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Unusual interlayer quantum transport behavior
caused by the zeroth Landau level in YbMnBi2
J.Y. Liu1, J. Hu 1, D. Graf2, T. Zou3, M. Zhu3, Y. Shi4, S. Che5, S.M.A. Radmanesh6,

C.N. Lau5, L. Spinu6, H.B. Cao7, X. Ke3 & Z.Q. Mao1

Relativistic fermions in topological quantum materials are characterized by linear

energy–momentum dispersion near band crossing points. Under magnetic fields, relativistic

fermions acquire Berry phase of π in cyclotron motion, leading to a zeroth Landau level (LL) at

the crossing point, a signature unique to relativistic fermions. Here we report the unusual

interlayer quantum transport behavior resulting from the zeroth LL mode observed in the

time reversal symmetry breaking type II Weyl semimetal YbMnBi2. The interlayer magne-

toresistivity and Hall conductivity of this material are found to exhibit surprising angular

dependences under high fields, which can be well fitted by a model, which considers the

interlayer quantum tunneling transport of the zeroth LL's Weyl fermions. Our results shed

light on the unusual role of zeroth LLl mode in transport.
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In conventional metals, the energy of the quantized Landau
level (LL) increases linearly with increasing magnetic field.
However, in topological materials such as graphene1, 2 and

recently discovered Dirac/Weyl semimetals Cd3As23–7, Na3Bi8, 9

ZrTe5,10, 11 and TaAs-type monopnictides12–18, the quantized
energies of LLs are given by εn ¼ ± υF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e�hBjnjp

(n= 0, ± 1, ±
2…) for two-dimensional (2D) Dirac/Weyl
fermions19 or εn ¼ ± υF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e�hBjnj þ k2z

p
(n= 0, ± 1, ± 2…, kz is

the momentum along the field direction) for three-dimensional
(3D) cases20. The n= 0 level corresponds to the zeroth energy LL,
which is a signature unique to topological fermions but absent in
non-relativistic electron systems. For 2D Dirac/Weyl fermions,
the zeroth LL is always locked to the band crossing point (i.e., the
Dirac/Weyl node) upon field sweep. However, for 3D cases, the
energy of the zeroth LL disperses linearly with kz. For a given
topological material, if the Dirac/Weyl node is away from the
Fermi energy EF, its n≠ 0 LLs would successively pass through EF
upon increasing magnetic field, thus resulting in oscillating
density of state (DOS) at EF, which can be probed through
quantum oscillations in resistivity or magnetic susceptibility. In
this case, the zeroth LL manifests itself in the phase shift (i.e.,
Berry phase) in quantum oscillations21, 22. When the quantum
limit is approached, the zeroth LL could lead to new exotic
phenomena, e.g., dynamic mass generation in ZrTe523. By con-
trast, if the Dirac/Weyl node is at EF, no n≠ 0 LLs pass EF upon
increasing the field, and the DOS(EF) is contributed only by the
zeroth LL. Under this circumstance, the DOS(EF) would mono-
tonically increase due to the increase of the zeroth LL’s degen-
eracy. In general, it is hard to observe such an effect in transport
measurements in most topological materials due to their Dirac/
Weyl nodes away from EF and/or the complexity of multiband
electronic structure. In this paper, we report the unusual quantum

transport behavior directly arising from the zeroth LL in the time
reversal symmetry (TRS) breaking Weyl semimetal YbMnBi224:
the zeroth LLs’ Weyl fermions contribute to interlayer transport
through quantum tunneling.

YbMnBi2 shares a similar layered structure with SrMnBi2 and
EuMnBi2, which have been established as Dirac materials25, 26

with interesting properties (e.g., the valley-polarized interlayer
conduction in SrMnBi227 and the quantum Hall effect due to the
magnetically confined 2D Dirac fermions in EuMnBi226). One
common character of these materials is that their Weyl/Dirac
fermions are generated by the 2D Bi square-net planes. The Weyl
state in YbMnBi2 is believed to originate from the TRS breaking
caused by a ferromagnetic component of the canted anti-
ferromagnetic order developed by the Mn sublattice24. The
electronic band structure of YbMnBi2 is of a quasi-2D character
due to its layered crystal structure. Angle-resolved photoemission
spectroscopy (ARPES) has revealed that the Fermi surface of this
material consists of the hole-like and electron-like pockets com-
prised of linear Dirac bands. At the connection points of electron-
and hole-like pockets, type II Weyl points with the nodes at EF
have been observed24.

