

# Neutron diffraction study of $\text{NdScO}_3$ below 1 K Magnetic structure and hyperfine enhanced polarization of Nd

I. Plaza<sup>a</sup>, E. Palacios<sup>a,\*</sup>, J. Bartolomé<sup>a</sup>, S. Rosenkranz<sup>b</sup>, C. Ritter<sup>c</sup>, A. Furrer<sup>b</sup>

<sup>a</sup> I.C.M.A., CSIC - Univ. Zaragoza, 50009 Zaragoza, Spain

<sup>b</sup> ETH and P.S.I. CH - 5232 Villigen, Switzerland

<sup>c</sup> I.L.L., 156X, 38042 Grenoble Cedex, France

## Abstract

The ordered magnetic structure of the  $\text{NdScO}_3$  perovskite has been studied below its phase transition ( $T_c = 0.953$  K) by means of powder neutron diffraction. Its configuration is  $g_y a_x$  with a magnetic moment of  $(2.1 \pm 0.1) \mu_B$ . The thermal evolution of the integrated intensity of some magnetic peaks shows a strong enhancement below 200 mK, interpreted as due to the hyperfine polarization of the  $^{143}\text{Nd}$  and  $^{145}\text{Nd}$  nuclear moments.

**Keywords:** Magnetic order; Nuclear polarization; Perovskite compounds; Powder diffraction

The  $\text{NdScO}_3$  belongs to a family of orthorhombically distorted perovskites (space group  $\text{Pbnm}$ ,  $Z = 4$ ) [1]. Previous specific heat measurements showed a sharp peak at  $T_c = 0.953$  K, interpreted as the onset of magnetic order of  $\text{Nd}^{3+}$  ions. The aim of this work is to determine the  $\text{NdScO}_3$  magnetic structure below 1 K.

At low temperatures, due to the hyperfine electronic field, the incoherent scattering lengths of  $^{143}\text{Nd}$  and  $^{145}\text{Nd}$  become partially coherent, increasing the intensity of the magnetic reflections. This effect has been observed in  $\text{NdGaO}_3$  [2],  $\text{Nd}_2\text{CuO}_4$  [3], and  $\text{NdFeO}_3$  [4]. We have searched for the same effect in  $\text{NdScO}_3$  below 200 mK.

Powder neutron diffractograms were taken in the ILL (D1B) with  $\lambda = 2.52 \text{ \AA}$ ,  $20 \text{ mK} < T < 1.2 \text{ K}$ , using a  $^3\text{He}$ - $^4\text{He}$  dilution refrigerator. The  $\lambda/2$  radiation was reduced by a pyrolytic graphite

filter. Data were analysed at 500 mK with the FULLPROF [5] program. At other temperatures the integrated intensities of selected peaks were derived from the diffractograms. The atom coordinates have been refined using the diffractogram taken at 5 K, used also to determine spurious peaks and background due to the cryostat.

Fig. 1 shows the observed and calculated patterns. Table 1 shows the refined parameters. The presence of the  $(0\ 0\ 1)$ ,  $(0\ 1\ 1)$ ,  $(1\ 0\ 1)$  magnetic peaks can be interpreted as corresponding to the  $g_y a_x (\Gamma_8)$  configuration in the Bertaut's notation [6] with a magnetic moment of  $\mu = 2.07(13) \mu_B$ . The structure is similar to that of  $\text{NdInO}_3$  (see Fig. 2(b) in Ref. [7]) and quite different from those of the chemically isostructural  $\text{NdGaO}_3$  and  $\text{NdCoO}_3$ , ( $c_z$  mode,  $\mu \approx 1 \mu_B$ ) [7].

Besides, below 200 mK the integrated intensity of the  $(0\ 0\ 1)$ ,  $(0\ 1\ 1)$ ,  $(1\ 0\ 1)$ ,  $(1\ 2\ 1) + (0\ 1\ 3)$  and  $(1\ 0\ 3) + (2\ 1\ 1)$  peaks increases strongly due to hyperfine polarization enhancement.

\* Corresponding author.

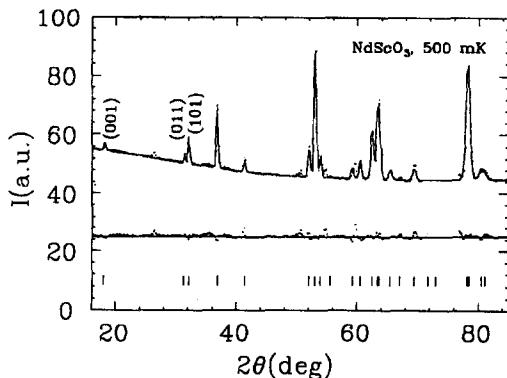



Fig. 1. Neutron powder diffraction pattern of  $\text{NdScO}_3$  at 500 mK. The Al (1 1 1) and (2 0 0) reflections of the sample holder and cryostat produce bands near  $2\theta = 65^\circ$  and  $77^\circ$  and weak ones near  $31^\circ$  and  $36^\circ$  due to the harmonic  $\lambda/2$ .

