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120◦ helical magnetic order in the distorted triangular antiferromagnet α-CaCr2O4
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α-CaCr2O4 is a distorted triangular antiferromagnet. The magnetic Cr3+ ions, which have spin-3/2 and
interact with their nearest neighbors via Heisenberg direct exchange interactions, develop long-range magnetic
order below TN = 42.6 K. Powder and single-crystal neutron diffraction reveal a helical magnetic structure with
ordering wave vector k = (0, ∼1/3,0) and angles close to 120◦ between neighboring spins. Spherical neutron
polarimetry unambiguously proves that the spins lie in the ac plane perpendicular to k. The magnetic structure is
therefore that expected for an ideal triangular antiferromagnet where all nearest-neighbor interactions are equal,
in spite of the fact that α-CaCr2O4 is distorted with two inequivalent Cr3+ ions and four different nearest-neighbor
interactions. By simulating the magnetic order as a function of these four interactions, it is found that the special
pattern of interactions in α-CaCr2O4 stabilizes 120◦ helical order for a large range of exchange interactions.
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I. INTRODUCTION

Frustrated magnets, characterized by competing magnetic
interactions, continue to generate much research interest.
In these systems, it is not possible to satisfy all magnetic
interactions simultaneously; as a result, the ground state can be
highly degenerate leading to exotic physical states, e.g., spin-
liquid behavior and chiral order. The simplest frustrated system
is the triangular lattice antiferromagnet, where all magnetic
interactions between nearest neighbors (Jnn) are equal. In their
pioneering work, Anderson and Fazekas suggested that the
ground state is a spin liquid with no long-range magnetic
order.1,2 However, recent theoretical work implies that, at
T = 0, it develops long-range order3 with a helical structure,
where the spin moments on nearest neighbors point 120◦ with
respect to each other. Interactions between the planes can
stabilize this ground state at finite temperatures.

Among real triangular lattice materials, the 120◦ structure
has been found in CsFe(SO4)2, RbFe(SO4)2,4 VX2 (X =
Cl, Br, I),5 CuCrO2,6 Ag2NiO2,7 and RbFe(MoO4)2.8 Un-
fortunately, these compounds only exist in polycrystalline
form or as small single crystals, limiting the possibilities
of experimental investigation. Additional terms in the spin
Hamiltonian can favor different magnetic structures or even
destroy long-range order. For example, single-ion anisotropy
favors collinear order [CuFeO2,9 α-NaMnO2 (Ref. 10)],
frustrated interlayer interactions suppress order [AgCrO2,11

NaCrO2 (Ref. 12)], and strong exchange striction drives the
system away from 120◦ helical magnetism [α-NaMnO2,13

CuCrS2 (Refs. 14 and 15)].
Departures from ideal triangular crystal symmetry typically

lead to spatially anisotropic exchange interactions, sometimes
accompanied by orbital ordering and resulting in the frustration
being lifted. In most cases, the distortion reduces the dimen-
sionality so that one of the three nearest-neighbor exchange
interactions (Jnn1) is stronger than the other two (Jnn2), and

together the intraplanar interactions produce antiferromagnetic
chains with frustrated interchain interactions. The magnetic
structure is often helical but where the angle between nearest
neighbors along the chain takes a value between 120◦
and 180◦.

Examples of such compounds are Cs2CuCl4, where
Jnn2/Jnn1 = 0.33 and the angle between intrachain neighbors
is 170◦,16 while for α-NaMnO2, the presence of single-ion
anisotropy along with the ratio Jnn2/Jnn1 = 0.44 gives rise
to collinear antiferromagnetic order.10,13 A third example
is CuCrO2, a multiferroic compound where a small lattice
distortion accompanies the transition to long-range magnetic
order. This, along with substantial next-nearest-neighbor and
frustrated interplane interactions, results in angles between
nearest neighbors of 118◦ and 120◦.17,18

In this paper, we investigate α-CaCr2O4 which is a
triangular lattice antiferromagnet belonging to the delafossite
arisotype.19 Although this compound is also distorted from
ideal triangular symmetry (orthorhombic space group Pmmn),
the distortion does not lower the dimensionality and is of
a different type to that explored previously. Figure 1 shows
the crystal structure. There are two inequivalent Cr3+ ions
(spin-3/2), which together form distorted triangular layers in
the bc plane, that are stacked along a. The Cr3+ ions are
in an octahedral environment and the three d electrons fill
the three t2g orbitals resulting in quenched orbital moment
and negligible anisotropy. Neighboring CrO6 octahedra are
edge sharing, leading to direct overlap of the t2g orbitals; this,
along with the short Cr3+-Cr3+ distances (∼3 Å), result in di-
rect antiferromagnetic exchange interactions. Superexchange
via oxygen is suppressed because the Cr-O-Cr angles are
∼90◦. There are a total of four different nearest-neighbor
distances giving four inequivalent exchange interactions,
which together form the complex pattern shown in Fig. 1(b).
Interplane distances are much larger (∼5.5 Å) and only
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weak superexchange interactions are expected between the
layers. Recently, the magnetic properties of α-CaCr2O4 were
investigated by Chapon et al.20 Using powder samples, they
show that long-range magnetic order develops below TN =
43 K with ordering wave vector k = [0,0.3317(2),0] and spins
lying in the ac plane. The magnetic structure is indirectly
inferred to be helical rather than sinusoidal so as to constrain
the size of chromium moment within physical limits, and the
angles between nearest-neighbor spins are almost 120◦. Using
symmetry arguments, it is shown that this compound is not
ferroelectric although quadratic magnetoelectric effects are
possible.

We have grown the first single crystals of α-CaCr2O4

and, in this paper, we investigate the magnetic properties
using heat capacity, dc magnetic susceptibility, neutron and
x-ray powder diffraction, neutron single-crystal diffraction,
and spherical neutron polarimetry. We show that, despite the
fact that the crystal structure is distorted from ideal triangular
symmetry, the magnetic structure is that expected for an
undistorted triangular lattice antiferromagnet. The magnetic
ordering wave vector is close to the commensurate value
k = (0,1/3,0) and the spins form a helical structure in the
ac plane with ∼120◦ between nearest neighbors. By simulat-
ing the magnetic structure as a function of the four independent
nearest-neighbor exchange interactions, we show how the
specific type of distortion in α-CaCr2O4 is able to give rise
to the observed highly symmetric magnetic order.