In our work, we take advantage of the quasi-2D electronic
structure of YbMnBi2 as well as its Weyl nodes at EF to probe the
transport properties of Weyl fermions at the zeroth LLs. Con-
sidering the 2D Landau quantization in YbMnBi2, the presence of
Weyl nodes at EF not only leads the zeroth LLs of the Weyl bands
to appear at EF so that the Weyl fermions at the zeroth LLs
directly participate in transport but also makes the quantum limit
of Weyl bands accessible at a relatively low field, which is
important to observe the transport properties of the zeroth LLs’
Weyl fermions in a multiple band system (note that when a Weyl
node is at EF, the quantum limit of the Weyl bands can be
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Fig. 1 Schematic electronic band structure and in-plane magnetotransport properties of YbMnBi2. a Schematic of YbMnBi2’s Fermi surface determined by
ARPES experiments24. The red and blue pockets correspond to electron- and hole-like pockets, respectively. The black dots represent Weyl points. b
Schematic of the linear band crossing for the electron- and hole-like pockets and the Weyl point, also determined by ARPES experiments for the cuts
1–3 shown in a24. c Schematic of Landau levels for three types of band crossings shown in b under high magnetic fields. We adopted the 2D Landau
quantization mode because of the quasi-2D electronic structure of YbMnBi2. d, The normalized in-plane magnetoresistivity MR [= ρxxðBÞ�ρxxðB¼0Þ

ρxxðB¼0Þ ] as a
function of magnetic field along the out-of-plane direction. Inset, the FFT spectra of the SdH oscillations. e The fits of SdH oscillations at 2 and 18 K by the
two-band LK formula (see the Methods section for more details for the fits). The SdH oscillatory component ρosc is obtained by subtracting the
magnetoresistivity background. ρ0 is the zero-field resistivity
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reached as long as the zeroth LL is distinguishable from other
LLs). The quasi-2D electronic structure provides us with an
opportunity to tune the DOS(EF) contributed by the Weyl points
via controlling the zeroth LL’s degeneracy of the Weyl bands by
rotating the magnetic field from the out-of-plane to in-plane
direction. In our experiments, we measured the angular depen-
dences of various longitudinal and Hall resistivities to reveal the
role of the zeroth LL in transport. We observe very unusual
behaviors in these experiments, which can be well fitted by a
model that considers both the interlayer quantum tunneling
transport of the zeroth LLs’ Weyl fermions and the momentum
relaxation transport of the Dirac fermions hosted by hole- and
electron-like pockets.

Results
Material characterization and in-plane transport measure-
ments. The YbMnBi2 single crystals were synthesized using a flux
method (see Methods). We have performed neutron-scattering
experiments on YbMnBi2 single crystals, which not only con-
firmed its tetragonal lattice structure (see Supplementary Table 1
for detailed structural parameters) but also revealed a
C-type antiferromagnetic state below TN = 298 K, with the
ordered moment of 3.789(3) μB per Mn (Supplementary Fig. 1),
in agreement with the magnetic structure reported previously by
Wang et al.28. The Yb spins do not order even down to 4 K.
Although we also observed very weak ferromagnetism in the
magnetization measurements (Supplementary Fig. 2), consistent
with the report by Borisenko et al.24, it could not be resolved in
neutron-scattering experiments within the instrumental resolu-
tion. As also seen by Wang et al.28, the measured in-plane (ρxx)
and out-of-plane (ρzz) resistivity reveal anisotropic electronic
properties (Supplementary Fig. 3). Although both ρxx and ρzz
exhibit metallic temperature dependences, their anisotropic ratio

ρzz/ρxx reaches 36 at T= 2 K, suggestive of a moderately aniso-
tropic electronic structure.

To better interpret our transport data presented below, we first
show the schematics of the Fermi surfaces projected on the kx–ky
plane of YbMnBi2 and its band dispersions along several typical
momentum directions determined by the previous ARPES
experiments24, respectively, in Fig. 1a, b. The Fermi surface of
YbMnBi2 consists of the Weyl points at EF (denoted by black dots
in Fig. 1a) and the hole-like (marked in blue) and electron-like
(red) pockets comprised of linear Dirac bands. The Weyl points
appear at the momentum points where electron- and hole-like
pockets are connected, which is a typical signature of type II Weyl
semimetal29. Given such multiband electronic structure, the
transport properties of YbMnBi2 should be contributed by both
the Weyl points and the hole- and electron-like pockets. Due to
the fact that the Weyl nodes are at EF, while the Dirac bands
forming the hole- and electron-like pockets cross at energies
above or below EF as illustrated in Fig. 1b, the Weyl and Dirac
bands are expected to exhibit distinct magnetotransport behaviors
according to the above discussions. For the Dirac bands, since
their crossing points, i.e., the Dirac nodes, are away from EF
(Fig. 1b), their zeroth LLs are at the Dirac nodes rather than at EF
(Fig. 1c). In this case, quantum oscillations are expected upon
increasing magnetic field. However, for the Weyl bands with their
crossing points at EF (Fig. 1b), since the 2D LL quantization leads
the zeroth LLs to be pinned to EF regardless of magnetic field
strength (Fig. 1c), increasing magnetic field along any direction is
not expected to result in quantum oscillations, but leads to a
monotonic increase in the DOS(EF) of the Weyl bands if the field
is not within the plane. In our magnetotransport measurements,
we indeed observed signatures expected for both the Dirac and
Weyl bands, as will be shown below.

