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Abstract. The magnetic structure in the ordered phase of the nearly one-dimensional
Heisenberg antiferromagnet ££&uCl, has been measured using elastic neutron scattering.
CsCuCl; crystallizes in the orthorhombi®nma space group with Gt spin chains running

along the crystallographik-direction. Below the ordering temperatufg = 0.62+ 0.01 K the
magnetic structure is incommensurate along the chain direction with a temperature-independent
ordering wavevectog = (0, 0.472 0) (rlu). The occurrence of an incommensurate structure is
shown to be the consequence of frustration on the spins induced by the exchange interaction
between chains. Group theory is used to determine the possible magnetic structures compatible
with the symmetry of the crystal. The results show thaf’at 0.3 K the spin ordering is
cycloidal with spins rotating in a plane that contains the propagation direktignmean-field
calculation of the magnetic ground-state energy including exchange anisotropy effects is used to
study the stability of the observed structure. Values for the interchain exchange constants that
are consistent with the features of the magnetic structure are proposed.

1. Introduction

CsCuCly and CsCoCly, have been proposed as possible one-dimensional (1D) magnetic
materials. Magnetic susceptibility [1] and specific heat measurements [2] have shown that
CsCoCl, behaves like a nearly 103 = % XY antiferromagnet and a neutron scattering
experiment has confirmed the one-dimensional character of the magnetic interactions
[3]. The neutron scattering measurements showed diffuse scattering which suggested an
incommensurate structure, but the extremely low ordering temperafiyre= 0.22 K)
precluded a detailed study of this magnetic structure.,CQO€l, has the same crystal
structure [4] and very similar lattice parameters. Magnetic susceptibility measurements
suggest that it behaves like a nearly 5B= % Heisenberg antiferromagnet with a nearest-
neighbour interactiod = 0.34+0.01 meV between spins within the one-dimensional chains
and a small antiferromagnetic exchange couplitigof the orderrJ’/J = 0.050+ 0.025
between the chains, wherds the number of nearest-neighbouring chains [5]. The purpose
of this paper is to report on the determination of the magnetic structure,€uc¥, at low
temperatures, which gives further information about the magnetic interactions and the ratio
of intrachain and interchain exchange interactions.

0953-8984/96/407473+19$19.5@C) 1996 I0OP Publishing Ltd 7473
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Figure 1. The orthorhombic crystal structure of £L2Cl showing the four independent Cu
spins in the unit cell. The local symmetry axis at each Cu site is indicated by a dashed arrow.

CsCuCly has an orthorhombic crystal structure §fK,SO, type, with space group
Pnma (D3f) [4]. The lattice parameters at 0.3 K are= 9.65 A,b = 7.48 A and
¢ = 1235 A. The structure is made up of CYCl tetrahedra and Csions, as shown
in figure 1. There are four independentuons in the unit cell and they occupy the
crystallographic 4c site with the following positions:
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wherex = 0.23 andz = 0.42 [4]. The predominant exchange interaction is between
neighbouring Cu spins along the crystallographidirection with the exchange path Cu—Cl—
Cl—Cu, so the magnetism is dominated by parallel magnetic chains aligned aldngutise

as shown schematically in figure 2. There are four independent chains in the unit cell and the
Cu atoms in chains (3) and (4) are displaced®with respect to those in chains (1) and (2).
The main intrachain exchange interactidtends to align the Cu spins antiferromagnetically
along the chain. The interaction between the chains displacé®bintroduces an element

of frustration, since each spin interacts with two oppositely aligned spins as shown in
figure 2. We will show that these competing interactions lead to an incommensurate spin
ordering along the chain. A similar situation is encountereg-MnO, where the competing
exchange interactions stabilize an incommensurate helimagnetic structure with spins rotating
in an easy plane perpendicular to the direction of propagation [6].
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Figure 2. A schematic diagram of chains (1) and (4) which are displaceb/Dyvith respect to

each other. The arrows on the Cu spins indicate a possible spin ordering in the case when only
the exchange interactian along the chains was present. The exchange interagtiphetween

the chains induces a frustration on the spins as described in the text.

The outline of the paper is as follows. Section 2 gives details of the experimental
arrangement and section 3 presents the results. Section 4 contains both a theoretical analysis
of the possible magnetic structures allowed by symmetry and a mean-field calculation of
the magnetic ground-state energy. This is followed by analysis and discussion of the results
in section 5. The conclusions of the paper are summarized in section 6.

2. Experimental details

The sample used in the neutron scattering experiments was a large single cryst@wts
(1x 1x 0.5 cn? in volume), which was reddish-brown in colour and whose mosaic spread
was measured to be.9The crystal was grown from aqueous solution with double excess
of CsCl at a constant temperature of 310 K, as described in [7].