II. EXPERIMENTAL DETAILS

Both polycrystalline and single-crystal samples of
α-CaCr2O4 were synthesized. The polycrystalline samples
were produced by a solid-state reaction. A 1:1 molar ratio
of CaCO3 and Cr2O3 was mixed thoroughly, pressed into a
pellet, and annealed in N2 atmosphere at 1100 ◦C for 12 h.
The powder was then quenched in liquid nitrogen to prevent
the formation of impurity phases. The single-crystal growth
was performed using a high-temperature optical floating zone
furnace at the Crystal Laboratory, Helmholtz Zentrum Berlin
für Materialien und Energie (HZB), Berlin, Germany (details
of the technique will be reported elsewhere).21 The single
crystal used for neutron scattering experiments is platelike with
shiny flat surfaces perpendicular to the a axis, it has a weight
of 340 mg, and a size of 3 × 7 × 8 mm3. This crystal consists
of three crystallographic twins rotated by 60◦ with respect
to each other about the shared a axis. Smaller single-crystal
pieces were used for the bulk properties measurements.

Bulk properties measurements were performed at the Lab-
oratory for Magnetic Measurements, HZB. Heat capacity was
measured on a small single-crystal sample of 15.6 mg using a
Physical Properties Measurement System (PPMS), Quantum
Design over the temperature range of 2.1 � T � 300 K. High-
temperature dc magnetic susceptibility (300 � T � 1000 K)
was measured in a 1-T field on an unoriented crystal using
the PPMS with vibrating sample magnetometer and oven
options. Low-temperature (2.1 � T � 300 K) susceptibility
at 1 T and magnetization up to 5 T were measured both
parallel and perpendicular to the a axis (χa|| and χa⊥) using
a superconducting quantum interference device (Magnetic
Property Measurement System, Quantum Design). The single

FIG. 1. (Color online) Crystal structure and magnetic interactions
of α-CaCr2O4. (a) Crystal structure showing the triangular layers
formed from two inequivalent CrO6 octahedra colored blue for
Cr(1)O6 and red for Cr(2)O6. The layers are separated by Ca2+

ions. (b) A single triangular layer showing only the Cr3+ ions. The
four inequivalent nearest-neighbor intralayer Cr3+-Cr3+ distances
determined from the E9 powder data at 2.1 K (see Table I):
green dashed dch1 = 2.911 Å; green dch2 = 2.907 Å; purple dashed
dzz1 = 2.939 Å; purple dzz2 = 2.889 Å. The corresponding exchange
interactions are Jch1, Jch2, Jzz1, and Jzz2 (see Sec. IV). The thin dashed
lines indicate the boundaries of the structural unit cell.

crystal had a weight of 1.81 mg and was fixed with GE
varnish to a plastic sample stick. Both field-cooled and zero-
field-cooled susceptibility were measured, but no significant
difference was observed.

X-ray powder diffraction was measured on the ID31
high-resolution powder-diffraction beamline at the European
Synchrotron Radiation Facility (ESRF), Grenoble, France. A
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wavelength of λ = 0.399 83 Å (E = 31.18 keV) was used,
and data were collected at a number of temperatures in
the range 10 � T � 260 K. Neutron powder patterns were
measured on two instruments. First, on the D20 high-intensity
two-axis diffractometer at the Institute Laue Langevin (ILL),
Grenoble, France. A Ge monochromator was used to select
a wavelength of λ = 1.869 Å, and data were collected over
the temperature range of 10 � T � 42.6 K in 1-K steps.
Measurements were also performed on the E9 fine-resolution
powder diffractometer at the BER II reactor, HZB. A Ge
monochromator selected a wavelength of λ = 1.799 Å and
data were collected at 2.1 and 50 K.

Single-crystal neutron diffraction was performed on the
large (340 mg) crystal using the E5 four-circle single-crystal
diffractometer at the BER II reactor, HZB. A pyrolytic
graphite (PG) monochromator selected an incident wavelength
of λ = 2.36 Å. The instrument is equipped with a two-
dimensional position-sensitive 3He detector consisting of
36 × 36 pixels and, for each Bragg reflection, a 36-step scan of
the crystal angle (ω) was performed. A total of 616 magnetic
and 423 nuclear Bragg reflections were collected at 6 K for a
total counting time of five minutes each.

Spherical neutron polarimetry was performed on the same
single crystal using the TASP triple axis spectrometer at the
Paul Scherrer Institute (PSI), Switzerland. The wavelength
λ = 3.2 Å was selected by a PG monochromator and benders
were used to polarize and analyze the neutron beam along
the vertical z axis. All measurements took place at a sample
temperature of 1.5 K. The MuPAD option was installed to
control the polarization direction of the incoming neutron
beam (Pi) and also to analyze the scattered beam along any
final polarization direction (Pf). The beam polarization was
measured to be 0.883(10) for all directions of neutron polar-
ization. The conventional right-handed Cartesian coordinate
system was used to describe the polarization with the x axis
parallel to the wave-vector transfer Q, y in the horizontal
scattering plane perpendicular to Q, and z vertical. There are a
total of 36 cross sections that can be measured for every Bragg
reflection, since both Pi and Pf can be along ±x, ±y, and ±z.
For most Bragg peaks, only 18 cross sections were measured
by setting the incoming beam polarization to the positive value,
while for a few peaks, all 36 cross sections were measured
to check chirality. Since the measured intensities were rather
small, the background was also measured for all cross sections
close to each Bragg peak. The polarization matrices were cal-
culated from the background-corrected cross sections: Pij =
(σ+i→+j − σ+i→−j )/(σ+i→+j + σ+i→−j ). This method has
the advantage of canceling out positioning errors and any
wave-vector-dependent attenuation since only the ratio of the
intensities matters. A total of 23 reflections were measured
with the crystal oriented in three different scattering planes
(h,k,0), (h,k,3k/2), and (h,k, −3k/2). All cross sections were
counted for three minutes each.