Figure 1d shows the normalized in-plane magnetoresistivity
MR, defined as ρxx Bð Þ�ρxx B¼0ð Þ

ρxx B¼0ð Þ , as a function of magnetic field (up to
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Fig. 2 Interlayer magnetotransport properties of YbMnBi2. a Schematic of the interlayer tunneling of the zeroth LLs’Weyl fermions. b The field dependence
of the out-of-plane resistivity, ρzz(B), under different field orientations at T= 2 K. The inset shows the experimental setup. The solid lines superimposed on
the data represent the fits to Eq. (2) in the text. The fit for θ= 90° is not available since the zeroth LLs disappear for in-plane field. c Angular dependence of
magnetoresistance (AMR), measured under different fields up to 31 T and at T= 2 K. The black curves superimposed on the data represent the fits to Eq. (2)
in the text. At low fields (e.g., 0.1 T), AMR shows the sin2θ dependence expected for the Lorentz effect as shown in the inset, indicating that the interlayer
transport at low fields is dominated by the Dirac band transport as discussed in the text
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45 T) measured at various temperatures for YbMnBi2. Remarkable
Shubnikov-de Haas (SdH) oscillations can be seen from these data
at low temperatures. The fast Fourier transform (FFT) analyses for
the oscillatory components ρosc reveal two oscillation frequencies,
i.e., Fα= 115 T and Fβ= 162 T (see the inset to Fig. 1d). We note
Wang et al.28 previously reported the SdH oscillations of ρxx for
YbMnBi2, but the FFT spectrum derived from their data shows
only a broad peak at about 130 T, contrasted with our observation
of two frequencies at 115 and 162 T. Such an inconsistency may be
due to the fact that their magnetorsistivity measurements were
made only up to 35 T; the limited field range makes it hard to
precisely resolve oscillation frequencies. The SdH oscillation
patterns in our data (Fig. 1d) show remarkable features resulting
from multiple oscillation frequencies above 30 T, i.e., the
oscillation peaks are not equally spaced on the scale of 1/B as
shown in Fig. 1e, clearly indicating that the double frequencies (Fα
and Fβ) revealed in our FFT spectra (inset to Fig. 1d) are intrinsic.
From the analyses of SdH oscillations, we derived Dirac fermion
properties. From the fits of temperature dependences of the FFT
amplitude by the thermal damping factor of the Lifshitz–Kosevich

(LK) formula30, 31, i.e., 2π2kBTm�=�he Bj j
sinh 2π2kBTm�=�he Bj jð Þ (see Methods and

Supplementary Fig. 4), the effective cyclotron masses m*

associated with the oscillation frequencies Fα and Fβ are estimated
to be ~ 0.24m0 (m0, the free electron mass). As noted above, the
Berry phase of π accumulated in cyclotron motion is the
fundamental topological property of relativistic fermions. How-
ever, for YbMnBi2, it is hard to precisely determine the Berry
phase using the commonly accepted LL fan diagram due to the
existence of multiple oscillation frequencies in SdH oscillations.
We evaluated the Berry phases of YbMnBi2 through the direct fits
of the oscillation patterns by the multiband LK formula32 (see
Methods). As shown in Fig. 1e, the SdH oscillation patterns at 2
and 18 K can be best fitted by the two-band LK model when the
higher harmonic components 2 Fβ, 3 Fβ and 4 Fβ revealed in FFT
were included in the fits (note that the 4 Fβ component is weak
and not shown in the inset to Fig. 1d). The extracted Berry phases
from these fits are 0.8π for the Fα bands and −0.6π for the Fβ
bands. This result is based on the assumption that both Fα and Fβ
bands are exactly 2D. Given that the quasi-2D electronic band
structure of YbMnBi2, an additional phase factor of ± 0.25π
should be taken into account31; thus, the Berry phase would be
0.8π± 0.25π for Fα bands and −0.6π± 0.25π for Fβ bands. In either
case, the fitted Berry phases are clearly nontrivial.

Interlayer transport measurements. From the electronic band
structure of YbMnBi2 introduced above (Fig. 1a–c), it is apparent
that the SdH oscillations observed in ρxx(B) result from the Dirac
bands. Our above demonstration of nontrivial Berry phases
provides clear transport evidence for the Dirac fermions hosted
by these bands. As discussed above, for 2D LL quantization, the
Weyl points at EF shown in Fig. 1a would not give rise to any
quantum oscillations. Since the zeroth LLs of Weyl cones are
pinned at EF (Fig. 1c), their increased degeneracy upon increasing
magnetic field would cause DOS(EF) to increase monotonically as
noted above. This effect, though hardly causing any noticeable
features in the in-plane magnetoresistance, results in peculiar
signatures in the field orientation dependence of interlayer
magnetotransport, as we will show below.