Table 1  
Refined structural parameters at  $T = 500$  mK. The standard deviation is in parenthesis. s. g. Pb<sub>4</sub>Ni,  $Z = 4$ ,  $a = 5.555(1)$  Å,  $b = 5.744(1)$  Å,  $c = 7.972(2)$  Å,  $R_{wp} = 4.3\%$ ,  $R_{Bragg} = 4.7\%$

|                   | <i>x</i> | <i>y</i> | <i>z</i> |
|-------------------|----------|----------|----------|
| O1                | 0.113(3) | 0.527(5) | 1/4      |
| O2                | 0.686(2) | 0.282(2) | 0.089(3) |
| Sc                | 1/2      | 0        | 0        |
| Nd                | 0.001(4) | 0.024(3) | 1/4      |
| $\mu$ ( $\mu_B$ ) | 0.89(12) | 1.87(13) | 0        |

The magnetic + hyperfine intensity is proportional to the square of the structure factor vector  $F^{m+h}(\tau)$  given by [4]

$$\mathbf{F}^{\mathbf{m}+\mathbf{h}}(\tau) = \sum_r \left[ -\alpha f_r(\tau) \langle \hat{M}_{r\perp} \rangle + \frac{b_{ri}}{\sqrt{I_r(I_r+1)}} \langle \hat{I}_r \rangle \right] \times \exp(i\tau \cdot \mathbf{r}). \quad (1)$$

$f_r(\tau)$  is the magnetic form factor of the atom at  $\mathbf{r}(Nd^{3+})$ ,  $\langle \hat{M}_{r\perp} \rangle$  is the thermal average of the component perpendicular to  $\tau$  of the electronic magnetic moment vector of the atom at  $\mathbf{r}$ ,  $\langle \hat{I} \rangle$  the average of the nuclear spin and  $b_{ri}$  the incoherent scattering length of the atom at  $\mathbf{r}$ . The hyperfine term in the square bracket in Eq. (1) can be

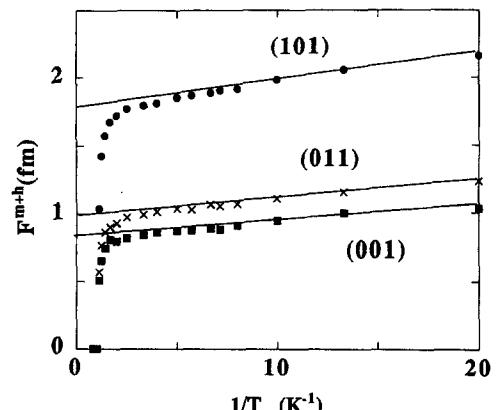



Fig. 2. Thermal evolution of  $|F^{h+m}|$ . The scale factor has been obtained from the nuclear/magnetic factors at 500 mK.

approximated by the high temperature limit of the Brillouin function under a hyperfine field  $B_{hf}$ ; i.e.  $b_{eff} \mu_N B_{hf} / k_B T$  being  $b_{eff} = (5.3 \pm 0.7) \times 10^{-15} \text{ m}$  the isotopic average for  $^{143}\text{Nd}$  and  $^{145}\text{Nd}$  scatterers [4]. The fit of  $|F^{m+h}(\tau)|$  allows to determine the hyperfine field  $B_{hf}$ . Fig. 2 shows a plot of  $|F^{m+h}(\tau)|$  which is linear with  $1/T$  at low temperatures.  $B_{hf}$  deduced from the slope (in the limit  $1/T \rightarrow \infty$ ) of the plot is  $(B_{hf})_x = 50(5) \text{ T}$  and  $(B_{hf})_y = 90(15) \text{ T}$ .  $B_{hf} = 110(20) \text{ T}$ , which is similar to the field in other Nd compounds such as  $\text{NdGaO}_3$ ,  $\text{NdFeO}_3$  or  $\text{Nd}_2\text{CuO}_4$ .

This work was financed by the MAT93/240/C04 CICYT project.

## References

- [1] I. Plaza et al., to be published.
- [2] W. Marti, M. Medarde, S. Rosenkranz, P. Fischer, A. Furrer and C. Klemenz, Phys. Rev. B 52 (1995) 4275.
- [3] T. Chattopadhyay and K. Siemesmeyer, Europhys. Lett. 29 (1995) 579.
- [4] J. Bartolomé et al., to be published.
- [5] J. Rodriguez-Carvajal, M. Anne and J. Pannetier, I.L.L. Report 87R014T (1987).
- [6] E.F. Bertaut, eds. G.T. Rado and H. Suhl, *Magnetism*, Vol. III (Academic Press, New York, 1963).
- [7] I. Plaza et al., these Proceedings (ECNS'96), *Physica B* 234-236 (1997).