III. RESULTS

A. Bulk properties measurements

The specific heat of α-CaCr2O4 as a function of temperature
is shown in Fig. 2. A sharp peak is observed at TN =
42(1) K in agreement with Ref. 20. It is attributed to the

FIG. 2. Heat capacity showing the magnetic phase transition at
TN = 42(1) K. The inset shows the same data plotted on a log-log
scale.

onset of long-range antiferromagnetic order. No other sharp
features were observed in this temperature range, indicating
the absence of further magnetic or structural transitions.

Figure 3(a) shows the high-temperature susceptibility
(300 � T � 1000 K), which reveals Curie-Weiss behavior.
The data in the temperature range 800 to 1000 K were fitted
to the Curie-Weiss law:

χCW = C

T − �CW
+ χ0, (1)

where �CW is the Curie-Weiss temperature and C is the
Curie constant measured in units of cm3 mol−1 K−1. χ0 is
a temperature-independent background, which accounts for
the paramagnetic Van Vleck susceptibility and diamagnetic
core susceptibility as well the background from sample stick
and Al-cement (which is less than 0.5% of the measured
susceptibility at 1000 K). The fitted value of the Curie-Weiss
temperature is �CW = −564(4) K, and the effective moment,
which is given by

√
8CμB, was found to be μeff = 3.68(1)μB.

This is close to the expected spin only value 3.87μB, assuming
that the orbital angular momentum is completely quenched.
The average value of the exchange interactions in the triangular
layers can be estimated from the Curie-Weiss temperature
using the mean-field approximation and is given by kB� =
S(S + 1)zJmean/3, where z is the number of nearest neighbors
(six for the triangular lattice) and the interlayer interactions
have been neglected. The extracted average intralayer coupling
in α-CaCr2O4 is antiferromagnetic with strength Jmean =
6.48(5) meV.

The susceptibility at low temperatures (2.1 � T � 300 K)
for applied field parallel and perpendicular to a is shown in
Fig. 3(b). The data deviate from the Curie-Weiss law and show
a broad maximum at 50 K for both crystal orientations. This
feature can be explained by the onset of low-dimensional
antiferromagnetic correlations in the triangular plane. The
susceptibility decreases suddenly at the same temperature
where heat capacity shows a phase transition. The large drop
reveals the onset of long-range antiferromagnetic order, and
the best estimate for the transition temperature is TN = 43 K.
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FIG. 3. (Color online) dc magnetic susceptibility per Cr3+ ion
measured on a single-crystal sample in a 1 T magnetic field.
(a) Left axis: high-temperature susceptibility of unoriented sample
(filled data points); right axis: inverse susceptibility (open data
points); the red line is the Curie-Weiss fit. (b) Low-temperature
magnetic susceptibility; green squares, χa||; black points, χa⊥. The
vertical arrow shows the inflection point at TN . Right axis: inverse
susceptibility (χ−1

a⊥ ) displayed by the open data points.

B. Crystal structure

The crystal structure of α-CaCr2O4 was refined from
powder neutron diffraction data (measured on E9 and D20)
along with x-ray powder diffraction data (measured on ID31)
collected above the antiferromagnetic phase transition at
50 K (Fig. 4). The structural refinement was performed using
the FULLPROF software.22 All the peaks could be indexed in
the space group Pmmn in agreement with previous powder
measurements,19,20 and no detectable impurity was observed.
There is a broad bump around 2θ = 25◦ in the neutron
diffraction pattern that is absent from the x-ray pattern which,
due to the insensitivity of x rays to magnetic moments, must
be of magnetic origin. This provides further evidence for
two-dimensional magnetic correlations above TN at 50 K,
in agreement with the temperature of the maximum in the
susceptibility [Fig. 3(b)]. The high-resolution synchrotron data
show that Bragg peaks with (0,k,l) are broadened (this was
not observable in the neutron data because of the poorer
resolution). This could be due to small planar rotations between
adjacent layers perpendicular to the a axis.

FIG. 4. (Color online) Powder diffraction patterns along with
Rietveld refinements. The open red symbols are the data, the black
curve is the fit, the green bars indicate the nuclear Bragg peak
positions, and the lower blue line gives the difference between fit
and data. (a) X-ray powder diffraction measured on ID31 at 50 K; the
strongest peak (2,0,0) at 3◦ is excluded from refinement. (b) Neutron
powder diffraction measured on D20, ILL at 50 K; the vertical arrow
indicates the broad bump, which is of magnetic origin and therefore
missing on the x-ray pattern.

Table I lists the fitted atomic positions from the different
refinements. Our values are in agreement with those from
the previous room-temperature measurement of Ref. 19. The
quality of fit is given by the RF factor values: RF = ∑ |Fobs −
Fcalc|/

∑ |Fobs|, where Fobs and Fcalc are the observed and
calculated structure factors. They are as follows: 0.035 for
ID31 at 50 K, 0.037 for D20 at 47 K, 0.035 for E9 at 50 K
and 0.031 for E9 at 2.1 K. The refined model confirms that
α-CaCr2O4 consists of distorted triangular layers with two
symmetry-inequivalent Cr3+ ions in the bc plane. There are
a total of four intraplanar nearest-neighbor distances varying
between 2.889 and 2.939 Å at 2.1 K, which correspond to
four inequivalent nearest-neighbor direct exchange paths [see
Fig. 1(b)]. The interactions follow a complex pattern, where
equivalent exchange paths form two different zig-zags and two
different chains in the triangular plane. Cr-O-Cr angles vary
between 91.0◦ and 95.7◦, confirming that the superexchange
interactions via oxygen are weak while the large interplane
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TABLE I. Refined crystallographic parameters using space
group Pmmn. The lattice parameters were determined from the
high-resolution ID31 x-ray powder data at 50 K. The atomic
positions listed are as follows: first row, ID31 powder data at
50 K (RF = 0.035); second row, refinement of D20 neutron powder
data at 47 K (RF = 0.037); third row, refinement of E9 powder
data at 50 K (RF = 0.035); fourth row, E9 powder data at 2.1 K
(RF = 0.031).

