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Abstract. Neutron diffraction (» = 0.504 A) has been used to show that below
T. = 27 + 3 K. GdBe,, exhibits a spiral structure. The propagation vector is parallel to ¢
and independent of temperature. The magnetic moments M of the Gd** ions are perpen-
dicular to the ¢ axis. The thermal variation of M can be accounted for by means of a
molecular field approximation (J = 7/2, ¢; = 2).

1. Introduction

The rare-earth (RE) beryllides REBe,; crystallise in the cubic NaZn, ;-type structure,
space group Fm3c, with: 8 RE in (a) (} 1 1) (cubic point group symmetry 43), 8 Be, in
(b} (000), and 96 Beyin (i) (0 y z) with y ~ 0.114 and z ~ 0.176. Magnetic experiments
on REBe,; (Bucher et al 1975, Herr et al 1975) with RE = Gd, Tb, Dy, Ho and Er
have shown an antiferromagnetic behaviour with Néel temperatures Ty obeying de
Gennes’ law,

Neutron diffraction experiments on REBe,; (Vigneron et al 1980, Vigneron 1981)
with RE = Tb, Dy, Ho and Er have revealed incommensurate and/or commensurate
magnetic structures. For Ty < T < Ty, TbBe,; and HoBey; exhibit an incommensurate
spiral structure, with a propagation vector t equal to $c¢* (1 — &(T)) and magnetic
moments perpendicular to the ¢ axis. For these compounds the low-temperature
magnetic structure observed at T < Ty, as well as the magnetic structure at T < Ty
for RE = Dy and Er, is a commensurate structure (magnetic cell (a, a, 3a); moments
are perpendicular to ¢).

These observed effects result from the competition between indirect exchange
interactions and anisotropy. In as much as this kind of competition is absent in GdBe; s,
due to its negligible magnetocrystalline anisotropy, it is obviously of interest to deter-
mine the magnetic structure of a material such as GdBe ;. for which exchange interac-
tions play a dominant role.

2. Experimental procedure

2.1. Experimental conditions

The GdBe,; sample was prepared by high-frequency induction melting in a BeO
crucible, in a pure argon atmosphere, starting from 99.99, pure Gd and Be.
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The large absorption cross section of natural Gd for thermal neutrons
(6, ~20000b at / ~ 1 A) prevents detailed neutron diffraction studies. However
experiments can be performed at a smaller wavelength (Morin er al 1978): 6, ~ 800 b
at / ~ 0.5 A, Measurements were carried out on a powder sample at the high flux
reactor in Grenoble (D, spectrometer) with ~ = 0.504 A. The linear absorption coeffi-
cient, measured experimentally, was g = 2.5c¢cm . The sample holder was cylindrical
with an 8 mm diameter. Several neutron diffraction patterns were obtained in the
paramagnetic region (T = 31 K) and below Ty (T = 20K, 12K and 3 K).

2.2. Profile refinement

The powder patterns were refined by the profile analysis technique (Rietveld 1967,
Hewat 1973) which minimises:

2
M= Zwi (,\‘i(obs) - :_.\'i(calc)>

where y;{obs) and yj(calc) are the observed and calculated intensities at any 20; of the

diagram. The statistical weight w; is proportional to 1/(y{obs) + estimated back-
ground at 26;) and c¢ is a scale factor.

Although determination of the background is quite easy for the nuclear pattern at
T= 31K (figure 1), it is much more difficult at T lower than Ty (figures 2, 3 and 4)
when nuclear and magnetic peaks cover the whole diagram. However, as the differences
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Figure 1. Profile refinement for crystalline structure (T = 31 K). In figures 1. 2. 3 and 4 the
vertical lines indicate the experimental neutron counts and their accuracies. defined by
counts +2, counts. The upper full curve is the calculated profile and the lower full curve

corresponds to diffuse background scattering. Bragg peaks are indexed in the («. «. ¢ cubic
cell.
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between the background at T < Ty and the background at T = 31K are mainly due
to paramagnetic scattering, we have taken:

background (T < Ty) = background (31 K) — «(T)f?

where f is the magnetic form factor of Gd** and »(T) is a parameter to be refined in
the Rietveld profile refinement program. The difference in diffuse scattering at tem-
peratures above (T = 31 K) and below the ordering transition temperature Ty, 2(T)f >
represents that part of the paramagnetic scattering which becomes ordered at low
temperatures. Consequently »(T) is proportional to M2, where M is the average
atomic magnetic moment in the ordered magnetic lattice.

The results of the profile refinements {see tables 1 and 2) lead to

31(4) at T=20K
A(TyM? = { 32(4) at T=12K
32(2) at T = 3K.
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Figure 2. Profile refinement for magnetic structure (T = 3 K). The calculated profile corres-
ponds either to an incommensurate magnetic structure with a propagation vector
7 = 0.284 ¢* (curve A) or to a commensurate magnetic structure t = § ¢* (curve B). In
both cases. nuclear (hk{) and magnetic (hk!*) Bragg peaks are indicated in the (a. a. «)
cubic cell.
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Figure 3. Profile refinement for magnetic structure (T = 12K). The calculated profile
(upper full curve) corresponds to an incommensurate magnetic structure with = = 0.285 ¢*.
Nuclear (hkl) and magnetic (hkl*) Bragg peaks are indexed in the (a, ¢, a) cubic-cell.

