

The Magnetic Structure of RbMnBr₃

Cite as: AIP Conference Proceedings **10**, 659 (1973); <https://doi.org/10.1063/1.2946987>

Published Online: 03 July 2008

C. J. Glinka, V. J. Minkiewicz, D. E. Cox, and C. P. Khattak

[View Online](#)

[Export Citation](#)

ARTICLES YOU MAY BE INTERESTED IN

[Spin waves in the triangular antiferromagnet CsMnBr₃](#)

Journal of Applied Physics **61**, 3409 (1987); <https://doi.org/10.1063/1.338762>

Lock-in Amplifiers
up to 600 MHz

Zurich
Instruments

THE MAGNETIC STRUCTURE OF RbMnBr_3

C. J. Glinka and V. J. Minkiewicz*
 University of Maryland, College Park, Maryland 20742

D. E. Cox**
 Brookhaven National Laboratory, Upton, N.Y. 11973

C. P. Khattak
 SUNY at Stonybrook, N.Y. 11790
 and Brookhaven National Laboratory, Upton, N.Y.

ABSTRACT

The magnetic properties of the CsNiCl_3 -type compound RbMnBr_3 have been studied by powder neutron diffraction and susceptibility measurements. Below $T_N = 8.8 + 0.1^\circ\text{K}$, the compound exhibits antiferromagnetic order. The Mn^{+2} moments lie parallel to the basal plane of the hexagonal lattice and form antiferromagnetic chains along the c axis. In the basal plane the spins form a spiral which differs from the simple triangular arrangement found in other compounds of this type in that the turn angle is about 130° rather than 120° . The Mn^{+2} moment extrapolated to 0°K is $3.6 + 0.15\mu_B$. This large reduction in the magnetic moment is believed to reflect strong zero-point spin wave deviation. Similar reduction of the Ni^{+2} moment has been observed in CsNiCl_3 and RbNiCl_3 .

INTRODUCTION

RbMnBr_3 is one of a class of isostructural ABX_3 compounds which have received extensive study recently as a result of their quasi one-dimensional magnetic properties.¹ In these compounds the $(\text{BX}_3)^{-1}$ complexes form closely linked chains of octahedra along the c -axis of the hexagonal lattice. The one-dimensional character arises primarily because these chains are widely spaced in the basal plane with the result that the transition metal ions, Mn^{+2} in the present case, are separated by about 7\AA in the basal plane and by only 3\AA along the c -axis.

Neutron diffraction measurements were performed on a powder sample of RbMnBr_3 using a triple-axis spectrometer. Graphite crystals were used in both the monochromator and analyzer positions with their (002) planes oriented to Bragg reflect the same wavelength so that only elastically scattered neutrons were finally detected. In this way both the peak-to-background ratio and the angular resolution were enhanced without serious reduction in intensity. A wavelength of 2.46\AA was employed to further improve the resolution of the powder patterns. The $\lambda/2$ component at this wavelength was selectively scat-

*Work supported by NSF.

**Work supported by U.S. Atomic Energy Commission.

tered out of the beam by a high efficiency pyrolytic graphite filter.²

CHEMICAL STRUCTURE

RbMnBr_3 was prepared by evaporation of a hydrobromic acid solution of reagent grade Rb and Mn carbonates, followed by melting in an atmosphere of anhydrous HBr. As far as could be ascertained the compound has not previously been reported. It was found to be isostructural with CsNiCl_3 , which has the hexagonal space group $P6_3/\text{mmc}$ (D_{6h}^4). There are two formula units in the primitive cell which has

lattice constants $a = 7.36 \text{ \AA}$ and $c = 6.52 \text{ \AA}$ at 4.5°K . The Rb^{+1} ions are at the positions $(1/3, 2/3, 1/4)$ and $(2/3, 1/3, 3/4)$, the Mn^{+2} ions occupy the $(0, 0, 0)$ and $(0, 0, 1/2)$ sites, while the Br^{-1} ions are at $+(x, 2x, 1/4)$, $+(x, \bar{x}, 1/4)$ and $+(2\bar{x}, \bar{x}, 1/4)$. Intensities calculated with $x = 0.164$ are compared in Table I with those observed for a room temperature scan. Several peaks which could not be indexed appeared in the room temperature data and remained unchanged over the entire temperature range investigated and so are believed to be due to non-magnetic impurities. The impurity content was estimated to be about 5% from the relative intensities.