Unit cell dimensions: a = 11.0579(2) Å
b = 5.8239(2) Å
c = 5.0553(1) Å

Atom Site x y z

Ca(1) 2a 3/4 3/4 0.3512(4)
0.3494(10)
0.3521(12)
0.3532(12)

Ca(2) 2b 1/4 3/4 0.0385(4)
0.0359(8)
0.0384(11)
0.0410(11)

Cr(1) 4d 1/2 1/2 1/2
Cr(2) 4f 0.4932(1) 1/4 0.0046(4)

0.4921(4) 0.0050(9)
0.4917(5) 0.0059(11)
0.4931(6) 0.0057(12)

O(1) 4f 0.4022(5) 1/4 0.3365(14)
0.4022(4) 0.3394(6)
0.4023(4) 0.3397(8)
0.4024(4) 0.3410(8)

O(2) 4f 0.5904(5) 1/4 0.6825(14)
0.5891(3) 0.6771(6)
0.5901(4) 0.6758(8)
0.5906(4) 0.6762(8)

O(3) 8g 0.5989(3) 0.4996(8) 0.1665(12)
0.6007(2) 0.4963(5) 0.1653(5)
0.6003(2) 0.4955(6) 0.1647(7)
0.6003(2) 0.4966(6) 0.1657(7)

distances, which are 5.529 Å [Cr(1)-Cr(1)] and 5.379 Å [Cr(2)-
Cr(2)] suggest weak interplane interactions.

The temperature dependence of the crystallographic pa-
rameters were determined by sequential refinement of the data
collected on ID31 over a temperature range between 10 and
300 K. No significant change in the relative atomic positions
was observed, and, in particular, there is no sudden change
in the structure at the Néel temperature. For comparison, see
the atomic positions at 2.1 and 50 K determined from the
E9 refinement in Table I. Furthermore, the lattice parameters
were found to vary smoothly as shown in Fig. 5. The b

and c lattice constants increase gradually with increasing
temperature, while the a lattice constant is smallest at 70 K

TABLE II. Twin ratio of the single-crystal sample, determined
from single-crystal diffraction on E5 at 6 K.

Twin 1 Twin 2 (+60◦) Twin 3 (+120◦)

64(2)% 19(2)% 17(3)%

TABLE III. The magnetic peaks indexed assuming k =
(0,1/3,0) are listed along with their observed and calculated d

spacings.

dobs (Å) index dcalc (Å)

4.093 (1,1,0) + k 4.084
2.833 (3,1,0) + k 2.832
2.154 (1,3,0) − k 2.154
1.642 (1,3,3) − k 1.645

and shows negative thermal expansion at lower temperatures.
There is no indication of any symmetry change over this
temperature range; even a subtle distortion can be ruled
out since the linewidth remains constant between 10 K and
room temperature. This is in contrast to CuCrO2,18 which
(unlike α-CaCr2O4) has perfect triangular symmetry at high
temperatures and undergoes a structural distortion at the Néel
temperature.

Single-crystal diffraction on the E5 instrument was used
to collect the nuclear Bragg peak intensity at 6 K. The Racer
program was used to integrate the reflections, as described in
Ref. 23. Since our single crystal has a large mosaic spread
(∼2◦) with several small grains at slightly different orienta-
tions, in a few cases it was not possible to completely exclude
the intensity of these grains, which unfortunately impacted on
the data quality.

Another problem that arises with the single-crystal data
is twinning. Since the threefold symmetry of the triangular
planes is weakly distorted, three structural twins can exist
rotated with respect to each other by 60◦ in the bc plane,
while sharing the out-of-plane a axis. Figure 6 shows all
the possible nuclear reflections for all three twins in the
(1,k,l) plane. Some reflections arise from one twin only, e.g.,
(1,1,0), and can be used to determine the ratio of the twins by
simply taking the intensity ratio of equivalent reflections of the
three twins. Other reflections have overlapping contributions

FIG. 5. (Color online) Temperature dependence of the lattice
parameters obtained from ID31 data. The lines are guides to the
eye.
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FIG. 6. (Color online) The (1,k,l) reciprocal space plane where
distortion is exaggerated for better visibility. The crosses give the
position of the nuclear reflections, while the dots show all possible
magnetic reflections. Each color corresponds to a different twin. The
dashed line indicates the border of magnetic Brillouin zone.

from all three twins, which cannot be resolved on E5, e.g.,
(1,0,2), which is labeled (1,2,1) and (1,2, −1) in the other two
twins.

A single intensity list was generated containing reflections
of all three twins, and each reflection was labeled by the
twin(s) to which it belonged. One index was assigned to
the untwinned peaks, while three indices were assigned
to the twinned reflections (each in the coordinate system
of that twin). By using the atomic coordinates obtained from
the E9 diffraction data at 2.1 K, this dataset was refined to
obtain the scale factor and the volume ratios of the twins. The
three twins were found to have nonequal weight (see Table II),
and their extracted ratios were essential to the magnetic
structure refinement of the low-temperature single-crystal
data, which is described in the next section.

C. Magnetic structure

Several different neutron diffraction techniques were nec-
essary to determine unambiguously the magnetic structure
of α-CaCr2O4; these were powder diffraction, single-crystal
diffraction, and spherical neutron polarimetry. We will discuss
the results of each and show how together they provide a
complete picture of the magnetic order.

The neutron powder diffraction pattern from D20 measured
well below TN at 10 K is shown in Fig. 7. Several new peaks
are observed, which are attributed to the magnetic order, the
strongest being at d = 4.093 Å where the broad bump was
found in the 50-K diffraction pattern.