Susceptibility measurements by Carlet al [5] have suggested that the magnetic
ordering temperature of @SuCl, is below 1 K. To achieve these low temperatures in
our experiments two different cooling systems were used. The first system was a sorption-
pumped®He fridge that provided a variable-temperature control at the sample position in the
range 0.3—300 K with an accuracy at the lowest temperatures0d05 K and very good
stability. The second cooling system used was a dilution fridge insert working inside an ILL
variable-temperature cryostat. In this case the temperature range available was 0.1-300 K
but with an accuracy of only-0.02 K at low temperatures. The sample was aligned with
the a- and b-axes in the scattering plane, wherés the direction of the magnetic chains.

The neutron scattering measurements were performed using the TAS7 three-axis crystal
spectrometer at the Risg National Laboratory, Denmark and the IN14 three-axis crystal
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Figure 3. A schematic diagram of théz, b) scattering plane showing the measured nuclear
(filled circles) and magnetic reflections (open circles), where the size of the circles represents
the intensity. The magnetic peaks occur at satellite positions around reciprocal-lattice points, as
described in the text. The labels F, C, G and A show the extinction rules associated with the
four different spin structures allowed by symmetry, as described in section 4.1.

spectrometer at the Institut Laue—Langevin, Grenoble, France. Both spectrometers have cold
sources to provide the incident neutrons. A variable-curvature pyrolytic graphite (PG)(002)
monochromator was used in the incident neutron beam and the energy of the scattered
beam was analysed using the (002) reflection from a flat PG crystal. The spectrometers
were used to study the elastic scattering with an incident neutron energy of 5 meV. A
cooled Be filter was used before the sample to eliminate the higher-order neutrons. The
collimations were chosen to be’20PEN-66-OPEN (TAS7) and OPEN (48-40-40-40

(IN14). The low-temperature magnetic structure was determined from the elastic scattering
measured when scanning the wavevector transfer through the magnetic Bragg reflections in
reciprocal space along the [100] and [010] directions, and transverse and longitudinal with
respect to the scattering wavevectar §nd ¢, 20) scans). From the integrated intensities

of these reflections, the magnetic structure factors squared were obtained by correcting for
the resolution effects [8], the sample mosaic spread [9] and the magnetic form factor of the
CuU* ions [10].

3. Measurements and results

The intensity of the elastically scattered neutrons was measured for the wavevector transfer
varying in reciprocal space alongi| &, 0] directions withH an integer, where throughout

this paper we shall refer to all wavevector transfers in terms of reciprocal-lattice units of
the crystallographic structure. At = 0.3 K well defined peaks were observed foclose
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Figure 4. Two sample scans along the chain direction showing the magnetic pegks ét3 K.
The solid lines are fits to Gaussians.

to half-odd-integer values, as shown schematically in figure 3. These peaks are magnetic
in origin and could not be observed at temperatures alfave- 0.62 K. A characteristic
feature of the magnetic reflections is that their positio§ iis not exactly at the half-odd-
integer values expected for antiferromagnetic ordering, but displacedH Faren, strong

peaks were observed with a displacement that alternated with increasing an intensity

that decreased monotonically with increasing the wavevector transfer. HFodd, two
distinct families of peaks were observed. The peaks in the first family occurred at the same
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positions in& as for H even and had comparable intensities except that in this case the
intensity of peaks decreased much faster with increasinbhe peaks in the second family
were displaced symmetrically oppositely from the half-odd-integer valuésasfcompared

with the peaks in the first family and had a much lower intensity, but which increased with
increasing position along the -axis.

The characteristic double-peak structure observed#fardd is presented in figure 4(a)
which shows a scan along ,[8, 0] with two well defined peaks centred &3, 0.474 +
0.002 0) and (3,0.528+ 0.0002 0). The single-peak structure observed r even is
illustrated in figure 4(b) which presents a long scan along[R] showing a magnetic peak
at (2, 0.5284+ 0.0002 0).
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Figure 5. Intensity of the (0, 0.528, 0) magnetic reflection as a function of temperature. Inset:
the solid curve is a fit to a power-law behaviour as described in the text.

The periodic arrangement of magnetic moments in the ordered phase gives rise to
extra peaks in the scattering intensity at satellite positions around reciprocal-lattice points
atQ = (H,K,L) + q (denoted agH, K, L)*), whereq defines the periodicity of the
magnetic structure. The positions of the observed magnetic reflections show that the spin
ordering is modulated along thieaxis, i.e. the direction of the magnetic chains. A single
value of the ordering wavevecter = (0, 0.472 0) (rlu) is sufficient to account for all
measured peaks. This suggests that the magnetic structure is agimgiemmensurate
modulation propagating along tlieaxis.

