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Coupled Superconducting and
Magnetic Order in CeColns

M. Kenzelmann,»? Th. Strissle,® C. Niedermayer,® M. Sigrist,* B. Padmanabhan,® M. Zolliker,*
A. D. Bianchi,® R. Movshovich,® E. D. Bauer,® ]. L. Sarrao,® J. D. Thompson®

Strong magnetic fluctuations can provide a coupling mechanism for electrons that leads to
unconventional superconductivity. Magnetic order and superconductivity have been found to coexist
in a number of magnetically mediated superconductors, but these order parameters generally
compete. We report that close to the upper critical field, CeColns adopts a multicomponent ground
state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing
superconductivity in a first-order transition at the upper critical field leads to the simultaneous
collapse of the magnetic order, showing that superconductivity is necessary for the magnetic order.
A symmetry analysis of the coupling between the magnetic order and the superconducting gap
function suggests a form of superconductivity that is associated with a nonvanishing momentum.

eColns is a clean ambient-pressure d-

wave superconductor (/) and crystal-

lizes in a tetragonal structure (Fig. 1).
Because of its proximity to a magnetic quantum
critical point, it features strong antiferromagnetic
correlations that result in an enhancement of the
effective electronic mass and heavy-fermion be-
havior (2). However, CeColns undergoes a tran-
sition to superconductivity before magnetic order
can be established (2, 3). The superconducting
gap function has probably a ds.y, symmetry
(4-7), and it is generally believed that supercon-
ductivity in CeColns is mediated by magnetic
fluctuations. The Fermi surface is strongly two-
dimensional (8, 9), and superconductivity in an
applied field is Pauli-limited (/0), that is, it is
destroyed by a coupling of external magnetic
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fields to the spins of the Cooper pairs and not by
orbital depairing. CeColns features an unusual
field-temperature (H-7') phase diagram (11, 12):
below 7, = 0.31 7. = 1.1 K (7, critical temper-
ature), the transition from the normal to the su-
perconducting state is first-order (10, 11). Further,
there is evidence for a second superconducting
phase, the “Q phase,” which exists only when 7' <
0.3 K and with high fields close to the upper
critical field (17, 13, 14). It has been suggested
(11, 15) that this high-field phase may represent a
superconducting phase that was proposed by Fulde,
Ferrell, Larkin, and Ovchinnikov (FFLO) and that
carries a finite momentum as a result of the Zeeman
splitting of the electron bands (16, 17).

A rich interplay between magnetic order and
superconductivity is characteristic of heavy-
fermion superconductors, with either magnetic
order preceding the onset of superconductivity or
superconductivity occurring in the vicinity of a
quantum critical point (18, 19). Superconductivity
in CeColns is special in that it occurs close to a
magnetic quantum critical point, but so far there
has been no direct evidence of long-range mag-
netic order anywhere in the H-7 phase diagram
(2). However, there is microscopic evidence from
nuclear magnetic resonance (NMR) measurements

for field-induced magnetism for high fields
(~H=11T) in the tetragonal plane and for tem-
peratures below which the H(7) phase bound-
ary becomes first-order (H,,, upper critical field)
(20). The NMR results were interpreted as
evidence that the Q phase is a phase in which
superconductivity and magnetic order coexist,
but the character of the superconducting state
could not be ascertained.

We used high-field neutron diffraction to di-
rectly search for magnetic Bragg peaks within the
Q phase. The measurements were done at low
temperatures and the field was applied along the
crystallographic [1 —1 0] direction in the tetragonal
basal plane. For this field direction, the upper crit-
ical field in the zero-temperature limit is H(0)=
114 T. The neutron diffraction data for wave-
vectors along the (%, A, 0.5) reciprocal direction is
shown in Fig. 2. Here, & represents the wave-
vector transfer along either the [100] or the [010]
direction in reciprocal lattice units (r.l.u.). When
10.5 T < H < 11.4 T, neutron scattering provides
clear evidence of Bragg peaks that arise from a
magnetic structure that is modulated with the
ordering wave-vector Q = (g, ¢, 0.5) (21) and that
are present at neither higher nor lower fields
outside of the Q phase (hence its name). Here, ¢
represents the wave-vector for which the mag-
netic Bragg peak has most intensity and indicates
the modulation of the magnetic structure along the
a and b axes. The width of the peaks is resolution-
limited, so the magnetic order extends over a
length scale & > 60 nm. This is much larger than
the diameter of vortex cores, which is of the order
of the coherence length &, ~ 10 nm (5), and so
magnetic order is not limited to the vortex cores.