The new peaks were indexed using the k-search program
of the FULLPROF suite, and the magnetic ordering wave
vector k was found to be close to the commensurate value

FIG. 7. (Color online) Powder diffraction data measured on D20
at 10 K are displayed along with the Rietveld refinement assuming
helical magnetic order in the ac plane. (a) The open red symbols are
the data, the black curve is the fit, the upper and lower green bars
indicate the nuclear and magnetic Bragg peak positions, respectively,
and the lower blue line gives the difference between fit and data.
(b) Detail of the (1,1,0) + k magnetic peak along with the 50 K
data (open black symbols). The two lower lines are the difference
between the data and the fit with k fixed to (0,1/3,0) and refined to
[0,0.332(3),0].

k = (0,1/3,0) in agreement with Ref. 20 (see Table III).
Only magnetic reflections where h is odd are observed, which
implies antiferromagnetic ordering between successive planes
along a (since the unit cell contains two Cr3+ layers stacked
along a). All possible magnetic reflections in the (1,k,l) plane
generated by k = (0,1/3,0) are shown in Fig. 6. However, only
magnetic peaks where the three twins overlap have magnetic
intensity, e.g., (1,4/3,0); this makes the magnetic refinement
challenging.

The magnetic structures allowed for α-CaCr2O4 can be
derived from symmetry analysis (see Ref. 20). A number of
magnetic structures are possible, including helical, cycloidal,
ellipsoidal, and sinusoidal with the spin moments pointing
along different directions or rotating in different planes.

Table IV gives the fitted magnetic moments along the
crystallographic axes. The refined phase between the Cr(1)
and Cr(2) sites was close to −2π/3, which was fixed afterward
to this value for all the refinements. The moment sizes on
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TABLE IV. Refinement of the magnetic structure for spins pointing in various directions or planes for the two data sets (D20 and E5).
The column headings define the axes along which the magnetic moment is nonzero, and mx , my , and mz are the moment sizes along these
axes. All moment lengths are in units of μB. The R factors are also included in order to compare the quality of the fits; RB is determined from
the integrated intensities: RB = ∑ |Iobs − Icalc|/

∑ |Iobs|. Helical and sinusoidal models give the same R factors.

ab ac bc a b c

D20 data (T = 10 K): mx 2.62(5) 2.18(1) 2.50(4) 2.24(2) 2.88(2)
my 1.39(11) = mx 2.40(8) 2.35(2) 3.11(2)
mz 1.88(7) = mx 2.23(10) = my 3.30(3)
RB 0.045 0.066 0.032 0.068 0.212 0.209 0.067 0.190 0.255

E5 data (T = 6 K): mx 2.63(8) 2.15(3) 2.58(3) 2.31(2) 3.02(4)
my 1.63(13) = mx 2.24(12) 2.20(4) 2.89(7)
mz 1.98(4) = mx 2.14(15) = my 3.06(8)
RF 0.138 0.135 0.089 0.108 0.212 0.214 0.173 0.222 0.329

the two inequivalent Cr3+ sites were refined independently,
but found to have the same size within standard deviation.
Therefore, they were constrained to be equal for all subsequent
refinements. As can be observed, the results of the refinement
are ambiguous since several structures have similar R values.
The powder data favor models where the spins point either
in the ab or ac planes; however, in these cases, it is not
possible to distinguish between helical or sinusoidal order
because the phase difference between the two prefactors can
not be refined. Nevertheless, the sinusoidal structures can
probably be excluded indirectly as shown in Ref. 20. For
example, the refined moment lengths for the ac structure are
mx = 2.50(4)μB and mz = 1.88(7)μB. Assuming sinusoidally
modulated order, the maximum moment length would exceed
the spin-only magnetic moment of Cr3+:

√
m2

x + m2
z > gS,

orbital momentum is quenched for Cr3+ in an octahedral
environment, and g is the Landé g factor (g ≈ 2 for spin-
only magnetic moment). On the other hand, the maximum
size of the moment in the helical structure would be the x

component 2.50μB .
The refined value of the k vector was [0,0.332(3),0] from

D20 at 10 K and [0,333(5),0] from E9 at 2.1 K. According
to the refinement, the k vector is equal to (0,1/3,0) within
standard deviation, the difference between the diffraction
patterns generated by these two k values is negligible [see
Fig. 7(b)]. Our results are also in agreement with the more
precise incommensurate value of [0,0.3317(2),0] published
previously.20 In the case of helical structures, the phase of
−2π/3 together with k = (0,1/3,0) means that the angle
between all intraplanar nearest-neighbor spins is 120◦. This
structure is expected only for the ideal triangular lattice
where all nearest-neighbor exchange interactions are equal and
Heisenberg. It is therefore surprising to find it on the distorted
triangular lattice of α-CaCr2O4.

As a complementary study, we performed single-crystal
diffraction at 6 K in the magnetic phase. The twin ratio
and scale factor were fixed to the values obtained from
the single-crystal nuclear peaks and the data were refined
with the same set of possible magnetic structures as for the
powder refinements. The RF factors and resulting magnetic
components are listed in Table IV. The single-crystal data
are not able to distinguish between the helical and sinu-

soidal models either. The measurable quantity |M(Q)|2, the
absolute value squared of the magnetic structure factor, is
identical for a helical structure and a sinusoidal structure
with the same moment components. In the case of the ac

sinusoidal structure, two magnetic S domains can exist in
the sample; if the two domains have equal weight, the
resulting magnitude of the structure factor is the same as
in the case of the helical structure. The best fit gives the
moments aligned in the ac plane in agreement with the powder
diffraction.

The temperature dependences of two magnetic peaks
(1,2/3, −1) and (1,4/3,0) were measured on the single-crystal
sample in the temperature range 6 � T � 50 K (see Fig. 8).
The intensity is proportional to the square of the magnetization,
which is the magnetic order parameter, and can be fitted with
I (T ) = C · [(T − TN)/TN]2β , where C is an overall constant
and β is the critical exponent. The data were fitted between 32
and 48 K and gave a transition temperature of TN = 42.6(1)
in agreement with the heat capacity data. The exponent is
β = 0.1815(9) for both peaks. Although the function fits well,
according to theory, the magnetic phase transition of a stacked
triangular lattice is first order, and the value of β is not
universal.24 Several noncollinear easy axis antiferromagnets
have a sinusoidal phase just below TN , which precedes the
helical phase, e.g., CuCrO2 (Ref. 25) and β-CaCr2O4.26 There
is no sign of such a phase, however, in α-CaCr2O4, the
temperature dependence of the two measured Bragg peaks
is smooth, and the ordering wave vector remains constant up
to TN (inset of Fig. 8).