Scans through thé010~ magnetic reflection with increasing temperature showed that
the ordering wavevector is within error independent of temperature and that the intensity
decreases as the temperature approachesé&pépint7y = 0.62+ 0.01 K, as shown in
figure 5. The inset of the figure shows a fit (solid line) of {d&0)~ magnetic peak intensity
to a power-law behaviouf o< (Ty — T)%, wherep is the critical exponent associated with
the order parameter. The fit gives a value of the exponet6f0.31+ 0.025.
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4. Theoretical analysis

4.1. Group theory analysis of possible magnetic structures

In this section the magnetic structures compatible with the symmetry of the crystal are
determined. There are four independent Cu spins in the unit cell and each spin belongs to
a different magnetic sublattice. With each spin having three components it tlye and
z-directions, the magnetic structure is determined by giving the 12 spin components of the
spins in each unit cell. The 12 components form a representation for the magnetic structure
and group theory can be used to reduce this representation to its irreducible representations,
as described for example in [11].

Let m; ; be the Fourier components of the magnetic moment distribution, whéese
the magnetic sublattice. Since the crystal structure has inversion symmetry and the moment
distribution must be reabn_; ; = m’,;j. Only magnetic satellites witly = (0, 0.472 0)
(rlu) were observed, so these are the only Fourier components that will be considered. The
magnetic moment in unit celland on sublatticg is then given by

my ;= mq,.,-e’iq""’ + m_q,jé'q'r’ = 2|myg, ;| coq - T, + ¢q,;) Q)

wherer; defines the position of the unit cell (expressed in units of the direct lattice) and
¢q,; IS a phase associated with sublattice

The wavevectolg describing the periodicity of the magnetic structure in the ordered
phase has an associated space groygh@t depends on the symmetry of the underlying
crystal structure. According to Landau’s theory of continuous phase transitions [11], the
order parameter of the transition is a linear combination of the basis vectors belonging to
one and the same irreducible representafign of the space group & For a magnetic
phase transition the basis vectors are formed from the spin components on the different
sublattices, and the vectors that can coexist belong to the same irreducible representation.

Table 1. Irreducible representations of the space groypf@ q = (0, ¢, 0), whereg = e inq,

G, e 2, a n Basisvectors
rn 1 B 1 B A, Gy C
r 1-8 1 -8B Gy, Ay, F;
I's 1 B -1 -8 Cy, Fy, A
r., 1-g -1 B F,Cy,G,

The irreducible representations of,Gare obtained from the point group of the
Pnma space group, B = {e, 2,,2,,2,, 1, my, my, m.}, wherex, y andz are along the
crystallographica-, b- and c-axes, respectively. The symmetry elements that leave the
ordering wavevectog = (0, ¢, 0) invariant are the little groupg= {e, 2,,, m,, m.} = Ca.

In the Pnma space group the point rotation, 2s the twofold screw axis 1@(%,y,0),

the mirror planem, is the diagonal glide plan& L [100] with glide vector%(b + 0

and the mirror planen, is the axial glide planex L [001] with a glide vector%a, as
shown in figure 6(a). The space group of the wavevegt@ then G = {e, 2;,,n,a}. It
contains the elements of, gvith the associated translatioms that make them symmetry
elements of thePnma space group. Table 1 gives the irreducible representations, @fsG

Ty ({wilti}) = yq(w;)€7'4%, where they,, are the characters of,§12]. The four possible
basis vectors for the magnetic moments in the four sublattices are given by the column
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Figure 6. (a) Projection of the magnetic atoms on the b) plane showing the symmetry
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each atom. (b) Projection of the magnetic atoms on(the) plane.
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where = €774 is a phase factor that occurs because sublattices (3) and (4) are displaced
along the propagation direction kY2 with respect to sublattices (1) and (2). For example
if the structure corresponds to an F mode the following relations hold:

— _ T _ i
Mg 2 = Mg 1 my3=¢€"Imgy, Mga=€"1my1. (3)

In this structure the spins in sublattices (1) and (2) are parallel and so are the spins in
sublattices (3) and (4), but there is a differencerqgf between the phases of the spins in
the two pairs of sublattices.