Table I Comparison of observed and calculated nuclear intensities for RbMnBr_3 at room temperature.

hkl	$I_{\text{OBS}}(\text{RT})$	I_{CAL}
(100)	545	528
(101)	10	8
(110)	140	148
(002)	5220	5330
(201)	7430	7299
(112)	360	320
(202)	590	653
(300)	30	36
(103)	10	1
(220)	925	1003
$R = \sum I_{\text{OBS}} - I_{\text{CAL}} / \sum I_{\text{OBS}} = 0.03$		

MAGNETIC STRUCTURE

All of the magnetic structures previously found for CsNiCl_3 -type compounds have been commensurate with an enlarged hexagonal unit cell with dimensions $\sqrt{3}a \times \sqrt{3}a \times c$, where a and c refer to the fundamental chemical cell. The a axis of this magnetic cell makes an angle of 30° with the a axis of the chemical cell. Figure 1 shows a diffraction pattern of RbMnBr_3 obtained at $T = 4.5^\circ\text{K}$. The results of scans of the three prominent magnetic peaks in this figure are shown in Fig. 2. Indicated in these figures are the positions of magnetic peaks of the enlarged magnetic cell indexed on the fundamental chemical cell. The data in these figures show that in contrast to the single diffraction peak usually observed for compounds of this type there occur multiple peaks displaced by varying amounts from the predicted positions. If this splitting is ignored, the combined intensities of each set of multiple peaks closely fit those calculated from a triangular model like that found for other

CsNiCl_3 -type compounds. In this model the spins lie within the basal plane and alternate along the c axis forming antiferromagnetic chains. The spins in the basal plane form a spiral with a turn angle of 120° .

The observed splitting of the magnetic peaks can be understood as arising from a modification of the triangular model in which the spiral turn angle deviates from 120° by some small angle θ . The propagation vector of this more general structure is

$$\vec{\tau} = (1/3 + \theta/2\pi)\vec{a}^* + (1/3 + \theta/2\pi)\vec{b}^* \quad (1)$$

where a^* and b^* are reciprocal basis vectors of the chemical cell.

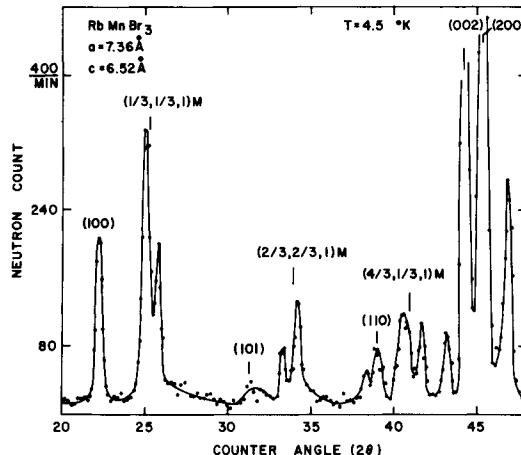


Fig. 1 Neutron diffraction pattern of RbMnBr_3 . Indexing is based on the primitive chemical cell. Magnetic peaks are designated by the letter M. The peaks at 38.2° , 43.3° and 46.8° could not be indexed but were observed to be non-magnetic.

ever, the length of the scattering vector $\vec{\tau}$ is increased while the lengths of the vectors $\vec{G}_{101} - \vec{\tau}$ and $\vec{G}_{011} - \vec{\tau}$ are decreased by equal amounts. As a result the $(1/3, 1/3, 1)$ peak of the triangular model is split into two components; the multiplicity of the component shifted downward is twice that of the component shifted upward in angle. The splitting and relative intensities of the other magnetic peaks shown in Figs. 1 and 2 can be accounted for in a similar fashion. The positions of the magnetic peaks in these figures are also correctly given by the modified model for $\theta = 8.5 \pm 1.4^\circ$.