In Fig. 2b, c, we, respectively, present the field dependences of
interlayer magnetoresistivity ρzz(θ,B) under various field orienta-
tions and the angular dependences of interlayer magnetoresistiv-
ity AMR [defined as ρzz θ;Bð Þ�ρzz θ¼0;Bð Þ

ρzz θ¼0;Bð Þ ] under different fields at 2 K.
The inset to Fig. 2b illustrates our experimental setup. Both the
ρzz(B) and AMR data exhibit anomalous features attributable to

the quantum transport of the zeroth LL’s Weyl fermions. First,
ρzz(B) displays sublinear field dependence as the field is tilted
toward the z-axis (θ< 90°), in contrast with the scenario of θ=
90°, where ρzz(B) exhibits B2 dependence in a low-field region,
but gradually evolves to a linear field dependence above 10 T
(Fig. 2b). Such an unusual evolution of ρzz(B) with θ cannot be
understood in light of the classical orbital effect or other quantum
effects such as weak anti-localization as discussed in Supplemen-
tary Note 1. Given that 2D LL quantization is absent for θ= 90°
but gradually develops with decreasing θ for θ< 90°, the unusual
sublinear field dependence of ρzz(B) seen at θ< 90° is associated
with LL quantization as discussed below. Second, AMR (Fig. 2c)
exhibits very unusual angular dependence under high fields. At a
field of 31 T, we observed a very sharp peak at θ= 90˚ (B⊥I) and
nearly angle-independent magnetoresistivity below θ= 60˚. With
decreasing the field, the peak becomes gradually suppressed and
broadened; significant suppression and broadening are observed
below 9 T. Surprisingly, when |B| < 1 T, AMR evolves into sin2θ
dependence as shown by the solid fitted curves (e.g., see the data
taken at 0.1 T in the inset to Fig. 2c), in contrast with AMR at
high fields. The sin2θ dependence of magnetoresistivity is
generally expected for the classical orbital effect for which AMR
(θ)∝ Bxy2= B2sin2θ. The strong deviation of AMR from the sin2θ
dependence in the high-field range implies that the interlayer
transport mechanism in the high-field range is distinct from that
in the low-field range.

Discussions
Next we will show it is the zeroth LLs of the Weyl bands that
make the interlayer transport under high fields distinct from the
low-field interlayer transport. As indicated above, the Fermi
surface of YbMnBi2 consists of not only the Weyl points at EF but
also the hole- and electron-like pockets comprised of linear Dirac
bands. Therefore, both the Dirac and Weyl bands should con-
tribute to the interlayer magnetotransport in YbMnBi2. We will
first consider the contribution from the Weyl bands. Since the
Weyl bands’ zeroth LL is locked to EF (Fig. 1c), the Weyl bands’
contribution to transport should come only from the Weyl fer-
mions at the zeroth LLs. Given that the first-principle calculations
predicted the electronic states near EF are all contributed by the
2D Bi square-net layers and the Weyl bands are of 2D char-
acter24, we can reasonably assume the interlayer transport of the
zeroth LLs’ Weyl fermions in YbMnBi2 takes place through
quantum tunneling process as depicted in Fig. 2a. In this case, the
tunneling current of the zeroth LLs’ Weyl fermions is highly
sensitive to the magnetic field and its orientation. If the field is
oriented along the out-of-plane direction and sweeps to a large
magnitude, the tunneling current would enhance remarkably,
owing to the increase of DOS(EF) induced by the enhanced zeroth
LLs’ degeneracy. Since the quasi-particle’s cyclotron motion is
confined within the plane in a 2D limit, rotating the field away
from the out-of-plane direction would suppress LL quantization,
which reduces the zeroth LLs’ degeneracy, thus resulting in the
decrease of tunneling conductivity. Such a phenomenon has been
demonstrated in the pressurized layered organic conductor α-
(BEDT-TTF)2I3, which has a 2D Dirac cone with the node being
exactly at EF in each BEDT-TTF molecular layer33, 34. According
to ref. 33, the tunneling conductance σLL0t due to the zeroth LLs in
a multilayer relativistic fermion system can be described by

σLL0t ¼ A � B cos θj j exp½� 1
2
ed2 B sin θð Þ2
�h B cos θj j � ð1Þ

where A is a field-independent parameter and d is the interlayer
spacing of the neighboring layers hosting relativistic fermions.
When we apply this tunneling model to YbMnBi2, d should be
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the spacing between the neighboring 2D Bi square-net planes
(Fig. 2a), which is equal to 1.0824 nm according to our neutron-
scattering measurements (Supplementary Table 1). As shown
below, such a tunneling model based on the zeroth LLs provides
an excellent interpretation for the unusual interlayer magneto-
transport behavior described above for YbMnBi2.