The field and temperature dependence of the
peak intensity of the Q = (¢, ¢, 0.5) magnetic
Bragg peak obtained from a fit to a Gaussian line
shape is shown in Fig. 2. The magnetic order at
T= 60 mK has a gradual onset with increasing
field and collapses at the superconducting phase
boundary H,, in a first-order transition (Fig. 3A).
The intensity of the magnetic Bragg peak can also
be suppressed by increasing the temperature (Fig.
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3B); the signal disappears at the same temperature
at which specific heat measurements show evi-
dence of a second-order phase transition (/7). The
neutron data suggest a transition that is second-
order in temperature but first-order in field. The
incommensuration ¢ of the Bragg peak position is
not field-dependent, as can be seen in the inset of
Fig. 3A. The H-T phase diagram (Fig. 1) shows
that magnetic order exists only in the super-
conducting Q phase and not in the normal phase,
which demonstrates that superconductivity is es-
sential for magnetic order. Our results provide
evidence that the ground state in this field and
temperature range in the vicinity of H.(0) has a
multicomponent order parameter that directly cou-
ples superconductivity and magnetism. This type
of order is at least partly due to strong antiferro-
magnetic fluctuations, arising from the proximity
to a magnetic quantum critical point in CeColns.

Our experiment shows that the magnetic struc-
ture is a transverse amplitude-modulated incom-
mensurate spin-density wave whose magnetic
moments are orientated along the tetragonal ¢ axis,
modulated with the incommensurate wave-vector
(g, g, 0.5) perpendicular to the magnetic field.
Neighboring Ce** magnetic moments that are sep-
arated by a unit cell lattice translation along the
c axis are antiparallel (Fig. 1). The amplitude of
the magnetic moment (m) at 7= 60 mK and H =
11 T of m = 0.15(5) Bohr magnetons (ug) is con-
siderably smaller than expected for the Ce®* free
ion, possibly due to the Kondo effect. The direc-
tion of the ordered magnetic moment is consist-
ent with magnetic susceptibility measurements
(1) that identify the ¢ axis as the easy axis, and it
is also consistent with zero-field inelastic neutron
measurements in which strong antiferromagnetic
fluctuations have been observed that are polar-
ized along the ¢ axis (22).

The magnetic structure that satisfies NMR
data (20) was described by an ordering wave-
vector Q = (g, 0.5, 0.5) with unspecified ¢ and the
ordered magnetic moment along the applied field
that was along the [100] direction. Our neutron
measurements of field along the [1-10] direction
reveal a magnetic order for which both the order-
ing wave-vector Q = (¢, ¢, 0.5) and the ordered
moments are perpendicular to the applied magnetic
field, in contrast to the NMR data. This difference
suggests that the direction of the incommensurate
modulation Q depends on the field direction, and
that the order wave vector can be tuned with a
rotation of the magnetic field in the basal plane.
Finally, the absence of magnetic Bragg peaks at
H =11 T when T > 0.3 K confirms the inter-
pretation of the NMR measurements (20) that the
fluctuations for 0.3 K < 7'< Ty, are short-ranged and
possibly only present inside the vortex cores.

The observation that magnetism exists only in
the presence of superconductivity is in stark con-
trast to other materials in which long-range mag-
netic order and superconductivity merely coexist
for a small magnetic field or pressure range
because of their different origins (18, 19). Be-
cause no magnetic order is observed in CeColns

www.sciencemag.org SCIENCE VOL 321
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above the upper critical field H,,, the relation
between magnetic order and superconductivity is
fundamentally different and cannot be seen as a
competition. Instead, it appears that CeColns in
fields greater than H, gives rise to strong anti-
ferromagnetic fluctuations that condense into mag-
netic order with decreasing magnetic field only
through the opening of an electronic gap and

restructuring of the Fermi surface at the super-
conducting phase boundary. This means that the
second-order magnetic quantum phase transition
is inaccessible because, in its proximity, there is
no energy scale associated with the antiferromag-
netic fluctuations, and the superconducting energy
gap becomes the dominant energy scale and deter-
mines the magnetic ground-state properties.

Fig. 1. H-T phase dia- 12 T T T T T T
gram of CeColns with the CeColn
magnetically ordered °
phase indicated by the 11 F
red shaded area. The blue
and open circles indicate
a first- and second-order
transition measured by
specific heat (11), re-
spectively, separating the
superconducting from the
normal phase. The green
circles indicate a second- gl
order phase transition in-
side the superconducting
phase (11), and the red
circles indicate the onset
of magnetic order as mea-
sured in our experiment,
showing that the mag-
netic order only exists in the Q phase. (Inset) Magnetic structure of CeColns at T = 60 mK and H =
11T. The red arrows show the direction of the static magnetic moments located on Ce**, and the yellow
and blue circles indicate the position of the In and Co ions. The depicted structure does not include a
possible uniform magnetization along the magnetic field direction. The solid red line indicates the
amplitude of the Ce3* magnetic moment along the c axis, projected on the (h, A, ) plane.
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Fig. 2. The solid circles represent the neutron-scattering intensity at T = 60 mK for wave vectors (h, h, 0.5) as a
function of h for different fields as observed in the center channel of the position-sensitive detector (psd), showing
the presence of a magnetic neutron diffraction peak at (1 —g, 1 — g, 0.5) with g = 0.44 for (A) H=10.6 T, (B)
H=108T,(C)H=11T,and (D) H = 11.3 T. The gray circles in (A) and (B) represent the best estimate of the
background, whereas they represent the neutron scattering intensity in (C) at H = 11 T and T = 400 mK and in
(D) at H =11.4 T and T = 60 mK. The solid red lines are fits of a Gaussian function to the magnetic scattering.
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Fig. 3. Neutron-
scattering intensity at
(g, g, 0.5), (A) as a func-
tion of field at 7= 60 mK

and (B) as a function of e

0.5 11.0
temperature at H = 11 T.