The magnetic structure factor is given by

4
Fy@Q) = Z mg, ;€97 4)
=1

whereQ = (H, K +¢, L) is the wavevector of the magnetic superlattice peaksgrid the
position of spinj in the unit cell (expressed in units of the direct lattice). For reflections
in the (a, b) plane and for a spin structure corresponding to basis vd€tadhe magnetic
structure factor is

FJ(Q) = 4mg181.2,(COS27 Hx)8k 2, 4 1SIN(2m Hx)8x 2511) (5)

and similar expressions can be obtained for the other modes. Hexdhe Kronecker
symbol andp ands are integers. Since = 0.23 ~ 1/4 this spin structure gives strong
reflections forH = 2p, K = 2s only. Similarly, every other mode gives strong reflections
only in certain Brillouin zones: G (whe® = 2p + 1, K = 25 + 1), C (whenH = 2p,

K =25+ 1) and A (whenH =2p + 1, K = 25). Figure 3 summarizes these results.

4.2. Exchange interactions and ground-state energy

The energy and the stability of possible spin configurations modulated along the chain
direction have been studied using a mean-field approximation [14]. The ground-state
energy has been calculated for the isotropic Heisenberg exchange HamiltBnian

Zm, oSy - Sy, Where J,. . is the exchange interaction between spinsraand r/,

and the interaction is restricted to nearest neighbours only. In the mean-field approximation
every spin in sublattice satisfies

4
)\Srl_, = Z Z Jn,,-,mr‘fsr,/vj (6)
j=1r

wherer;; indexes an atom in unit cell and on sublatticeé. Fourier transformation of
equation (6) gives the eigenvalue equation

(m—ahmy =0 (7)

wheren is a 4x 4 matrix with elements;; = Y, Jy,, ., , €7~ the interaction between

sublattices andj. The column vectorsn, ; = 3", S, €7~ are the eigenvectors of

the spin configuration antdis the 4x 4 identity matrix. The origin of magnetic sublattice

i is at atomrg; andq = (0, ¢, 0) is the ordering wavevector of the magnetic structure.
The interaction matrix is given by

e11 €12 €13B*  ewp”

e12 €11 euaB”  esp” ®)
e138 ewf en 12
c14B €138 e12 £11
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wheregi; = 2J11 €C0OS Z'L'q, g10 = 4J12, €13 = 4J13 Cosmtq, €14 = 4.]]_4COS]T(,] andﬂ =g g,

Every spin has two neighbours on its own sublattice and four neighbours on each of the
other three sublattices, as shown in figure 6(b). For example a spin on suljlAttickeracts

with two nonequivalent pairs of spins on sublatti@ and since all spins lie in the same
b-plane the terny;, is the sum of the four interactions with no additional phase factor.
There is no loss in the generality of the problem on definipgas the average interaction
between a spin on sublatti¢®) and its two types of nonequivalent neighbour on sublattice
(2), so thatn;, = 4J1,. Similarly, Ji3 is the average interaction between one spin on
sublattice(1) and its two types of nonequivalent neighbour on sublatt®)e whereas/i4

is the interaction between one spin on sublattiteand its four equivalent neighbours on
sublattice(4). The exchange interaction between spins on the same sublattice is denoted
by J11. The solutions of the eigenvalue equation (7) are the basis vectors given in equation
(2) with the wavevector-dependent eigenvalues

AF =€11+ €12+ €13+ €14

Ac =611+ 610 — €13 — €14 ©)

AG = €11 — €12+ €13 — €14

AA = €11 — €12 — €13+ €14.
The total energy for a spin structure corresponding to basis ve¢tisr Ex = 2N iz M?,
where M is the magnitude of the ordered moment a¥dis the number of unit cells in

the crystal. The ordering wavevectors which minimize the energy of each basis vector
separately are given by

Jiz+ Jia
CoSTqyr = —COSTqpr = ——o——-
cosTgs = — costge = 1214
A G 271
with the minimum energies for each basis vector given by
(J13+ J14)?
Ar(g =qF) = Ac(g =qc) = —2J11+4J12 — ST A
Ji1
U 1a)? (12)
13— J14
rq@ =qa) =rc(q@ =q6) = —2J11—4J12— — 7
11

5. Analysis and discussion

5.1. The magnetic structure
The intensity of a magnetic reflection @ = (HK L) £ q is given by [11]

1(Q) = cp? FA(Q) Fi(Q)? (12)
where f(Q) is the magnetic form factoy = 2.7 fm is the scattering length for a moment
of 1up, Fi(Q) is the component of the magnetic structure factor perpendicular to the
scattering wavevector and is a proportionality constant that can be calculated from
the intensity of the nuclear Bragg peaks. By comparing the observed neutron scattering
(figure 3) with the expressions for the scattering from the four possible spin basis vectors,
three coexisting basis vectors are identified: scattering by a véttgives rise to the

strong peaks with even, while the scattering for the peaks with odd arises from a
basis vectorG and a smaller basis vecter. All of these spin structures have the same
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Table 2. Magnetic structure factors squared extracted from different measurements on the
magnetic Bragg peaks as described in the text.