To make quantitative fits to the ρzz(B) and AMR(θ) data in
Fig. 2b, c using the above tunneling model, we have to take the
Dirac bands’ contribution to the interlayer transport into account.
As discussed above, the SdH oscillations probed in the in-plane
magnetoresistivity (Fig. 1d) indeed reflect the Dirac bands’
contribution to the in-plane transport. Similar SdH oscillations
due to the Dirac bands are also expected in the interlayer mag-
netoresistivity. However, this is not observed experimentally, as
shown in Fig. 2b. This can probably be attributed to anisotropic
mobility of Dirac fermions in YbMnBi2. We assume the Dirac
bands contribute to the interlayer transport through a momen-
tum relaxation mechanism (i.e., coherent band transport). This
assumption is based on the fact that YbMnBi2 exhibits a moderate
electronic anisotropy as reflected in the ρzz/ρxx resistivity ratio (~
36 at T= 2 K; Supplementary Fig. 3). If the Dirac bands were also
highly 2D-like as the Weyl bands are, a large electronic aniso-
tropy would be expected, inconsistent with the experimental
observation. When we combine the Dirac fermion transport
through momentum relaxation with the quantum tunneling
transport of the zeroth LLs’ Weyl fermions (Fig. 2a), the overall
interlayer magnetoresistivity under a field oriented at an angle θ
can be expressed as

ρzz B; θð Þ � 1=σzz B; θð Þ ¼ 1= σLL0t B; θð Þ þ σc B; θð Þ� � ð2Þ

where σLL0t represents the tunneling conductivity of the zeroth
LLs given by Eq. (1) and σc stands for the conductivity due to the
Dirac bands’ transport. In general, σzz should be obtained via
taking the inverse of the resistivity tensor (see Methods). Our
resistivity–conductivity tensor conversion analyses demonstrate
the assumption of σzz≈ 1/ρzz in Eq. (2) is valid for our experi-
mental setup, as shown in Supplementary Fig. 6c. σc in Eq. (2) can
be derived from the field dependence of magnetoresistivity at θ=

90°. As seen in our experiment setup (see the inset to Fig. 2b), at
θ= 90°, the tunneling transport of the zeroth LLs should vanish
due to the absence of quantized LLs, so that the interlayer
transport should be mostly dominated by the momentum
relaxation of the Dirac bands. As shown in Fig. 2b, the ρzz(B,θ=
90°) exhibits a quadratic field dependence in a
low-field range, but crossover to a linear field dependence at high
fields. If we assume interband scattering is negligible, the inter-
layer magnetoresistivity of the Dirac band transport channel can
be assumed to follow the same trend even when the tunneling
transport channel of the zeroth LLs of the Weyl bands sets in for
θ< 90°. Thus, in Eq. (2), σc can be taken as σ0=ð1þ k1 � B2

xyÞ (σ0,
the Drude conductivity; k1, a constant; Bxy= |B|sinθ) for low
fields, but as σ0= 1þ k2 � jBxyj

� �
for high fields. The validity of this

treatment is demonstrated in Supplementary Fig. 6d. With these
approximations, we can reproduce all the field- and angle-
dependent interlayer magnetoresistivity data shown in Fig. 2b, c
using Eq. (2). The solid lines in Fig. 2b, c represent our fitting
curves.

Intuitively, one may expect negative longitudinal magnetore-
sistance (LMR) for B//I (i.e., θ= 0°), since the tunneling transport
channel should give rise to negative magnetoresistance as
reflected in Eq. (1) and the classical orbit magnetoresistance due
to Lorentz effect is absent for B//I. However, we observed a weak
positive magnetoresistance for θ= 4° (Fig. 2b). Such a result can
be understood in term of the competition of the positive mag-
netoresistance component of the momentum relaxation channel
and the negative component of the tunneling channel. In general,
large positive LMR is a generic feature of topological semimetals.
For example, AMn(Bi/Sb)2 (A= Sr, Ba, Ca), which are iso-
structural to YbMnBi2 and Dirac materials, have remarkable
positive LMR for interlayer transport. LMR reaches a few hun-
dreds percent for BaMnBi235, BaMnSb236, and SrMnSb237 at 9 T
and ~ 2 K, even as high as 10,000% at 31 T37. Such large positive
LMR can be attributed to their Dirac band transport. Since the
Dirac nodes in these materials are far away from the Fermi level,
their interlayer transport should not involve the zeroth LL’s
tunneling. Therefore, we can reasonably expect a very large
positive LMR component resulting from the Dirac band transport
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have been shifted for clarity. The solid lines represent the fits by Eq. (3)
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channel in YbMnBi2 due to its structural similarity to AMn(Bi/
Sb)2. However, our observed LMR for ρzz in YbMnBi2 reaches
only 20% even at 31 T (Fig. 2b), which are several orders of
magnitude smaller than those of AMn(Bi/Sb)2 materials at the
same field35–37. The strong suppression of positive LMR in
YbMnBi2 implies that its large positive LMR component expected
for the Dirac band transport channel must be canceled by a large
negative magnetoresistance component caused by the zeroth LL
tunneling of the Weyl bands.