Integrated intensities calculated from both the modified and unmodified triangular models are compared with experimental values in Table II. The positions of the magnetic peaks derived from the two models are also compared in the table. The table shows that the triangular model would fit the data very well if the splitting of the

The spin configuration generated by Eq. 1 is depicted in Fig. 3. The propagation vector of the triangular model is a special case of Eq. 1 for $\theta = 0$. The magnetic scattering vectors, \vec{Q} , are related to the propagation vector $\vec{\tau}$ by

$$\vec{Q}_{\pm} = \vec{G}_{hkl} \pm \vec{\tau} \quad (2)$$

where \vec{G}_{hkl} is a nuclear reciprocal lattice vector and where \pm is odd. From Eqs. 1 and 2 it is seen that for the triangular model ($\theta=0$) the scattering vectors $\vec{G}_{001} + \vec{\tau}$, $\vec{G}_{101} - \vec{\tau}$ and $\vec{G}_{011} - \vec{\tau}$, for example all have the same magnitude and therefore contribute to a single magnetic peak with indices $(1/3, 1/3, 1)$. If θ is greater than zero, how-

ever, $\vec{G}_{001} + \vec{\tau}$ is increased and $\vec{G}_{101} - \vec{\tau}$ and $\vec{G}_{011} - \vec{\tau}$ are decreased in magnitude. As a result the $(1/3, 1/3, 1)$ peak of the triangular model is split into two components; the multiplicity of the component shifted downward is twice that of the component shifted upward in angle. The splitting and relative intensities of the other magnetic peaks shown in Figs. 1 and 2 can be accounted for in a similar fashion. The positions of the magnetic peaks in these figures are also correctly given by the modified model for $\theta = 8.5 \pm 1.4^\circ$.

magnetic peaks were not resolved. It is this splitting that is the essential feature of the data which establishes the modified triangular model as the correct structure. As noted in Table II, the data can best be fit for a strikingly low value for the Mn^{+2} moment of only $3.3\mu_B$.

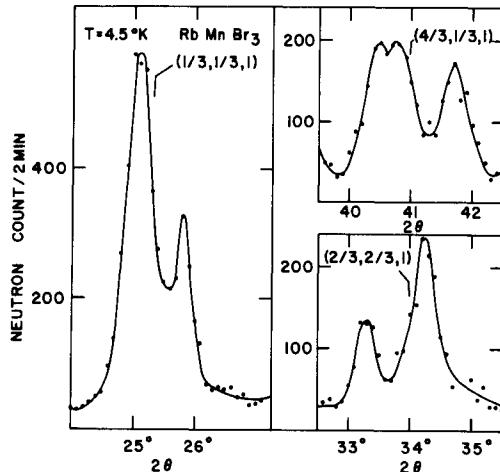


Fig. 2 Detailed structure of the magnetic peaks shown in Fig. 1. The indices and indicated positions are those predicted by the triangular model.

Finally Fig. 4 illustrates the results of susceptibility measurements on a poly-crystalline sample of $RbMnBr_3$ as a function of temperature. The broad minimum in χ_M^{-1} shown in the figure is similar to that often observed for such compounds and is characteristic of linear antiferromagnetic chains.¹ The sharp break in χ_M^{-1} near $10^{\circ}K$ marks the transition to three-dimensional order. The transition temperature was more precisely determined from the temperature dependence of the magnetic diffraction peaks to be $T_N = 8.8 \pm 0.1^{\circ}K$. Fisher³ has calculated the susceptibility of a linear chain for the

Table II Comparison of observed magnetic intensities with those calculated for the triangular and modified triangular models. The intensities are designated by the peak positions shown in Fig. 2.