IF(Q)F? |F(Q)? IF(Q)?
Mag. Basis Peak Scan Scan

peak  vectors a, a, a, amp. [010] [100]  4M,|? 4M,? 41M.|?
(010~ C, 0 0 1 757 757 757 — — 757
010" C, 0 0 1 663 573 561 — — 5994 0.45
(030~ C, 0 0 1 576 809 475 — — 620+ 1.39
(110~ G, 0.00 067 O 473 515 443 — 711+044 —

110t Gy 0.01 021 O 104 111 Q74 — 457+0.76 —

(100t A+ G, 031 001 O Q25 — — 058 — —

(120~ Ay +G, 077 Q001 O Q38 060 — 057+0.14 — —

(210~ C. 0 0 093 548 576 489 — — 577+ 0.38
(210" C, 0 0 093 354 434 285 — — 383+ 0.65
(310" A, +G, <001 082 0 397 413 424 — 501+0.13 —

(300 A, + G, 003 012 0 Q67 090 107 — 733+1.36 —

modulation wavevectogq = (0, 0.472 0). Table 1 shows that there is just one irreducible
representatio”; compatible with the scattering frod;, G, and A, basis vectors The
spin components along theaxis arise from aC type of spin structure, whereas the spin
components along the- and y-axes arise from basis vectossand G, respectively.

Since the three coexisting basis vectors are associated with spins along perpendicular
axes, the intensity at a magnetic reflection for unpolarized neutrons is a superposition of the
intensities from each spin structure taken separately. The magnetic structure factor squared
for the spin structure along theaxis is

|Fip (Q))? = 4MZa, (13)

where M, is the magnitude of the ordered moment along 4kexis. Similar expressions
hold for thex- and y-axes with the appropriate trigonometric factats a, anda, given

by
ay = 81.20+1(COS (2 Hx)8k 2p 11 + SINF(2T Hx)Sk 2,) SIP et
dy = 841.2041(COS (2T HX)8 2, + SIP (2 Hx)Sk 2 41) COS (14)
a; = 8412, (COF(2m Hx)8 2p11 + SIP (2w HX)8x 2p)

wherewy is the angle betwee® and the [100] axis.

Table 2 presents the magnetic structure factors squared (in arbitrary units) as extracted
from measurements of the magnetic peak amplitudes and integrated intensities for scans
through the magnetic peaks along tti®0 and (010) directions in reciprocal space. The
normalization constants are chosen so that the value corresponding t0lie peak
is the same in all three sets of measurements. The last three columns of the table give
the amplitudes squared of the ordered moment alongrthe- and z-axes obtained by
comparing the magnetic structure factors for each peak, averaged over the three sets of
measurements, with the predictions of equations (13) and (14). (I0®* and (120~
peaks contain contributions from both basis veciysandG,. The ordered moment along
x is estimated by subtracting the contribution of the moment alobg using the intensity
of the neighbouring peak&l10)~ and (110 %, respectively. The average values for the

1 With the observation that if the ordering wavevector is definedgas (0,0.528 0) then the irreducible
representation i, and the modes arg;, A, andG,. The two descriptions are totally equivalent.
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ordered moments estimated from intensities of different magnetic peaks are consistent to
within 20%. This discrepancy is due to the intensity of peaks at large wavevectors being
smaller than expected. A similar discrepancy was found in the case of nuclear peaks where
the (220) reflection was 30% less intense than expected when compared with the (200) and
(020) peaks which had the expected ratio of intensities.

The resulting distribution of the magnetic intensity among the three coexisting basis
vectors isA,:G,:C, = 0.57 £ 0.15:518 + 0.12:561 £ 0.25, which gives the moment
amplitude ratioM,:M,:M, = 0.75+0.1:2.274+ 0.03:23640.05. In this spin configuration
the components of the ordered magnetic moment are given by equations (1) and (2):

1 j=1

x -1 i =2

ml’j:MxCOS(q-rl,j—I—(/)x)x 1 §=3

1 j=4

1 ji=1

V —1 :2

m;J = My cosq -7+ @) X 1 j_=3

-1 j=4

1 j=1

. 1 =2
my ; =M, coS(q-r,J + @) X 1 §:3 (15)

-1 j=4

wherer; ; is the position of the atom in celland on sublatticg .

At low enough temperatures, we expect the ordered moment to attain the saturation
value, and the only incommensurate structure compatible with the spins having a constant
ordered amplitude is a helimagnetic ordering in which the spins may rotate on a circle within
an easy plane. This structure is consistent with the calculated ratio between amplitudes of
spin componentsM, ~ M, > M,) and is allowed by equation (15) if all three sine-
wave modulations couple together so that the spins rotate in a circle situated mainly in the
(b, ¢) plane. The small but nonzero magnetic moment alongctheection shows that this
plane of rotation is tilted towards the-axis, so the rotation plane makes a dihedral angle
¢ =tam (M, /M) = 17.7+2° with the (b, ¢) plane, where is the average a#f, and M.