Spherical neutron polarimetry was used to produce ad-
ditional information to complement the previous neutron
diffraction techniques. A number of different overlapping
magnetic Bragg peaks were measured for all three twins.
For example, the strongest magnetic Bragg peak (1,4/3,0),
indexed in the coordinate system of twin 1, overlaps with
(1,2/3,1) from twin 2 and (1, −2/3,1) from twin 3. The
(1,4/3,0) peak was also measured for twins 2 and 3, where
it is described as (1,2/3,1) and (1, − 2/3,1), respectively, in
the coordinate system of twin 1 (see Fig. 6). The polarization
matrices for these three peaks labeled using the coordinate
system of twin 1 are displayed in the first three rows of
Table V.
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TABLE V. Polarization matrices measured using TASP at 1.5 K for the three strongest magnetic reflections (rows 1–3) and results of
the refinement, which yields a helical structure with spins lying almost entirely within the ac plane (rows 4–6).

(1,4/3,0) (1,2/3,1) (+60◦) (1,−2/3,1) (+120◦)

Px
f Py

f Pz
f Px

f Py

f Pz
f Px

f Py

f Pz
f

Px
i −0.907(3) −0.086(9) 0.013(9) −0.880(5) −0.048(10) 0.033(10) −0.903(4) −0.036(10) 0.004(10)

Py
i −0.083(9) 0.086(9) −0.037(9) 0.054(9) 0.372(8) 0.063(9) −0.001(9) 0.400(9) −0.110(9)

Pz
i −0.136(9) −0.029(9) −0.100(9) 0.043(9) 0.082(9) −0.369(9) −0.014(9) −0.092(9) −0.402(9)

Px
i −0.887 0.000 0.000 −0.887 0.000 0.000 −0.887 0.000 0.000

Py
i 0.000 0.098 −0.022 0.000 0.352 0.081 0.000 0.407 −0.112

Pz
i 0.000 −0.022 −0.098 0.000 0.081 −0.352 0.000 −0.112 −0.407

The observed data show strong depolarization of the
scattered beam when polarization of the incoming beam was
y or z due to the presence of structural twins. This makes
it difficult to draw conclusions about the axis of the spin
helix by simply inspecting the data. Therefore, simulations
were performed of the different models of magnetic ordering
and compared to the data. The polarization matrices were
calculated using Blume-Maleev equations27 assuming that the
phase difference between Cr(1) and Cr(2) is −2π/3 and the
ordering wave vector is (0,1/3,0).

Polarization matrices of three possible spin structures
(helical order in the ab, ac, and bc planes) were simulated
for all three twins for the (1,4/3,0) magnetic reflection in the
coordinate system of twin 1 (see Table VI).

For helical models, the issue of chirality also needs to
be addressed. In these cases, the centrosymmetry of the
paramagnetic space group is broken in the magnetically
ordered phase, allowing the appearance of two chiral domains
for each twin with opposite vector chirality. The polarization
matrix of the chiral domains differs only in the Pyx and
Pzx terms, which change sign with opposite chirality (see
Table VI). Because the measured values for these two elements
are rather small [less than 0.136(9)], it is assumed that the

FIG. 8. (Color online) Temperature dependence of the (1,2/3,−1)
and (1,4/3,0) magnetic reflections from the single-crystal sample,
measured on E5. The black line is the fit described in the text. The
inset shows the temperature dependence of ky refined from D20 data.

population of the two chiral domains is equal for all three twins.
In this case, the measuredPyx ,Pzx would be zero because they
cancel each other out. Fitting the weight of the chiral domains
does not improve the data significantly. This, together with the
presence of structural twins, explains the strong depolarization
when the incident beam has y and z polarization. In order to
make a comparison with the measured (1,4/3,0) reflection, the
contributions of the three twins weighted by their volume ratios
were added together and multiplied by the beam polarization
and are listed in the last three columns of Table VI. Comparison
of the simulated matrices to the experimental matrix in the first
three rows of Table V under (1,4/3,0) clearly shows that the
ac helical structure gives the best description of the data.

To precisely determine the orientation of the spin rotation
plane, the polarization matrices of several other reflections
were also considered: (3,4/3,0), (5,4/3,0), and (1,8/3,0) for
all three twins. A computer code was written to fit these
matrices to both sinusoidal structures with arbitrary spin
direction and helical structures with arbitrary spin-rotation
plane. Spherical coordinates (θ,ϕ) were used to parametrize
the spin direction in the case of sinusoidal structures, or
the vector n normal to the rotation plane in the case of
helical structures (where the c axis corresponds to θ = 0◦).
The equally populated S domains were generated from the
magnetic structure by applying one of the mirror planes
(myz and mxz) or the glide plane [nxy(1/2,1/2,0] and the
contributions from all domains were averaged. The other fitted
parameters were the beam polarization (Pxx) and the ellipticity
of the spin helix (ratio of the moment length along the two main
axes of the ellipsoid, where μ = mv/mu, u = n × (c × n) and
v = u × n). Fitting was performed by minimizing the function
R2

w = ∑
w|Pobs − Pcalc|2/

∑
wP2

obs, where w = 1/σ 2 and σ

is the counting error and the summation was over all elements
of all measured polarization matrices.

By fitting this general model to all the measured polariza-
tion matrices, the magnetic structure was found to be helical
with spins rotating in the ac plane; the resulting polarization
matrices are listed in the last three rows of Table V. The
extracted parameters are:Pxx = 0.887, θ = 87◦, ϕ = 91◦, and
ma/mc = 0.99. With these parameters, excellent agreement
with the data could be achieved (Rw = 0.074). To check how
sensitive the refinement is to the spin-plane orientation, the
values of θ and ϕ were fixed to other directions. All other
possible structures (ab and bc helical; a, b, and c sinusoidal)
give a value of Rw that is more than four times larger.
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TABLE VI. Simulations of the polarization matrices of the (1,4/3,0) reflection for helical order in the ab, ac, and bc planes. The ± sign
is for the two opposite vector chiral domains. The contributions of all three structural twins are listed. Columns 10–12 give the combined
contribution weighted by the ratio of the twin volumes and assuming equal chiral domain ratios, and the last three columns are multiplied by
the finite instrumental polarization.