The evolution of AMR from the sin2θ dependence at low fields
to the sharp peak at θ= 90° above 9 T (Fig. 2c) can now be well
understood in light of the theoretical fits based on Eq. (2). At low
fields, the electron- and hole-like Fermi pockets (Fig. 1a) should
make dominant contributions to the transport, since these
pockets should have a much greater DOS(EF) than the Weyl
points. The observation of the sin2θ dependence of AMR at low
fields implies that the contribution of the hole- and electron-like
pockets to AMR follows the classic Lorentz effect for which the
interlayer magnetoresistivity is proportional to Bxy2 [= (|B|sinθ)2].
When the field is remarkably increased, the DOS(EF) of the Weyl
points should increase dramatically. This is because that the Weyl
nodes are at EF in YbMnBi2 as indicated above, such that the
quantum limit of Weyl bands should be reached under a rela-
tively low magnetic field, when the energy spacing between the
zeroth and first LL is greater than the LL’s breadth. Near the
quantum limit of the Weyl bands, the zeroth LLs’ degeneracy
would enhance significantly, thus resulting in significantly
increased DOS(EF) at the zeroth LLs and enhanced tunneling
conductivity. The gradual deviation from the sin2θ dependence in
AMR upon increasing field suggests that the Weyl fermions at the
zeroth LLs play a more important role in interlayer transport
under high fields. Our successful fits of the ρzz(B) and AMR(θ)
data to Eq. (2) strongly support that the zeroth LL’s Weyl fer-
mions contribute to the interlayer transport via a tunneling
process.

Although the LL degeneracy of Dirac bands is also enhanced
upon increasing field, it should not contribute to the unusual
features of AMR at high fields shown in Fig. 2c. Since the
quantum oscillation frequencies of Dirac fermions are high (115
and 162 T; Fig. 1d), the quantum limit of the Dirac bands cannot
be reached until the field is increased above 230 T. Given that our
experiments were conducted below 31 T, the variation of LL
degeneracy should be small for the Dirac bands. Therefore, the
variation of the DOS(EF) of the Dirac bands with the field rota-
tion in the field range of our experiments is expected to be small
and the AMR of the Dirac fermion transport channel should
more or less follow the classical Lorentz effect, i.e., AMR(θ)∝
Bxy2= B2sin2θ, which is only observed at low fields as indicated
above.

Our argument of the tunneling transport of the zeroth LLs’
Weyl fermions is further corroborated by the measurements of
the dependence of Hall resistivity ρzx on field orientation for
YbMnBi2. We note such an experimental approach was used to
demonstrate the interlayer tunneling of the zeroth LL’ Dirac
fermions in the pressurized layered organic conductor
α-(BEDT-TTF)2I338, 39. Figure 3a shows our experimental setup;
the in-plane transverse (x-axis) Hall voltage is measured with
applying the out-of-plane (z-axis) current, and the magnetic field
of fixed strength is rotated within the yz-plane. In a simple metal,
the Hall resistivity for such an experiment setup is given by By/ne,
where By= |B|sinθ is the field component perpendicular to cur-
rent, and n is the carrier density. This leads the Hall resistivity ρzx
to follow a sinθ dependence with the rotation of the field, which is
indeed observed in YbMnBi2 for weak fields (|B| < 1 T), as shown
in Fig. 3b. However, ρzx(θ) starts to deviate from the sinθ
dependence for |B| > 2 T and such a deviation becomes significant

for B> 6 T and cusp-like peaks occur around θ= 90°, as shown in
Fig. 3c. Such unusual behaviors can be well understood in terms
of the interlayer tunneling of the zeroth LLs’ Weyl fermions. For
the Weyl bands, when the energy spacing between the zeroth and
first LL is greater than the LL’s breadth, the DOS(EF) contributed
by the Weyl points should monotonically increase upon
increasing field and is proportional to the out-of-plane field
component |B|cosθ. Therefore, a tanθ dependence is expected for
ρzx(θ) since ρzx∝ By/ne∝ |B|sinθ/|B|cosθ= tanθ. Indeed, we
observed such a dependence, as shown in Fig. 3d, where ρzx(θ) is
plotted against tanθ. It is interesting to note that ρzx(θ) measured
at different fields collapse into a single line (i.e., the black dashed
line in Fig. 3d) in a lower angle region, which is not surprising,
since ρzx∝ tanθ is field independent. At large angles, LL quanti-
zation is suppressed due to reduced Bz, causing the deviation
from the tanθ asymptote. The deviation angle is larger for higher
fields, since the threshold field, Bc,z= |B|cosθc, for the distin-
guishable zeroth LLs can be satisfied at higher angles.