Taking into account the local symmetry at the Cu sites and the orientation of the magnetic
easy axis it is probable that the plane of rotation of the spins contairisdkis and is tilted
towards the local easy axis which makes an aagie 38> with the c-axis [4], as shown in
figure 1. The ordering is then cycloidal along the chains with spins rotating in a plane that
contains the propagation directidn The phase differences between the four independent
chains in the unit cell can be determined from equation (15) and are shown schematically
in figure 7(a). All of the spins in one chain have the same plane of rotation and consecutive
spins make an angler; = 16992, as illustrated in figure 7(b). Chains (1) and (3), which
are related by inversion symmetry, have parallel easy planes, but the rotation of the spins
occurs in opposite directions. This easy plane is obtained fronitthe plane by rotation
around theb-axis with an anglep in the anti-clockwise direction. The same is true for
chains (2) and (4), the only difference being that their easy plane is obtained frain the

plane by rotation around thie-axis with an angley in the clockwise direction. This spin
ordering is obtained from equation (15)¢df = (7/2), ¢, = 0 andy, = —(/2).

The absolute magnitude of the ordered magnetic moment was estimated by comparing
the intensity of each magnetic peak with the intensity of the closest nuclear peak, the value
for the latter being given by yx1) = c|Gwukr)|> Wherec is the same proportionality
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Figure 7. (a) A schematic diagram of the easy planes and sense of rotation for the spins in the
four magnetic chains in the unit cell of &3uCly. (b) A diagram of the parallel chains (1) and

(2) showing the cycloidal spin ordering propagating along the chains. Notice the opposite sense
of rotation of the spins in the two chains and the fact thatztlvemponents are always parallel
whereas ther- and y-components are antiparallel. This is a consequence of the superposition
of spin structures of typ€., G, and A,.

constant as in equation (12) ad# k., is the nuclear structure factor. Comparison was
made between values of the peak amplitudes and integrated intensities for scans through
the Bragg points in the [100] and [010] directions in reciprocal space and angular scans
o and (0, 29). The nuclear peaks used for reference were the (020), (200) and (220)
Bragg reflections. The resulting amplitudes of the ordered magnetic moméntdl.3 K

are M, = (0.24+£0.02pp, M, = (0.78+ 0.02up and M, = (0.84+ 0.04)u 5. Room
temperature ESR measurements of ghfactor [13] gave for the saturation value of the
magnetic momend = gupS the valuesM, = 1.10ug, My, = 1.04up and M, = 1.15up.
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Our measurements show that there is a reducionS = (25+ 2)% in the amplitude of

the ordered spin along the main ordering directiprendz, which may be due to quantum
fluctuations. The excitations in the ordered phase and the zero-point spin reduction will be
considered in a forthcoming paper.
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Figure 8. Behaviour of the threefold-degenerate energy levels of the four basis véGtersG
and A of the isotropic exchange Hamiltonian with respect to the modulation wavevector. The
arrow indicates the measured value of the ordering wavevector

5.2. Magnetic energy levels for the isotropic system

This section compares the magnetic energy levels of different spin configurations and
analyses the conditions in which the observed magnetic structure is the most stable one.
The interaction Hamiltonian considered is the isotropic Heisenberg exchange. The effects
of a small magnetic anisotropy are postponed until the next section.

In the theoretical analysis in section 4 it was shown that any allowed magnetic structure
in Cs,CuCly consists of a superposition of basis vectors belonging to one of the irreducible
representations of the space group £and the results show that the ordering is associated
with T';.  In the absence of any anisotropy a mean-field calculation gives four triply
degenerate energy levels corresponding to the four types of basis ¥eafQrG and A, as
shown in equation (9). The degeneracy is a consequence of equal energies for the ordering
with spins along the-, y- andz-axes. Each of these energy levels has a dispersion versus
ordering wavevectog and, for small values of the interchain exchanges, has a minimum
at q close to the zone boundary of the crystallographic unit cell alongrthdirection, as
derived in equation (10). Since the observed magnetic structure consists of strong vectors
C and G with an ordering wavevectag = 0.472 (rlu), this suggests that both structures
are stable at thay and have only a small energy difference. A possible behaviour for the
energy levels in this case is shown in figure 8. In the following we shall concentrate only



Neutron scattering study of the magnetic structur€efCuCl, 7487

on g-values in the first Brillouin zoneg(< 0.5) since values of on the other side of the
zone boundary provide an equivalent description, as explained earlier.

