) 094419.
- [15] D. Gignoux, in: E. Trémolet de Lacheisserie (Ed.), *Magnétisme*, vol. 1, Presses Universitaires de Grenoble, Grenoble, 1999.
- [16] S. Lee, A. Podlesnyak, K. Prokes, V. Sikolenko, A. Ermolenko, E. Gerasimov, Y. Dorofeev, A. Vokhmyanin, J. Park, A. Pirogov, *JETP Lett.* 82 (2005) 34.
- [17] V.M.T.S. Barthem, E.A.M. daGama, *J. Phys.-Condens. Matter* 9 (1997) 7609.
- [18] F.E. Spada, H. Oesterreicher, R.C. Bowman, M.P. Guse, *Phys. Rev. B* 30 (1984) 4909.
- [19] N.M. Hong, N.P. Thuy, G. Schaudy, T. Holubar, G. Hilscher, J.J.M. Franse, *J. Appl. Phys.* 73 (1993) 5698.
- [20] N.M. Hong, T. Holubar, G. Hilscher, M. Vybornov, P. Rogl, *IEEE Trans. Magn.* 30 (1994) 4966.
- [21] R. Nagarajan, L.C. Gupta, C. Mazumdar, Z. Hossain, S.K. Dhar, C. Godart, B. D. Padalia, R. Vijayaraghavan, *J. Alloys Compd.* 225 (1995) 571.
- [22] C. Mazumdar, Ph.D. Thesis, Indian Institute of Technology, Bombay, 1995.
- [23] T. Tolinski, A. Kowalczyk, A. Szlaferek, M. Timko, J. Kovac, *Solid State Commun.* 122 (2002) 363.
- [24] T. Tolinski, A. Kowalczyk, A. Szlaferek, B. Andrzejewski, J. Kovac, M. Timko, *J. Alloys Compd.* 347 (2002) 31.
- [25] T. Tolinski, A. Kowalczyk, V. Ivanov, *Phys. Status Solidi B* 240 (2003) 153.
- [26] T. Tolinski, B. Andrzejewski, A. Kowalczyk, Z. Trybula, J. Baszynski, *J. Magn. Magn. Mater.* 267 (2003) 402.
- [27] T. Tolinski, *Mod. Phys. Lett. B* 21 (2007) 431.
- [28] C. Mazumdar, R. Nagarajan, L.C. Gupta, B.D. Padalia, R. Vijayaraghavan, *Appl. Phys. Lett.* 77 (2000) 895.
- [29] M. Pugaczowa-Michalska, G. Chelkowska, A. Kowalczyk, *Acta Phys. Pol. A* 104 (2003) 487.
- [30] M. Pugaczowa-Michalska, T. Tolinski, A. Kowalczyk, G. Chelkowska, *Czech. J. Phys.* 54 (2004) D347.
- [31] M. Pugaczowa-Michalska, A. Kowalczyk, G. Chelkowska, T. Tolinski, *J. Alloys Compd.* 385 (2004) 44.
- [32] T. Tolinski, A. Kowalczyk, G. Chelkowska, *Phys. Lett. A* 308 (2003) 75.
- [33] T. Tolinski, M. Pugaczowa-Michalska, G. Chelkowska, *Phys. Status Solidi B-Basic Solid State Phys.* 242 (2005) 474.
- [34] C. Lazar, E. Burzo, M. Neumann, J. Optoelectron. Adv. Mater. 10 (2008) 780.
- [35] P. Vlaic, N. Bucur, C. Lazar, E. Burzo, J. Optoelectron. Adv. Mater. 8 (2006) 490.
- [36] E. Burzo, *Rom. Rep. Phys.* 59 (2007) 337.
- [37] R. Nagarajan, C. Mazumdar, Z. Hossain, S.K. Dhar, K.V. Gopalakrishnan, L.C. Gupta, C. Godart, B.D. Padalia, R. Vijayaraghavan, *Phys. Rev. Lett.* 72 (1994) 274.
- [38] R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski, W.F. Peck, T. Siegrist, B. Batlogg, R.B. Van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Eisaki, S. Uchida, *Nature* 367 (1994) 252.
- [39] C. Mazumdar, R. Nagarajan, C. Godart, L.C. Gupta, M. Latroche, S.K. Dhar, C. Lévy-Clément, B.D. Padalia, R. Vijayaraghavan, *Solid State Commun.* 87 (1993) 413.
- [40] T. Tolinski, J.C. Cezar, H. Wende, A. Kowalczyk, K. Baberschke, *Acta Phys. Pol. A* 115 (2009) 129.
- [41] C. Mazumdar, Z. Hu, G. Kaindl, *Physica B* 259&261 (1999) 89.
- [42] T. Tolinski, A. Kowalczyk, M. Pugaczowa-Michalska, G. Chelkowska, *J. Phys.-Condens. Matter* 15 (2003) 1397.
- [43] K. Niihara, Y. Katayama, S. Yajima, *Chem. Lett.* (1973) 613.
- [44] Y.B. Kuz'ma, M.P. Khaburskaya, *Izv. Akad. Nauk SSSR Neorg. Mater.* 11 (1975) 1893.
- [45] Y.B. Kuz'ma, N.S. Bilonizhko, *Izv. Akad. Nauk SSSR Neorg. Mater.* 7 (1971) 620.
- [46] A. Belger, G. Zahn, B. Wehner, P. Paufler, G. Graw, G. Behr, *J. Alloys Compd.* 283 (1999) 26.
- [47] P.S. Salamakha, O. Sologub, C. Mazumdar, E. Alleno, H. Noël, M. Potel, C. Godart, *J. Alloys Compd.* 351 (2003) 190.
- [48] Y.B. Kuz'ma, V. Babizhetskyi, I. Veremchuk, N. Chaban, *J. Solid State Chem.* 177 (2004) 425.
- [49] P.S. Salamakha, O.L. Sologub, J.R. Hester, C. Rizzoli, A.P. Goncalves, M. Almeida, *J. Alloys Compd.* 439 (2007) 162.
- [50] J. Rodriguez-Carvajal, *Physica B* 192 (1993) 55.
- [51] <http://www.ncnr.nist.gov/instruments/bt1/neutron.html>.
- [52] G.V. Chernyak, N.F. Chaban, Y.B. Kuz'ma, *Inorg. Mater.* 18 (1982) 590.
- [53] I.B. Gubich, Y.B. Kuz'ma, N.F. Chaban, *Inorg. Mater.* 29 (1993) 1104.
- [54] S. Geupel, A. Belger, P. Paufler, G. Graw, Z. Kristallogr.-New Crys. Struct. 215 (2000) 481.
- [55] I.B. Hubych, *Visn. L'viv. Derzh. Univ. (Ser. Khim.)*, 1991, p. 31.
- [56] X.B. Liu, D.H. Ryan, Z. Altounian, *J. Magn. Magn. Mater.* 270 (2004) 305.
- [57] P. Bonville, J.A. Hodges, Z. Hossain, R. Nagarajan, S.K. Dhar, L.C. Gupta, E. Alleno, C. Godart, *Eur. Phys. J. B* 11 (1999) 377.
- [58] B. Decrop, J. Déportes, R. Lemaire, *J. Less-Common Met.* 94 (1983) 199.
- [59] Z. Tie-song, J. Han-min, G. Guang-hua, H. Xiu-feng, C. Hong, *Phys. Rev. B* 43 (1991) 8593.
- [60] G. Fillion, D. Gignoux, F. Givord, R. Lemaire, *J. Magn. Magn. Mater.* 44 (1984) 173.