Using the above model, which considers both the interlayer
tunneling transport of the zeroth LLs and the Dirac bands’
momentum relaxation transport, we can interpret the unusual
angular dependence of Hall effect quantitatively. Our successful
fits of ρzz(θ,B) shown in Fig. 2b, c suggests the assumption of
negligible interband scattering is valid. Under this assumption,
the total Hall conductivity σtotalzx can be expressed as

σtotalzx ¼ w1 � σLL0zx þ w2 � σCzx; ð3Þ

where σLL0zx andσCzx represent the Hall conductivities contributed by
Weyl and Dirac bands, respectively. w1 and w2 represent the
weight of the contribution for each type of band. For the zeroth
LL’s tunneling channel of the Weyl bands, its Hall conductivity
σLL0zx under a field oriented at an angle of θ (Fig. 3a) can be
expressed as

σLL0
zx

B; θð Þ ¼ a
By

B2
z
exp �b

B2
y

Bz

 !
; ð4Þ

where a and b are material-dependent constants, By= |B|sinθ,
and Bz= |B|cosθ. This equation holds when the zeroth LL is
distinguishable from other LLs38, 39. The Hall conductivity of the
momentum relaxation channel of the Dirac bands, σCzx, can be
found from the Boltzmann transport theory, i.e.,

σCzx B; θð Þ ¼ σ0
ωcτ

1þ ωcτð Þ2 ; ð5Þ

where σ0 ¼ ne2τ
m� and ωc ¼ eB sin θ

m� . The total Hall conductivity σtotalzx
at the left side of Eq. (3) can be derived via taking the inverse of
the resistivity tensor (see Methods), i.e.,

σzx ¼
ρyyρxz

ρxxρyyρzz � ρxyρyxρzz � ρxzρzxρyy
ð6Þ

where the resistivity tensor elements ρij (i, j= x, y, z) were directly
obtained by measuring the voltage along the + j direction with the
current flowing along the + i direction. With the measured
resistivity tensor elements ρzx (Fig. 3c), ρxx, ρyy, ρxy, ρyx, ρxz and
ρzz (Supplementary Fig. 7a–e), we calculated the angular depen-
dence of the total Hall conductivity σtotalzx θð Þ using Eq. (6). As
shown in Fig. 3e, σtotalzx θð Þ displays a sinθ-like dependence at lower
fields, but strongly deviates from it at high fields and a local
minimum at θ= 90° gradually develops when the field is
increased above 1 T. Such an unusual evolution of σtotalzx θð Þ with
magnetic field cannot be described by the classical transport
model, but can be understood by considering the zeroth LL
quantum tunneling: at low fields, when the zeroth and first LLs
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are not well separated, the quantum tunneling is minimized so
that the total Hall conductivity is dominated by the classical
momentum relaxation transport of Dirac bands (i.e., σCzx). Thus, it
exhibits a sinθ dependence as predicted by Eq. (5), which can be
approximated to σCzx / ωτ / Bj j sin θ for low fields. However, at
high fields, the interlayer zeroth LL tunneling becomes important,
thus leading to unusual angular dependence of σtotalzx . The local
minimum of σtotalzx at θ= 90° is caused by the suppression of the
2D LL quantization when the field is oriented close to the in-
plane direction (θ= 90°). This interpretation is verified by the
quantitative fit of σtotalzx by Eq. (3), as shown in Fig. 3e.

In summary, we have studied the magnetotransport properties
and their dependences on magnetic field orientation of Weyl
semimetal YbMnBi2. We find its ρxx(B) exhibits remarkable SdH
oscillations, from the analyses of which nontrivial Berry phases
were extracted; this verifies the existence of Dirac band crossings
above/below EF. For AMR(θ) and σzx(θ), we observed unusual
angular dependences under high fields. Both the AMR(θ) and
σzx(θ) data can be well fitted by a model, which considers both the
interlayer tunneling of Weyl fermions at the zeroth LLs and the
momentum relaxation transport of other Dirac bands. Our
finding highlights the unusual role of the zeroth LLs in transport,
which is important to further understand the novel Dirac/Weyl
fermion physics.

