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Helical magnetic state in the distorted triangular lattice of α-CaCr2O4
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The magnetic properties of the high temperature α form of the CaCr2O4 compound have been investigated for
the first time by magnetic susceptibility, specific heat, and powder neutron diffraction. The system undergoes a
unique magnetic phase transition at 43 K to a long-range ordered incommensurate helical phase with magnetic
propagation vector k = (0,0.3317(2),0). The magnetic model proposed from neutron diffraction data shows that
the plane of rotation of the spins is perpendicular to the wave vector and that the magnetic modulation is consistent
with two modes belonging to distinct irreducible representations of the group. The magnetic point group 2221′

is not compatible with ferroelectricity unlike the CuCrO2 delafossite [Kimura et al., Phys. Rev. B, 78 140401
(2008)], but predicts the existence of quadratic magnetoelectric effects, discussed based on a Landau analysis.
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I. INTRODUCTION

In recent years, spin-driven ferroelectricity and giant mag-
netoelectric effect have been found in a variety of frustrated
magnets, in particular in systems that develop long-wavelength
magnetic modulations such as cycloidal or helicoidal states,
incommensurate or not with the crystalline lattice. Most of
the attention was initially focused on cycloidal magnets such
as TbMnO3 (Ref. 1) for which the inverse Dzyaloshinskii-
Moriya2 and spin-current models3 predict the onset of a
spontaneous polarization when the direction of the modulation
(k vector) is perpendicular to the spin-rotation axis (e).4 More
recent work on incommensurate magnetic phases in triangular
lattices5–10 has established that improper ferroelectric orders
of similar magnitudes can also appear in spin spiral magnets,
that is, systems that possess a true magnetic chirality (k
parallel to e), however, requiring another microscopic coupling
mechanism such as the hybridization effects proposed by
Arima.11 Those systems are quasi-two-dimensional triangular
lattices and display a nearly 120◦ magnetic arrangement in the
triangular layers as expected for Heisenberg spins. Improper
ferroelectricity predicted by symmetry10 arguments depends
only on the orientation of e with respect to the crystal axes,
often dictated by weak single-ion anisotropy terms.

In this paper, we report for the first time on the mag-
netic properties of α-CaCr2O4 whose orthorhombic crystal
structure12 is closely related to the structure of delafossites,
with the exception of a small distortion of the triangular lattice.
The magnetic susceptibility indicates strong antiferromagnetic
correlations (Weiss temperature of −688.5 K) and a unique
transition to a long-range ordered state at TN = 43 K. The
specific heat displays a sharp and intense peak around 43 K,
consistent with a unique transition. Powder neutron diffraction
proves the existence of long-range magnetic order below
TN , incommensurate with the crystal lattice with propagation
vector k = (0,0.3317(2),0). The model proposed for the mag-
netic structure, derived from the neutron data and symmetry
considerations, corresponds to a nearly 120◦ out-of-plane
helix, with e perpendicular to k. Symmetry analysis using
the complete irreducible corepresentations of the wave-vector

group shows that the point group symmetry of the magnetic
state is 2221′ and can be only stabilized through two successive
second-order transitions or through a first-order transition.
While in the rhombohedral delafossite such an out-of-plane
spiral leaves a polar point group, here the spin chirality
preserves all proper rotations, predicting the absence of electric
polarization at TN . However, we show through a Landau
analysis of the magnetoelectric free energy that quadratic
magnetoelectric effects are allowed by symmetry and should
be observed in low magnetic fields.