Twin 1 Twin 2 (+60◦) Twin 3 (+120◦) Together Pxx corrected

Px
f Py

f Pz
f Px

f Py

f Pz
f Px

f Py

f Pz
f Px

f Py

f Pz
f Px

f Py

f Pz
f

ab Px
i −1.000 0.000 0.000 −1.000 0.000 0.000 −1.000 0.000 0.000 −1.000 0.000 0.000 −0.883 0.000 0.000

Py
i 0.000 1.000 0.000 ∓0.977 0.090 0.193 ±0.977 0.090 −0.193 0.000 0.562 0.005 0.000 0.496 0.005

Pz
i 0.000 0.000 −1.000 ∓0.977 0.193 −0.090 ±0.977 −0.193 −0.090 0.000 0.005 −0.562 0.000 0.005 −0.496gl

ac Px
i −1.000 0.000 0.000 −1.000 0.000 0.000 −1.000 0.000 0.000 −1.000 0.000 0.000 −0.883 0.000 0.000

Py
i ∓0.997 −0.072 0.000 ±0.765 0.589 −0.262 ±0.765 0.589 0.262 0.000 0.105 −0.004 0.000 0.093 −0.003

Pz
i ∓0.997 0.000 0.072 ±0.765 −0.262 −0.589 ±0.765 0.262 −0.589 0.000 −0.004 −0.105 0.000 −0.003 −0.093

bc Px
i −1.000 0.000 0.000 −1.000 0.000 0.000 −1.000 0.000 0.000 −1.000 0.000 0.000 −0.883 0.000 0.000

Py
i ∓0.647 −0.762 0.000 ±0.647 −0.762 0.000 ∓0.647 −0.762 0.000 0.000 −0.762 0.000 0.000 −0.673 0.000

Pz
i ∓0.647 0.000 0.762 ±0.647 0.000 0.762 ∓0.647 0.000 0.762 0.000 0.000 0.762 0.000 0.000 0.673

According to the result, the spin components along a and c are
close to equal in agreement with Ref. 20, whereas the single
crystal and powder refinements show larger a component by a
factor of 1.2.

By using spherical neutron polarimetry, it has been possible
to prove unambiguously that α-CaCr2O4 has a ∼120◦ helical
magnetic structure with spin moments rotating in the ac plane
perpendicular to the ordering wave vector k = (0, ∼1/3,0).
The magnetic structure is illustrated in Fig. 9.

FIG. 9. (Color online) Magnetic structure of α-CaCr2O4, de-
termined from spherical neutron polarimetry. Cr(1) and Cr(2) are
represented by the blue and red spheres, respectively.

IV. DISCUSSION

The 120◦ helical magnetic structure of α-CaCr2O4 is
exactly the structure expected for an ideal triangular antiferro-
magnet with Heisenberg nearest-neighbor interactions that are
all equal. This is a surprising result given that the triangular
plane is, in fact, distorted with two inequivalent Cr3+ ions
and four independent nearest-neighbor exchange interactions.
Other distorted triangular antiferromagnets that have been
investigated so far all show departures from ideal triangular be-
havior with ordering wave vectors that deviate from (0,1/3,0),
e.g., Cs2CuCl4 [where k = (0,0.472,0)], NaMnO2 [where k =
(1/2,1/2,0)], and CuCrO2 [where k = (0,0.329,0)]. In this
section, we solve this apparent contradiction by investigating
how the ordering wave vector and relative orientation of the
spin moments in α-CaCr2O4 vary as a function of the exchange
interactions.

The possible interactions between the magnetic moments
can be deduced from the crystal structure. Figure 1 shows the
location of the Cr3+ ions on the triangular plane. There are
four different nearest-neighbor Cr3+-Cr3+ distances, i.e., dch1,
dch2, dzz1, and dzz2, ranging from 2.889 to 2.939 Å at 2.1 K,
which are identified by the different colored lines. The Cr3+
ions are surrounded by oxygen octahedra, which lower the
energy of the t2g orbitals and, since there are three electrons
in the 3d shell, each of the t2g orbitals is occupied by one
single electron. Neighboring CrO6 octahedra are edge sharing
and this, along with the short distances between the magnetic
ions, implies that the exchange interactions are dominated by
direct overlap of singly occupied t2g orbitals and are therefore
antiferromagnetic.28 Since direct exchange interactions are
highly sensitive to ionic separation, we expect four different
exchange constants, Jch1, Jch2, Jzz1, and Jzz2, corresponding
to the four nearest-neighbor distances as labeled in Fig. 1.
These interactions are expected to be Heisenberg with no
anisotropy because the occupied t2g multiplet has quenched
orbital angular momentum. Although there are two triangular
layers per unit cell, they are in fact the same due to the the
reflection plane m(1/4,y,z) of the Pmmn space group. The in-
terlayer interactions are also expected to be antiferromagnetic,
but much weaker, and to occur via superexchange through
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FIG. 10. (Color online) Magnetic phase diagrams as a function
of �1, �2, and Jnnn with �3 fixed to zero for all graphs. Inside
the dashed region, k = (0,1/3,0) with 120◦ spin structure (ϕ1a = 0,
ϕ1b = 240◦, ϕ2a = 120◦, and ϕ2b = 0◦). Elsewhere, k = (0,1,kz) and
the spin angles vary.

intermediate oxygen ions. Furthermore, these interactions
are unfrustrated and do not influence the ordering k wave
vector. Next-nearest-neighbor intraplane interactions may be
present and would influence k, as reported for CuCrO2,17

another member of the delafossite arisotype, which has similar
Cr3+-Cr3+ distances.

The magnetic Hamiltonian of α-CaCr2O4 can be expressed
as the sum of a Hamiltonian containing nearest-neighbor inter-
actions and a Hamiltonian containing next-nearest-neighbor
interactions, while the much weaker interlayer interactions
have been ignored:

H = Hnn + Hnnn.