Just below the transition temperature the magnetic structure is a sine wave associated
with the basis vector with the lowest energy level and the ordering wavevector corresponds
to the minimum in the dispersion of this level. On decreasing the temperature below
Ty the amplitude of the ordered moment increases and the incommensurate single-sine-
wave ordering becomes unstable because it predicts that at certain sites the total ordered
moment is zero. A more stable structure is a helimagnetic ordering in which the ordered
moment has a constant value on every site and the spin rotates in a plane. This ordering
is then given by a superposition of at least two sine waves and the ordering wavevector
is at an intermediate value between the most stablef the constituent sine waves. On
decreasing the temperature bel@yy there is a gradual transition between these two types
of incommensurate structure with a corresponding change in wavevector. Measurements on
CsCuCly show that the ordering wavevector is, within error, independent of temperature
for 0.3 K < T < Ty, which suggests that both basis vectérand G have energy minima
at very close values af, and in this case equation (10) givég ~ 0 andJi4/J11 = 17%.

The energy gap between the two levels.is— Ac = —8J12, with level C being the lowest
if Ji2 < 0 (ferromagnetic) and the two levels overlapping s = 0. The energies in
figure 8 are obtained from equation (9)fs =0, Ji4/J11 = 17% andJy,/J11 = —0.5%.

5.3. Magnetic anisotropy. Crystal-field effects

In the following we shall study the origins of magnetic anisotropy and its effects on the
energy of different spin configurations. The free?Cuon has a 38 (L = 2) fivefold-
degenerate orbital ground state which is split by the crystal field of theligand ions in
CsCuCly [15]. The local symmetry at Cu sites is nearly tetrahedral with a small tetragonal
distortion along one of the fourfold axes, the point group symmetry beipgt®a good
approximation [4]. The local symmetry axes are indicated by dashed lines in figure 1 for
each of the four Cu atoms in the unit cell. In the given crystal-field environment the orbital
ground state is a singlé®?) = (1/v/2)(| + 2) — | — 2)), where|M,) is an eigenstate of the
orbital angular momentum and the quantization direction is along the local symmetry axis.
Taking the spin degeneracy into account the ground state becomes a d#&uhbtet where
the first label denotes the orbital state and the second the spin state. Through the spin—orbit
coupling higher orbital states are mixed into the ground state [16], which in a first-order
approximation has the wavefunctions
_ ] A S A
I+) =12, +) AlI2 )+ ﬁAo| 1-)
) )\' A} )\'

|—) =12, )+A1I2, ) foAoHl’H
where)x = —828 cnt! is the spin—orbit coupling in the free ion, ang = 4800 cnt! and
A1 = 7900 cnt! are the energies of the higher orbital states relative to the ground state
[15]. The resultingg-values aregg = 2—8x/A; andg, = 2—2x/Ag and they qualitatively
reproduce the observed uniaxial anisotr@ggy> g, [13]. An effective spinT = % can be
associated with the ground-state doublet with the effective spin operators being related to
the real spin operators by

Sy =yTy
S}'/ = )/]‘yr
SZ/ = pT:_/
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wherez’ is the local symmetry axis, and = y and ¢, y’, z’) form a right-hand coordinate
system. The renormalization factogs and y are given byp = 1 — (A/Ag)? and

y = 1—2(A/A0)*> — 2(A/A1)% Sincep > y this leads to anisotropy in the exchange
interactions, the easy axis for the spins being the local symmetry; @iigicated for each
spin in the unit cell in figure 1.
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Figure 9. The splitting of the low-lying energy levels far = 0.472 (rlu) in the presence of
anisotropy.
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Figure 10. Behaviour of the energy levels of the irreducible representdtioim the presence of
exchange anisotropy. The measured value of the ordering wavevector is indicated by a vertical
arrow.

By transforming from the local coordinate system for each of the four Cu atoms to the
crystallographic axes, the exchange Hamiltonian can be expressed in terms of the effective
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spins along the:-, y- andz-axes. A mean-field theory calculation of the magnetic ground-
state energy following the lines of section 4.2 shows that the overall effect of anisotropy is
the splitting of the threefold-degenerate energy levels obtained in the isotropic case. The
basis vectorg,, Cy, G, and A, alongy are still eigenvectors of the anisotropic exchange
Hamiltonian, but with the energy levels renormalized by an overall factoiThe anisotropy

in the exchange interaction couples basis vectors aloagd z, but since the anisotropy