II. EXPERIMENT

The synthesis of polycrystalline α-CaCr2O4 followed a
two-step process. A sample of β-CaCr2O4 was first prepared
in the shape of a rod (6 millimeters in diameter and several
centimeters in length), starting from a 1:1 mixture of CaO
and Cr2O3 heated at 1400◦C for 12 hours in an argon flow.
This rod was heated in an argon atmosphere by using an
image furnace to obtain the high temperature conditions
(T > 1700◦C), but without reaching the melting temperature.
Magnetic susceptibility has been measured using a Super-
conducting Quantum Interference Device (SQUID, Quantum
Design R©) in a magnetic field of 100 Oe on warming following
a zero-field cooling process. Heat capacity measurements
[C(T)] were carried out in a Physical Property Measurement
System (PPMS, Quantum Design R©) using a semi-adiabatic
relaxation method.13 Two types of procedures were followed
to record zero-field C(T) curves: (i) Equally spaced data points
registered upon warming and using a small temperature rise
of the order of 0.4 K around the transition. The analysis is
the standard one in which the so-called 2τ model14 is used
to fit at once both the heating and cooling branches at each
point; (ii) a large single-pulse method described in Ref. 15
where the temperature is swept across the complete width of
the transition, either warming or cooling (temperature rise
of 5 K). It this case, the heat capacity is derived from a
point-by-point analysis of the time response along each of the
two branches. In case of a first-order transition, it is known that
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the former method can yield spurious results,16,17 whereas the
latter is able to account for both the latent heat and hysteretical
features.15 Neutron diffraction experiments were collected
on the WISH diffractometer of the ISIS Facility, Rutherford
Appleton Laboratory (UK). Data have been focused on five
histograms from detector banks covering 32◦ each, and are
shown for the bank centered at 2θ = 90◦. A 0.55 g sample
was placed in a thin wall (30 μm) vanadium cylindrical
can mounted in a helium cryostat. Diffractograms have been
recorded in the paramagnetic regime at 70, 1.5 K, and
warming in varying temperature steps. Rietveld refinements
of the neutron data have been performed with the FULLPROF

program.18

III. RESULTS

The crystal structure of α-CaCr2O4 was first reported by
Pausch et al..12 It crystallizes with orthorhombic symmetry,
confirmed by our electron microscopy measurements (not
shown) in the space group Pmmn (Fig. 1). The structure
refined from our neutron diffraction data in the paramagnetic
regime at 70 K is also consistent with the earlier work.12

There are two inequivalent Cr sites, Cr1 located at (0,0,0),
of 1 symmetry and Cr2 at position [0.5047(6), 1

4 , 0.497(1)]
located on a mirror plane, each site of multiplicity four. The
Cr ions are six-coordinated by oxygen in a distorted octahedral
configuration. The octahedra share edges to form CrO2 layers
in the bc plane, leaving a weakly distorted triangular lattice
as shown by the different interatomic distances marked in
Fig. 1. The CrO2 layers, separated by Ca2+ ions, are stacked
along the a axis of the orthorhombic unit cell. The in-plane
magnetic interactions between Cr can be mediated either
by direct exchange through the t2g orbitals or by Cr-O-Cr
superexchange interactions. The interactions between layers
can be mediated by super-superexchange interactions through

FIG. 1. (Color online) (Left) Crystal structure of α-CaCr2O4.
CrO6 octahedra are shown in blue and green colors for the inequiva-
lent Cr1 and Cr2 sites (see text for details). The Ca2+ ions are shown
as light gray spheres. The red thin line marks the crystallographic unit
cell. (Right) Projection of the CrO2 layer onto the bc plane. Colored
thick lines shows the connectivity between first-neighbor Cr ions.
The corresponding interactomic distances are shown.

FIG. 2. (Color online) Inverse molar magnetic susceptibility of
α-CaCr2O4 as a function of temperature under a magnetic field of
100 Oe. The line is a linear fit with a Curie-Weiss law.

two oxygen atoms, but are expected to be much weaker due to
the large interatomic Fe-Fe distance (5.52 Åat 1.5 K).

The inverse magnetic susceptibility (Fig. 2) shows a
quasilinear regime above 200 K. A linear fit of the
data with a Curie-Weiss law in the temperature range
200 to 390 K yields a paramagnetic moment of 3.869(1)μB

per Cr3+ ion, and a Weiss temperature of −688.5(5) K. The
value of the paramagnetic moment is in perfect agreement
with the expected value of 3.87μB for a pure spin contribution
(S = 3/2) of Cr3+. The strongly negative Weiss temperature
indicates large antiferromagnetic (AFM) interactions. On
cooling below 200 K, one observes a deviation of the
inverse susceptibility from the nearly linear regime followed
at TN = 43 K by a more abrupt drop indicative of long-
range AFM ordering. There is no evidence of additional
transitions from susceptibility measurements at different fields
(not shown). The large difference between the value of the
Weiss temperature and TN is inherent to the reduction of
dimensionality in this pseudo-two-dimensional system as well
as magnetic frustration imposed by the triangular geometry.