These results are evidence that the determination of the background at T < Ty is
satisfactory.

Finally, in order to analyse the GdBe,; magnetic structure, we have generalised
the Rietveld profile refinement by extending it to incommensurate magnetic structures.

3. Results

3.1. Crystalline structure (T = 31 K)

Figure 1 shows the experimental GdBe, ; nuclear pattern at T = 31K together with
the calculated profile. The Fm3c nuclear structure parameters are listed in table 1. The
scattering lengths at 4 = 0.504 A were taken as by, = 0.774 x 10~ % cm (Bacon 1972)
and bgy = 1.08(5) x 10~ 2 cm: b, was considered as a parameter in the refinement
process and the value obtained compares well with by = 1.1(1) x 107!? cm (Morin et
al 1978).
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Figure 4. Profile refinement for magnetic structure (T = 20K). The calculated profile
(upper full curve) corresponds to an incommensurate magnetic structure with ¢ = 0.29 ¢*,
Nuclear (hkl) and magnetic (hki*) Bragg peaks are indexed in the (a, a, a) cubic cell.

Table 1. Nuclear structure of GdBe, ; at T = 31 K (profile refinement results) with

R = (Z,- wi[vi(obs) — (1/0)y(cale)}2\!'2
P Zwi(y(0bs))?

_ Zx|Filobs) — (1/c) Filcalc))

Rx T xFZ(obs)

where Fg 1s the nuclear structure factor for K = ha* + kb* + I¢*.

Cubic cell parameter a=1020(1) A
y = 0.1155(5)

z = 0.17724)
Bgy = 0.2(3) A?
By, = 1.2(3) A?
R, = 7.65%
Ry =135%

96(i) positional parameters
Isotropic Debye parameters

Profile reliability
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Table 2. Magnetic structure of GdBe;; at T = 20K. 12K and 3K (profile refinement

results) with

R = (Z(-u‘,[y,-(obs) -1 v)‘\‘,‘(ca)c)]:‘)1 :
P Ziwi(yy{obs))?

_ ZgllJglobs)? — (1 c)dglcale)
x| Jxlobs)?

2

Ry

where J ¢ is the magnetic structure factor.

T=20K T=12K T=3K

Magnetic moment, M. 5.4(2) 6.1(2) 6.6(1)
per Gd*~ unit ()
Propagation vector. t 0.29014) ¢*  0.285(3)¢*  0.284(2) ¢*
Cubic cell parameter, u(A) 10.20(2) 10.19(2) 10.25(2)
Background. x 910(50) 1180(50) 1400(50)
{arbitrary unit)
Profile reliability {°,)
R, 7.1 6.5 7.2
Ry 5.5 5.0 4.9

Since, for uR = 1, the ratio of absorption correction factors at 260 maximum and

minimum values is A(20..., = 24 );A(260 = 0 ) = 1.015 no absorption correction was
used. In the experimental conditions / = 0.504 A, 20 < 24°. uR = 1. absorption could
be accounted for by a negative temperature factor B defined by:

A(20)/A(0) = exp (—2B sin*0)/2?)
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Figure 5. Determination of the Néel temperature 7Ty of GdBe,;: (x) observed intensity,

{{) background, at 280 = 4.75°.
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and equal to —0.045 A2, However the nuclear structure parameters are not sensitive
to such a variation in the B factors and. in particular, no significant difference in the
results of table 1 is obtained when Bgy = 0.

3.2. Magnetic structure at T = 3 K

Previous magnetic measurements on GdBe, ; (Bucher et al 1975) showed that GdBe,,
is antiferromagnetic below Ty = 257 K. To establish the magnetic structure at
T = 3 K. both commensurate and incommensurate models were used in the profile
refinement. Figure 2(curve B) shows clearly that the commensurate magnetic structure
T = ¢*/3 (magnetic cell: (¢. a. 3a)) does not fit the experimental 26 reflection positions.
In figure 2(curve A) the calculated profile corresponds to an incommensurate spiral
structure, with a propagation vector = 0.284(2)c* and magnetic moments
M = 6.6(1) up perpendicular to the ¢ axis.
The magnetic structure factors for K = (ha* + kb* + Ic*) + t:

2

Ikl = ——= D {Z 0.27 fM exp[2in(ha* + kb* + Ic*)-r,
\j ‘

were calculated with the Gd* " magnetic form factor of Freeman and Desclaux (1979).

3.3. Thermal variation of the magnetic structure

Figures 2, 3 and 4 show GdBe,; neutron diffraction patterns at T = 3K, 12K and
20 K. The results of the profile refinement for the magnetic structure are summarised
in table 2.

The propagation vector t of the spiral structure is independent of temperature.
This property allows us to study the thermal variation of the 002~ satellite intensity
only at 20 = 4.75" (figure 5).