Methods
Single-crystal preparation. The YbMnBi2 single crystals were synthesized using a
self-flux method with the stoichiometric mixture of Yb, Mn, and Bi elements. The
starting materials were put into a small alumina crucible and sealed in a quartz tube
in Argon gas atmosphere. The tube was then heated to 1050 °C for 2 days, followed
by a subsequently cooling down to 400 °C at a rate of 3 °C h−1. The plate-like single
crystals as large as a few millimeters can be obtained. The composition and
structure of these single crystals were checked using energy-dispersive X-ray
spectroscopy and X-ray diffraction measurements.

Magnetotransport and Hall effect measurements. The magnetoresistance
measurements were performed with a four-probe method. The low-field mea-
surements are performed using a 9 T Physics Property Measurement System
(PPMS, Quantum Design). The high-field measurements were conducted in the
31 T resistive magnet and the 45 T hybrid magnet at National High Magnetic Field
Laboratory in Tallahassee.

The Hall resistivity ρij (i≠ j), including ρzx, ρxz, ρxy, and ρyx, were also measured
using a four-probe method in PPMS. Due to slightly asymmetric electric contacts, a
small but finite longitudinal component ρii is involved in each measured Hall
(transverse) resistivity. Since the longitudinal component ρii follows ρii(θ) = ρii(360̊
− θ), while the Hall resistivity follows ρij(θ)= −ρij(360° − θ), ρij can be separated
from ρii by symmetrizing the data: ρij(θ)= [ρij(θ) − ρij(360° − θ)]/2.

Neutron-scattering measurements. Single-crystal neutron diffraction measure-
ments were performed on HB-3A four-circle diffractometer with the neutron
wavelength λ= 1.005 Å at High Flux Isotope Reactor at Oak Ridge National
Laboratory, and the data were refined with the FULLPROF40.

Determination of Berry phase for the Dirac bands. In YbMnBi2, the Dirac cones
with the nodes located away from EF lead to the observed SdH oscillations with two
major fundamental frequencies (Fig. 1d). For such multi-frequency oscillations,
Berry phases cannot be obtained from the commonly used LL fan diagram, but can
be determined through the direct fit of the oscillation pattern by the multiband LK
formula32, in which the observed SdH oscillations are treated as the linear
superposition of several single-frequency oscillations. Each single-frequency
oscillations can be described by the Lifshitz–Kosevich formula30, 31, which takes
Berry phase into account for a Dirac system21:

ρosc
ρ Bj j ¼ 0ð Þ ¼

5
2

Bj j
2F

� �1=2X
r

1

r1=2
2rπ2kBTm�=�he Bj j

sinh 2rπ2kBTm�=�he Bj jð Þ e
2rπ2kBTDm�=�he Bj j

cos 2π
F
Bj j þ γ

� �
r � δ

	 
� � ð7Þ

where r= 1,2,3,… is the harmonic factor and TD is Dingle temperature. γ ¼ 1
2 � ϕB

2π
and ϕB is Berry phase; δ= 0 and ± 1/8 for the 2D and 3D systems, respectively. In
our fits (Fig. 1e), the oscillation frequencies F and the effective masses m* for each
band are taken as known parameters, obtained from the analyses shown in the inset
of Fig. 1d and Supplementary Fig. 4.

Conductivity and resistivity tensor conversion. In a 3D material, the resistivity
(ρ̂) and conductivity (σ̂) tensors can be expressed as

ρ̂ ¼
ρxx ρxy ρxz
ρyx ρyy ρyz
ρzx ρzy ρzz

2
64

3
75 and σ̂ ¼

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

2
64

3
75: ð8Þ

The conductivity tensor can be obtained by taking the inverse of the resistivity
tensor:

σ̂ ¼ ρ̂�1 ¼ 1
det ρ̂ð Þ adj ρ̂ð Þ ð9Þ

For the magnetic field within the y–z plane, i.e., B= (0, Bsinθ, Bcosθ), the
resistivity tensor elements ρyz, ρzy, ρxy, ρyx, ρxz, and ρzx are expected to have the
following relations: ρyz= ρzy= 0, ρxy= −ρyx, and ρxz= −ρzx. The first relationship
of ρyz= ρzy= 0 is obvious and need not be verified. The latter two relations were
verified with additional measurements, as shown in Supplementary Fig. 7c–e. By
taking the inverse of the resistivity tensor Eq. (9), the conductivity tensor element
σzx can be derived as expressed in Eq. (6), while σzz can be derived as

σzz ¼
ρxxρyy � ρxyρyx

ρxxρyyρzz � ρxyρyxρzz � ρxzρzxρyy
ð10Þ

Data availability. The authors declare that the main data supporting the findings
of this study are available within this article and its Supplementary Information.
Extra data are available from the corresponding author upon reasonable request.
See author contributions for specific data sets.
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