The left panel of Fig. 3 displays the specific heat, C(T),
recorded from the standard and single-pulse methods (see
experimental section), while the inset is an enlargement
exhibiting the shift between the warming and cooling branches
derived from the latter technique. At TN = 43 K, a very sharp
peak is observed with a full width at half maximum of about
0.5 K. Using a Debye function to fit the high temperature
data as an approximation of the lattice specific heat, one can
derive the temperature dependence of the magnetic entropy
(Sm) shown in the right panel of Fig. 3. There is a clear
kink at TN on the Sm(T) curve, but judging the nature of the
transition from this feature only is difficult. The Sm(T) around
the transition (Fig. 3, inset) can indeed be regarded either as
a broadened jump expected for a first-order transition (FOT)
in real materials (i.e., nonideals with the presence of defects)
or as a knee typical of a second-order transition (SOT). Two
other experimental observations must be considered: First, the
nearly perfect superimposition of the C(T) curves derived from
the single-pulse and standard method, while a substantial part
of the latent heat—if present—is supposed to be invisible in
the latter technique.15 Second, the temperature shift observed
between the heating and cooling data in the single-pulse
method is very small and cannot even be safely ascribed to
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FIG. 3. (Color online) (Left) Specific heat of α-CaCr2O4 in zero magnetic field measured by the standard (filled diamonds), single pulse
method (open circles), and SPM cooling (open squares) (see text for details of the various techniques). (Right) Magnetic entropy obtained by
subtracting the lattice contribution estimated by a Debye function to the total specific heat. The inset focus on the temperature region close to
TN . The dashed line indicates the theoretical limit of 2Rln(4).

a genuine hysteresis as encountered in most of the FOT’s. In
fact, it appears that this hysteresis quantitatively corresponds
to the expected temperature lag between the sample and the
platform which contains the thermometer. At this stage, one
must conclude that the transition at TN is either a SOT or a
very weak FOT.

Below 43 K, long-range magnetic order is detected by the
presence of five additional Bragg peaks in the powder neutron
diffraction data, the most intense close to a d spacing of 4.5 Å.
The intensity of these peaks decreases with the modulus of
the scattering vector (Q) in agreement with the expected Q

dependence of the magnetic form factor. To determine the
periodicity of the magnetic structure, an automatic indexing
procedure using a grid search18 was employed but failed to give
a satisfactory solution due to the presence of pseudotrigonal
symmetry. However, the magnetic peaks could all be indexed
by exploring the reciprocal space in the vicinity of the special k
vector expected for a 120◦ structure in an isotropic triangular
lattice, corresponding to k = (0, 1

3 ,0) in the α-CaCr2O4 or-
thorhombic unit cell. Further analysis shows that the magnetic
structure is actually incommensurate with a propagation vector
k = (0,0.3317(2),0), labeled k8 in Kovalev’s notation.19 The
incommensurability, albeit small, is genuine as indicated by
the inferior refinement presented in Fig. 4 showing an offset
for the position of the magnetic peak (most noticeable in the
difference curve) when the value is locked at k = (0, 1

3 ,0). The
magnetic peaks have an almost purely Lorentzian profile, with
widths much larger than the instrumental resolution, indicating
short correlations lengths. To account for the observed profile
and derive an accurate value for the moment magnitudes,
the Rietveld refinement of the magnetic phase was conducted
using a phenomenological description of the peak broadening
by a spherical harmonics expansion consistent with the Laue
class mmm.

Symmetry analysis using the group of the propagation
vector (little group) shows that the magnetic representation for
each Cr sites is decomposed in four irreducible representations,
labeled τ1 to τ4 according to Kovalev’s tables.19 The magnetic

structure is only compatible with a model that mixes a basis
vector along the (1,0,0) direction that transforms as τ1, and
a basis vector along (0,0,1) that transforms as τ2. In this
orthorhombic symmetry, the intensity of the diffraction pattern

FIG. 4. Rietveld refinements of the neutron diffraction data
collected in the paramagnetic phase at (a) 70 K and in the magnetically
ordered phase at (b) 1.5 K. The data are shown as gray points and
the result of the refinements as continuous black lines. The curves
shifted below represent the differences between the observed and
calculated patterns. In both panels, the top two rows of tick marks
indicate the positions of Bragg peaks for the phases α-CaCr2O4 and
the impurity Cr2O3. In panel (b), the third row of tick marks indicates
the positions of magnetic Bragg peaks with propagation vector
k = (0,0.3317(2),0). The inset shows an enlarged region around the
most intense magnetic peaks fitted using the incommensurate k vector
(left) and commensurate one (right) k = (0, 1