For T=3K, 12K and 20K the neutron background was estimated from
T = 31K as explained before (§2.2). Neutron diffraction determination of the Néel
temperature (figure 5) then leads to Ty = 27 + 3 K, consistent with the value of
T, = 25.7 K obtained from susceptibility measurements (Bucher et al 1975).

The Gd*®~ magnetic moments M are perpendicular to the propagation vector of
the structure. Figure 6 shows M as a function of T/1x.

3.4. Molecular field coefficients in GdBe, ;

We shall now discuss magnetic susceptibility and neutron diffraction results in a
molecular field approximation. From magnetic susceptibility measurements we can
obtain the paramagnetic Curie temperature 6, Bucher er al (1975) measured
6, = 25 K for GdBe, ;. From neutron diffraction, we know that GdBe, ; is helimagne-
tic below Ty = 27 K, with ferromagnetic (001) planes of moments M perpendicular to
c. Let ¢, be the angle between magnetic moments in adjacent planes:

¥o = 21 1°¢/2 t = 0.285 ¢*.
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Denoting the molecular field coefficients by Jg (within each plane), J, (between
nearest-neighbour planes) and J, (between next-nearest-neighbour planes), for an heli-
magnetic structure, the molecular field H,, may be written as:

Hy=(Jo+2J,cos¢py + 2J,c0820,) M
where 0, Ty and ¢, are related to Jo, J, and J, through:

0, = ClJo +2J; +2J,) (1)
Tn=C(Jo +2J,c0os 0y + 2J, cos 20¢) 2)
cos oy = —J,/4J, (3)

where C denotes the Curie constant of Gd** (J = {, g, = 2).
From the experimental results 8, = 25K, Ty = 27K, 7 = 0.285 ¢*, and from equa-
tions (1), (2) and (3) we get:

CJy =143K CJ, =89K CJ, = =-35K.

Below the Néel temperatures Ty, the magnetic moment M = ¢g,J is given, in the
molecular field treatment, as the solution of:

o= 2,30 + D] (T§/T) o}

where 4,(x) is the Brillouin function. This molecular field prediction (full curve) is
shown in figure 6. The agreement between theory and experiment is quite reasonable.

8.—

M (pg)

T1Ty

Figure 6. GdBe,; magnetic moment (in ug per Gd** ion) as a function of T/Tx. The
experimental Gd** magnetic moment is either deduced from Rietveld profile refinement of
a neutron powder pattern (M) or obtained from the thermal variation of the 002~ magne-
tic Bragg peak (0O). The experimental error is taken as four Rietveld standard deviations
{Sakata and Cooper 1979). The full curve is the molecular field prediction for the magnetic
moment for J = 72 and ¢, = 2.
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Bucher et al (1975) also studied the influence of an external magnetic field on the
GdBe, ; spin configuration: a non-linear magnetisation behaviour was observed for
H> Hg=5kOeat T=14K.

When a magnetic field is applied to a spiral structure, for sufficiently large fields,
one ultimately arrives at a ferromagnetic arrangement. The critical field Hq, for which
complete ferromagnetic alignment is observed is (Nagamiya 1967):

Ho = [(Tx = 0, CIM

which gives for GdBe;: Hy = 10 + 10kQOe for M = 7uy and is based on the rela-
tively large uncertainty in the measured quantity Ty — 6, However the transition
from spiral to ferromagnetic structure is complex in nature, going through various
intermediate steps (Herpin and Meriel 1961, Nagamiya 1967). A precise determination
of these steps on GdBe, ; would require a single crystal: as the experimental results on
GdBe, ; were obtained on polycrystalline samples, we can only say that Hg = 5kOe is
not inconsistent with H, ~ 10 kOe.

4. Conclusion

The magnetic structure observed in GdBe,; at temperatures below Ty is an incom-
mensurate spiral structure, with a propagation vector independent of T. This magnetic
structure is determined by exchange interactions only: GdBe,; is a compound with
negligible magnetocrystalline anisotropy.

The role of anisotropy is evidenced by the magnetic structures observed in REBe,;
compounds with RE different from Gd. At T = 0K the only observed structure is
commensurate (magnetic cell: (4, a, 3a)). At higher T an incommensurate structure can
be observed (for RE = Tb and Ho) with a propagation vector t depending on tem-
perature (Vigneron 1981).

A qualitative interpretation can be given. At T = 0K we can argue that the
anisotropy is greater than the exchange, thus leading to a commensurate magnetic
structure. In the competition between exchange (incommensurate spiral structure of
GdBe, ;) and anisotropy (commensurate magnetic structure), the relative importance
of the two terms varies with temperature: at T is lowered, the role of anisotropy is
increased. It results in a modification of the helimagnetic structure (t varying with T,
distortion of the spiral) followed by a lock-in at the commensurate ¢ = ¢*/3 propa-
gation vector. For RE = Dy and Er, the anisotropy is sufficient at T = Ty to guaran-
tee the commensurate structure.
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