$2\theta_{OBS}$	$I_{OBS}(4.5^{\circ}K)$	Modified Model		Triangular Model	
		$2\theta_{CAL}$	I_{CAL}	hkl	I_{CAL}
25.1°	131	25.1°	124		
25.8°	53	25.8°	57	$(1/3, 1/3, 1)$	183
33.3°	21	33.2°	26		
34.2°	53	34.3°	47	$(2/3, 2/3, 1)$	73
40.5°		40.4°			
40.8°	56	40.8°	55	$(4/3, 1/3, 1)$	81
41.7°	22	41.7°	25		
		$\mu = 3.3\mu_B$		$\mu = 3.4\mu_B$	

infinite spin case. Applying the results of the calculation to RbMnBr_3 , the data in Fig. 4 yield an exchange constant of $J_s = 12^\circ\text{K}$ between the Mn^{+2} ions along the c -axis. The magnetic intensity data, when extrapolated to 0°K , give a limit value for the Mn^{+2} moment of only $3.6 \pm 0.15\mu_B$. This large reduction in the magnetic moment is believed to reflect strong zero-point spin wave deviation⁴. Similar effects were observed in studies of CsNiCl_3 ⁵ and RbNiCl_3 ⁶ which resulted in values for the Ni^{+2} moment of $1.05\mu_B$ and $1.30\mu_B$ respectively.

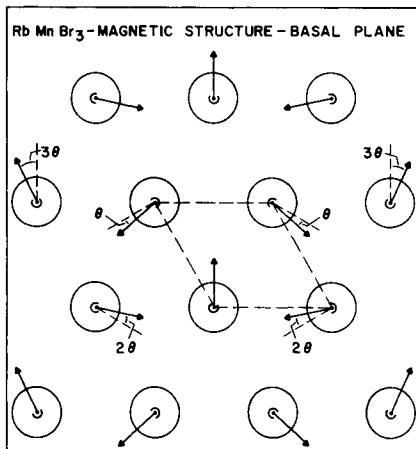


Fig. 3 The basal plane of the magnetic structure of RbMnBr_3 showing the fundamental chemical cell. The angle θ measures the departure of the moment directions from those of the triangular model.

The occurrence of a modulated arrangement incommensurate with a simple multiple of the chemical cell is rather surprising. It may be contrasted with the ideal triangular structure observed in CsMnBr_3 ⁷, and presumably reflects some subtle difference in more distant neighbor exchange interactions.

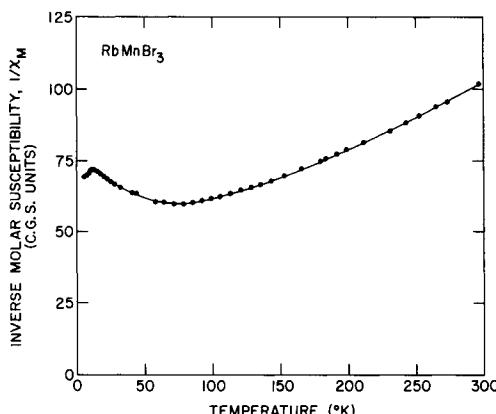


Fig. 4. Inverse molar susceptibility of RbMnBr_3 as a function of temperature.

REFERENCES

1. N. Achiwa, J. Phys. Soc. Japan 27, 561 (1969).
2. B. O. Loopstra, Nucl. Instrum. Methods 44, 181 (1966).
3. M. E. Fisher, Am. J. Phys. 32, 343 (1964).
4. P. A. Montano, E. Cohen, and H. Shechter, Phys. Rev. B6, 1053 (1972).
5. D. E. Cox and V. J. Minkiewicz, Phys. Rev. B4, 2209 (1971).
6. W. B. Yelon and D. E. Cox, Phys. Rev. B6, 204 (1972).
7. M. Eibschutz, R. C. Sherwood, F. S. L. Hsu, and D. E. Cox, AIP Conference Proceedings, Magnetism and Magnetic Materials 1972.