3 ,0).
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is not sensitive to the relative phase between these two
modes, that is, one cannot directly discriminate between a
transversally polarized spin-density wave with the moments
pointing in the ac plane (mixing the two basis vectors with
coefficients of the same characters) or a helical modulation
with the moment rotating in the ac plane (mixing the two
basis vectors with coefficients of different characters, real and
imaginary). However, at 1.5 K the refined amplitudes of the
magnetic modes along the a and c axes were found to be
2.31(1) μB . If these modes were in phase (spin-density wave)
the amplitude of the modulation will largely exceed the fully
ordered moment of 3 μB expected for a pure spin-state Cr3+
ion. On this ground, it appears that the helical modulation is
the only possible model to account for the observed pattern. It
is also physically sensible as the entropy of a helical structure
with constant moments is more favorable at low temperature
than an amplitude modulated structure. The magnitudes of
the magnetic moments were found to be similar for the two
symmetry inequivalent Cr sites, and final refinements were
conducted imposing such constraint, even if the latter is not
directly imposed by symmetry. Finally, the relative phase
between the modulation for sites 1 and 2 is a free parameter,
as these sites are not related by symmetry operations of the
group. The phase has been refined to a value very close to
−π

3 and was constrained to this specific value in the final
refinement. The magnetic structure, shown in Fig. 5, is made
of nearly 120◦ configuration in each triangle, propagating as
spirals along the b axis of the unit cell with the two spirals per
unit cell (on different Cr sites) of the same chirality. Unlike
cycloidal modulations, this proper spiral structure possesses
a true handedness. The coupling between adjacent CrO2

layers, mediated through super-superexchange interactions,
is antiferromagnetic. The magnetic structure is similar to
that found in delafossites6,10 (i.e., the 120◦ configuration
is out-of-plane). However, symmetry considerations lead to
different coupling between magnetic order parameters and
electric order than the delafossite, which will be discussed
later. The ordered magnetic moment varies smoothly with
temperature (Fig. 5), but the critical exponent was found
to be ∼1/4, deviating largely from the mean-field limit and
reminiscent to that found in first-order phase transitions.20

Within the temperature resolution of our experiment there is
a unique transition at TN , in agreement with measurements of
the magnetic susceptibility and specific heat.

The magnetic model consists of a mixing of two modes
belonging to two different irreducible representations (i.e., the
transition from the paramagnetic phase to the incommensu-
rate magnetic phase can be fully described by considering
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FIG. 5. (Color online) (Left) Magnetic structure of α-CaCr2O4.
The two independent Cr sites are shown with different colors (light
green for Cr1 and light blue for Cr2). Two unit cells along the b axis,
marked by thin black lines, are shown. The axes are labeled in italic
and the direction of the magnetic propagation vector (k) is shown by
the arrow. (Right) Temperature dependence of the ordered magnetic
moment on the Cr ions.

two two-dimensional complex order parameters η1 = ρ1e
iφ1 ,

η∗
1 = ρ1e

−iφ1 and η2 = ρ2e
iφ2 , η∗

2 = ρ2e
−iφ2 ). The matrix

representatives of the complete irreducible corepresentations
of the group of k are presented in Table I. The time-reversal
operator 1′, the matrix of which is not shown, needs also to be
considered to be able to write the Landau energy. Considering
these two magnetic order parameters, the expansion of the
Landau free energy F is written

F = F0 + 1

2
α1ρ

2
1 + 1

2
α2ρ

2
2 + 1

4
β1ρ

4
1 + 1

4
β2ρ

4
2 (1)

+ γρ2
1ρ

2
2 cos(2φ) + · · · ,

where the αi , βi (i = 1,2) and γ are coefficients of the Taylor
expansion and φ = φ1 − φ2 is the phase difference between the
two modes. Minimization of F with respect to ρ1 and ρ2 leads
to five distinct magnetic states that can be stabilized from the
paramagnetic space group Pmmn1′. The point groups of these
five magnetic states are shown in Fig. 6 together with their
stability conditions. The structure observed experimentally
corresponds to both order parameters being nonzero and
φ = π/2 (mixing of two modes in phase quadrature) and
has the point symmetry 2221′. The 1′ operator is contained
in the point group of any incommensurate structure since its

TABLE I. Matrix representatives of the complete irreducible corepresentations �1 and �2 associated with the irreducible representations of
the little group τ1 and τ2

19 (see text for details). The matrices act each on the two-dimensional spaces spanned by the complex order parameters,
respectively, (η1,η∗

1) and (η2,η∗
2). The matrix for time reversal is not shown.