has the symmetry of the space group, only basis vectors belonging to the same irreducible
representatiol” are coupled together, i.€, and A, in I';. Figure 9 shows the low-lying
energy levels foy = 0.472 (rlu) in the presence of anisotropy and for the same values of
the interchain exchange interactions as in figure 8. All levels are shifted upwards in energy
because both renormalization constamtandy < 1. For a given basis vector, the energy

of the spin configuration with spins alongis lowest since the-axis is closest to the easy
axes of the spins, and the energy of the spin configuration with spins alasdighest
because the-axis is a hard axis for all of the spins. The overall lowest energy level is
I'1(C,, A,) which denotes a basis vector of the irreducible representation which consists

of mainly the vectorC, with a small admixture ofd,. Figure 10 shows the behaviour of

the resulting energy levels of tH& irreducible representation in the presence of anisotropy
and for the same interchain exchange interactions as in figure 8, where the basis vectors
are|r1) = b1C, + baA,, |A2) = G, and|i3) = —boC, + b1 A, with g-dependent values of

the coefficient$; andb,. At g = 0.472 the coefficients ark; = 0.996 andb, = —0.081

and inT'; the lowest energy level i€, with a small admixture ofA,, followed by G, and

then A, with a small admixture ofC,. The magnetic structure predicted by figures 9 and
10 is a transverse sine wave with basis ve&tqiC,, A,) just belowTy and a helimagnetic
ordering with a superposition of stats(C,, A,) andG, at low temperatures. This result
agrees with the observed structure at low temperatures consisting of strong &ctord

G, with a less intense vectof,. The negative sign db,/b; suggests that there is a phase
difference ofr between the phases of the spin orderings aloramd z which results in a

tilt of the plane of rotation of the spins from tlig, ¢) plane towards the local easy axis for
each chain, which is consistent with the structure drawn in figure 7(a). An arbitrary small
value of J;, = —0.5%J3; was used throughout the calculations. The reason for choosing
J12 < 0 is that otherwise level; would be lower in energy tha€ in figure 8 and the basis
vector with the lowest energy would b&(G,, F,), leading to a magnetic structure totally
different to the one observed. Also, the comparable values of the observed amplitudes of
the vectorsC and G in the magnetic structure suggest that the energy gap between them
AG — Ac = —8J12 is relatively small.

The admixing ratio ofd, into C, can be estimated from measurements of the ordered
moments ratioM, /M, and a direct comparison with the theoretical prediction shows that
the present formalism underestimates the admixing ratio. This may be due to the fact that
effects such as mixing of p states into the orbital ground state of the i6n and covalency
from the CI ligand ions were neglected. These effects were shown to contribute to the
magnetic anisotropy and to allow for the corrgetalues to be obtained [15]. The admixing
ratio of A, into C, depends strongly on anisotropy and increases with increasing anisotropy
factorp/y.

In a search for another mechanism that would lead to a splitting of the threefold-
degenerate energy levels of the isotropic exchange Hamiltonian and thus distinguish between
spin orderings along the-, y- andz-axes, we have calculated the dipolar energy of different
spin configurations. The dipolar magnetic field on each site was computed numerically by
summing contributions from ferromagnetically aligned spins situated on successive planes
perpendicular to thé-axis, allowing for the modulation phase factor, as described in [6].
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The resulting splittings in the level, for example, are of the order of 1® meV and
predict that the levels in order of increasing energy @re C. and C,. This result is to

be compared with the splittings due to effective spin anisotropy which are of the order of
1072 meV and predict the succession of energy levaleéC., A,), I's(C,, A.) and C,, as
shown in figure 9. This comparison shows that although the dipolar interaction distinguishes
between basis vectors along y and z, the energy difference is one order of magnitude
smaller than the energy difference predicted by the effective spin anisotropy and that the
energy levels cannot explain the observed magnetic structure.

6. Conclusions

The magnetic structure of @SuCly has been studied by elastic neutron scattering using
three-axis techniques. The magnetic ordering is incommensurate along the crystallographic
b-direction which coincides with the direction of main exchange interaction between spins.
Results and analysis show that the structure is cycloidal with spins rotating in a plane
that contains theb-axis, with two different planes of rotation in the unit cell. The
incommensurate ordering was shown to be the consequence of frustration induced by the
interaction between spins in chains having atoms displacedzyThe observed magnetic
structure was shown to belong to the irreducible representhtiaf the space group £of

the ordering wavevector. A mean-field calculation including effective spin anisotropy was
used to find the conditions in which the observed spin configuration has the lowest energy
of all of the magnetic structures allowed by symmetry. Dipolar energy effects were also
considered, but found to be insignificant. Approximate values for the interchain exchanges
that are consistent with the observed features of the magnetic structure have been proposed.
We have been unable to find an explanation for the difference in the interchain exchange
values based on simple superexchange arguments.
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