The gray circles represent
the background scatter-
ing taken from the two
nearest to the center chan-
nels of the psd. The dashed
red line in (A) is a guide
to the eye, whereas the
dashed line in (B) de-
scribes the background

H [ [1-10]

Peak Counts

T = 60mK
250 — ; L

| #%e%e®e |

CeColng 1500

(9,9,0.5)
ol - 450
! %& - 400

350

Peak Counts

and the onset of the mag- o

netic order in a second-
order phase transition

95 10.0 10.5 11.0 11.5
H (Tesla)

250

0.0 0.5

with B = 0.365 fixed to the critical exponent of the three-dimensional Heisenberg universality class.

The inset shows that the g is field-independent.

The intimate link between superconductivity
and magnetic order in CeColns suggests the pres-
ence of a specific coupling between these order
parameters (23). The multicomponent magneto-
superconducting phase can be reached via two
second-order phase transitions through a suitable
path in the H-T phase diagram, which justifies the
construction of a phenomenological Landau coupl-
ing theory. If one assumes that the superconducting
gap at zero field Aq has dy,-y» symmetry, the
possible coupling terms for magnetic fields in the
basal plane that preserve time-reversal symmetry
and conserves momentum can be written as V; =
A*g My (HA®y_g + HAD, ) +c.c., Vo= A%
My (HDx ~ HyD(y) AP +cc.,and V3= A*y M,
(HDy — H,D,) AV + c.c. Here, (A® _, A®,_)
belongs to the two-component even-parity "5
state, A(Z),q and Am,q arethe ' , and I' 5 odd-
parity states (24), c.c. stands for the complex
conjugate of the preceding term, and M, is the
magnetic-order parameter. These additional super-
conducting order parameters include a finite mo-
mentum —q. (Dy, Dy) is the gauge invariant
gradient. Introducing the magnetic field allows
one to couple M, in linear order to preserve time-
reversal symmetry. These combinations allow for
a second-order phase transition within the super-
conducting phase and a first-order transition to the
nonmagnetic normal state. For the coupling term
V>, no magnetic structure is induced for fields H ||
[100]. Given the weak dependence of the Q phase
on the magnetic field orientation in the basal plane,
our measurements suggest the presence of a ¥} or
V3 coupling term, inducing the finite-momentum
even-parity I''s state or the odd-parity I'; state.

This Landau theory shows that incommen-
surate magnetic order induces a superconducting
gap function that carries a finite momentum—the
first experimental evidence of a superconducting
condensate that carries a momentum. However,
we show that this state may not arise purely from
Pauli paramagnetic effects and the formation of a
new pairing state between exchange-split parts of
the Fermi surface, a state commonly known as
the FFLO state (/6, 17). In the FFLO state, the
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pairing state carries a momentum of the Cooper
pair that depends on the magnetic field via |q| =
2ugH/hvg, where vg is the Fermi velocity.
However, the inset of Fig. 3A shows that |q| is
field-independent in CeColns, at odds with this
prediction, which indicates that an additional super-
conducting pairing channel with finite momen-
tum is induced in conjunction with the cooperative
appearance of magnetic order.

A superconducting order that carries momen-
tum illustrates the wealth of quantum phases that
can exist in solid matter. The important micro-
scopic role of magnetic fluctuations in the for-
mation of Cooper pairs in CeColns is self-evident
because superconductivity emerges at H,(0)
simultaneously with ordered magnetism.
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Shape Changes of Supported
Rh Nanoparticles During Oxidation
and Reduction Cycles

P. Nolte,* A. Stierle,** N. Y. Jin-Phillipp,* N. Kasper,* T. U. Schulli,® H. Dosch®

The microscopic insight into how and why catalytically active nanoparticles change their shape during
oxidation and reduction reactions is a pivotal challenge in the fundamental understanding of
heterogeneous catalysis. We report an oxygen-induced shape transformation of rhodium nanoparticles
on magnesium oxide (001) substrates that is lifted upon carbon monoxide exposure at 600 kelvin.

A Wulff analysis of high-resolution in situ x-ray diffraction, combined with transmission electron
microscopy, shows that this phenomenon is driven by the formation of a oxygen—rhodium—oxygen
surface oxide at the rhodium nanofacets. This experimental access into the behavior of such nanoparticles
during a catalytic cycle is useful for the development of improved heterogeneous catalysts.

any industrial chemicals and fuels are
Msynthesized with the use of heteroge-

neous, solid-phase catalysts that often

contain metals in the form of nanoparticles
(NPs). The direct study of these catalysts is chal-
lenging, and model catalysts such as single crys-
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