Irrep. {2x | 1
2 00} {2y |0 1

2 0} {2z| 1
2

1
2 0} {1|000} {my | 1

2 00} {mxz|0 1
2 0} {mxy | 1

2
1
2 0} {1|010}

�1

(
0 1

1 0

) (
ε 0

0 ε∗

) (
0 ε∗

ε 0

) (
0 1

1 0

) (
1 0

0 1

) (
0 ε∗

ε 0

) (
ε 0

0 ε∗

) (
ε2 0

0 ε∗2

)

�2

(
0 −1

−1 0

) (
ε 0

0 ε∗

) (
0 −ε∗

−ε 0

) (
0 1

1 0

) (
−1 0

0 −1

) (
0 ε∗

ε 0

) (
−ε 0

0 −ε∗

) (
ε2 0

0 ε∗2

)
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Φ 

FIG. 6. Phase diagram of the possible magnetic point groups that
can be stabilized from the paramagnetic group Pmmn1′ by consider-
ing two order parameters η1 and η2 transforming, respectively, as the
τ1 and τ2 representations (see text for details).

application (phase of π ) is always equivalent to a translation.
The phase 2221′ can be stabilized from the paramagnetic state
either through two successive second-order phase transitions
as indicated by the arrow in Fig. 6 or through a single first-order
phase transition. According to our data showing a unique
critical point but no pronounced hysteresis, we assumed that
the transition must be weakly first order. One should note
that the only possibility to stabilize the observed magnetic
phase through a SOT would be to consider a symmetry for the
exchange Hamiltonian that is higher than the crystal symmetry
(for example, considering a Heisenberg Hamiltonian). In such
a case, the symmetry analysis shows that the two irreducible
representations involved, τ1 and τ2, belong to the same
exchange multiplet. However, this is rarely observed and
always a case of pseudosymmetry. In the following discussion
we will assume that the crystal symmetry is the relevant basis
of work and that the transition is weakly first-order.

The Landau theory of transitions with two order parameters
that are coupled biquadratically has been studied by several
authors21,22 and reviewed by Toledano et al..23 The invariant
as written in Eq. (2) is not sufficient to stabilize a FOT
Pmmn1′ → 2221′, which would have to occur at a single point
in the parameter space. To stabilize this transition through a
line in phase space, one needs to consider a strongly negative
coupling term γ and at least one positive six degree term
(for example, δρ6

1 ). In such conditions, considering that the
first coefficient α1 follows the usual temperature dependence
α1 = α(T − Tc) with α > 0, and that ρ1 is the driving order
parameter, the critical behavior of ρ2 follows the triggering
mechanism first discussed by Holakovsky.21 Calculations
show that it is equivalent to consider the canonical free energy

F = F0 + 1
2α1ρ

2
1 + 1

4β1ρ
4
1 + 1

6γ1ρ
6
1 , (2)

with α1 = α(T − Tc) with α > 0, β1 < 0, and γ1 > 0. In
fact, the triggering parameter ρ2 has for its only effect to
add mutiplicative and additive constants in the numerical
expressions found for all thermodynamic variables using
Eq. (2). The stability condition of Eq. (2) yields the temperature

dependence of ρ

ρ1(T ) ≈ M(T ) =
⎛
⎝−β1 +

√
β2

1 − 4α1γ1

2γ1

⎞
⎠

1
2 −δ

, (3)

where 0 < δ < 1
4 is an ad hoc parameter that accounts for the

deviation from the tricritical point (δ = 1
4 ). The specific heat

below TN is then

Cp(T ) = −T
∂2F (T )

∂T 2
= C0

p(T ) + α2T

[β2
1 − 4αγ1(T − TN )]

1
2 −δ

,

(4)

where C0
p(T ) is the specific heat above TN . The experimental

specific heat has been successfully fitted with Eq. (4) (Fig. 7)
in the temperature range 33.5–42.5 K. We found the three
independent parameters β2

1 = 0.32(2), αγ1 = 0.59(3), and
δ = 0.11(1). It is important to note that the quickly decaying
specific heat below TN related to the exponent (0.5-δ) is
not compatible with a SOT (for which a linear variation is
expected). From the fitted parameters, one can estimate the

width of the hysteresis given by the expression �T = β2
1

4αγ1
=

0.13 K. This very small hysteresis is compatible with the
results of specific heat showing that �T is extremely small.

The symmetry of this helical phase in such orthorhombic
symmetry is extremely interesting. As already mentioned,
the point group 2221′, although not centrosymmetric, is not
polar and therefore forbids a spontaneous polarization at the
magnetic transition. Since the structure is incommensurate
and the time-reversal operator is present in the point group,
the linear magnetoelectric effect is also forbidden. However,
invariants that are linear in the electric field (E) and quadratic
in the magnetic field (H ) are allowed by symmetry (while
terms in HHE are forbidden). The quadratic magnetoelectric
effect is described by a third-rank tensor, βijk symmetric in the
last two indices, and where i is the direction of the electric field

C
p
(J

.m
o

l-1
.K

-1
)

10

20

30

40

50

60

Temperature(K)
32 34 36 38 40 42 44

FIG. 7. Specific heat of α-CaCr2O4 in the low temperature region.
The points are experimental data and the solid line represents the
result of the refinement with Eq. (4).
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and j and k indicate the direction of the magnetic fields. For the
point group 2221′ there are three terms allowed for this tensor
that transform as the piezoelectric tensor, β123 ,β213, and β312.
One can easily show using the matrix representatives of �2 and
�3 given in Table I that the following mixed invariants of the
magnetic order parameters with E and H can be constructed

FME = ρ1ρ2 sin(φ)

× [β123ExHyHz + β213EyHxHz + β312EzHxHy].

(5)

This suggests that the application of low magnetic fields (if the
system remains in the phase described by the symmetry of the
zero-field phase) inclined with respect to the crystallographic
axes will induce an electrical polarization whose magnitude
will be proportional to the square of the magnetic field. Of
course, the application of sufficiently large magnetic fields
could drive the system to other symmetry phases. Single crystal
specimens are necessary to determine the behavior of the
electric properties and magnetic properties under a magnetic
field.

It is important to realize that this result can be easily
generalized to all incommensurate magnetic systems that
possess a true magnetic handedness (i.e., all spirals in the

unit cell propagate with the same chirality). In such systems
and irrespective of the paramagnetic symmetry, all improper
symmetry operations are lost in the magnetically ordered
state and the time-reversal operator is preserved by the
incommensurability, implying that at least one of the βijk is
allowed and quadratic magnetoelectric effects are present. This
magnetoelectric effect, even though of a higher degree in the
expansion of the free energy than the well-studied linear effect,
is not bounded by thermodynamic conditions (see Ref. 24 and
references therein) and therefore interesting to investigate in
prototype spiral magnets of the type discussed here.

In conclusion, measurements of the magnetic properties
of α-CaCr2O4 and neutron powder diffraction have shown
that this system is analog to the delafossite. Strong antifer-
romagnetic interactions in the triangular CrO2 planes lead
to long-range magnetic ordering below TN = 43 K, with an
incommensurate propagation vector k = (0,0.3317(2),0). The
model for the magnetic structure, based on refinement of
the neutron diffraction data and symmetry considerations,
is consistent with a helicoidal modulation and a nearly
120◦ configuration in each triangular plaquette. The mirror
plane symmetries are broken by the helicoidal arrangement,
leaving the point group 2221′, which allows for quadratic
magnetoelectric effects in all directions.

1M. Kenzelmann, A. Harris, S. Jonas, C. Broholm, J. Schefer,
S. Kim, C. Zhang, S. Cheong, O. Vajk, and J. Lynn, Phys. Rev.
Lett. 95 087206 (2005).

2I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
3H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,
057205 (2005).

4M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
5M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic,
C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park,
Q. Huang, A. Y. Shapiro, and L. A. Demianets, Phys. Rev. Lett.
98, 267205 (2007).

6K. Kimura, H. Nakamura, K. Ohgushi, and T. Kimura, Phys. Rev.
B 78, 140401 (2008).

7T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73,
220401 (2006).

8T. Nakajima, S. Mitsuda, S. Kanetsuki, K. Tanaka, K. Fujii,
N. Terada, M. Soda, M. Matsuura, and K. Hirota, Phys. Rev. B
77, 052401 (2008).

9T. Nakajima, S. Mitsuda, K. Takahashi, M. Yamano, K. Masuda,
H. Yamazaki, K. Prokes, K. Kiefer, S. Gerischer, N. Terada,
H. Kitazawa, M. Matsuda, K. Kakurai, H. Kimura, Y. Noda,
M. Soda, M. Matsuura, and K. Hirota, Phys. Rev. B 79, 214423
(2009).

10M. Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, and
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