FIG. 11. (Color online) Magnetic phase diagrams showing the
dependence of k on �1, �2, and �3; (a) displays ky and (b) kz in
units of 2π . For �3 = 0, k = (0,1/3,0) and the spins form a 120◦ spin
structure (ϕ1a = 0, ϕ1b = 240◦, ϕ2a = 120◦, and ϕ2b = 0◦) within the
red border. For �3 	= 0, k becomes incommensurate.

The nearest-neighbor Hamiltonian has the form

Hnn =
∑

nm

Jch1S2a
nm · (

S2b
nm + S2b

(n−1)m

)

+ Jch2S1a
nm · (

S1b
nm + S1b

(n−1)m

)

+ Jzz1S2a
nm · (

S1a
n(m−1) + S1b

n(m−1)

)

+ Jzz1S2b
nm · (

S1a
(n+1)m + S1b

nm

)

+ Jzz2S2a
nm · (

S1a
nm + S1b

nm

)

+ Jzz2S2b
nm · (

S1a
(n+1)(m−1) + S1b

n(m−1)

)
, (2)

where Si
nm is the spin of Cr3+ site (i∈ {1a,1b,2a,2b}), and n

and m are the indices of the unit cell along the b and c axes,

FIG. 12. (Color online) Dependence of the y component of k on
�3 (�1 = �2 = Jnnn = 0); the right scale shows the phase difference
between S1a and S2a . At �3 = 0, the tangent of the slope (blue line)
is −0.74.
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respectively. The next-nearest-neighbor Hamiltonian has the
form

Hnnn = Jnnn

∑

nm

S2a
nm · (

S2a
(n+1)m + S1a

(n+1)m + S1a
(n+1)(m−1)

)

+ S2b
nm · (

S2b
(n+1)m + S1b

(n+1)m + S1b
(n+1)(m−1)

)

+ S1a
nm · (

S1a
(n+1)m + S2b

n(m+1) + S2b
nm

)

+ S1b
nm · (

S1b
(n+1)m + S2a

(n+1)m + S2a
(n+1)(m+1)

)
, (3)

where a single Jnnn exchange constant is assumed for all next-
nearest-neighbor interactions.

The Hamiltonian can be used to explore the magnetic
structure of α-CaCr2O4 as a function of the exchange interac-
tions. In order to do this, all the spins are treated as classical
vectors of the same length and are restricted to be coplanar.
The aim is to understand how the in-plane k vector (both ky

and kz components) and the directions of the spin moments
ϕi

nm [for the ith spin of the (n,m)th unit cell] depend on the
magnetic interactions. ϕi

nm can be written in terms of ϕi , the
angle of spin Si in the first unit cell, and the ordering vector:
ϕi

nm = ϕi + k · rnm, where rnm is the position of the unit cell.
The Hamiltonian can be re-expressed in terms of k and ϕi by
rewriting the dot product of the spins, for example,

Si
nm · Si ′

n′m′ = S2 cos[(ϕi ′ − ϕi) + k · (rn′m′ − rnm)]. (4)

Furthermore ϕ1a can be set to zero due to the O(3) invariance
of the Heisenberg Hamiltonian.

A linear transformation was performed on the exchange
constants, which was found to give more insight into the
results, as will be explained later:

Jmean = 1

4
(Jch1 + Jch2 + Jzz1 + Jzz2),

�1 = 1

2Jmean
(Jzz1 − Jzz2),

(5)

�2 = 1

2Jmean
(Jch1 − Jch2),

�3 = 1

4Jmean
[(Jch1 + Jch2) − (Jzz1 + Jzz2)].

Jmean gives the overall energy scale and does not affect the zero-
temperature ground-state structure, thus, together with Jnnn,
only four important parameters remain. Finally, to determine
the ground-state values of k, ϕ1b, ϕ2a , and ϕ2b for a given set
of exchange interactions �1, �3, �3, and Jnnn, the energy of
the Hamiltonian was minimized by performing a constrained
linear optimization using a simplex minimization algorithm.

Figure 10 shows the in-plane k vector as a function of �1,
�2, and Jnnn with �3 fixed to zero. The reason for the linear
transformation of the exchange constants is clear from these
plots. They show that the magnetic structure is commensurate
[k = (0,1/3,0)], with a 120◦ ground state (ϕ1a = 0, ϕ1b =
240◦, ϕ2a = 120◦, and ϕ2b = 0◦ over a large volume of �1,
�2, and Jnnn parameter space. Although the crystal structure
is distorted, the nature of the distortion is such that, when �3

is constrained to zero, commensurate 120◦ magnetic order is

stabilized unless the magnitude of �1, �2, and Jnnn are much
greater than 0.

If �3 is varied as well, the k vector changes continuously, as
shown in Fig. 11. Within the red borders on the plots, all four
ϕi angles are determined only by the k vector, according to
the expression ϕi = [k + (0,1,0)] · ρ i, where ρ i is the position
of Si in the first unit cell. Outside these regions, the ordering
wave vector locks into a new set of values [k = (0,1,kz)] and
the relative phases inside the unit cell are independent of k.
Figure 12 shows how k varies with �3 (all other parameters
are fixed to zero). Even a slight deviation of �3 from zero
drives k incommensurate. The slope of ky at the point �3 = 0
is −0.74; this can be used to estimate the value of �3 for
α-CaCr2O4. From powder diffraction data, the upper limit for
the difference between ky and the commensurate 1/3 value is
d(ky) < 0.004. This means |�3| < |1/(−0.74)|d(ky) ∼ 0.005.
So, the only condition for the observed magnetic structure is
that |�3| < 0.005. Comparison of the different Cr3+–Cr3+
nearest-neighbor distances reveals that the average of dzz1

and dzz2 (2.914 Å) is almost the same as the average of dch1

and dch2 (2.909 Å). This explains why the direct exchange
interactions appear to obey (Jzz1 + Jzz2) ≈ (Jch1 + Jch2),
giving |�3| ≈ 0.

Although α-CaCr2O4 is distorted from ideal triangular
symmetry with two inequivalent Cr3+ ions and four different
exchange interactions, the nature of the distortion is such
that the average of the exchange interactions along any
direction is approximately equal. On larger length scales,
the Hamiltonian is in fact spatially isotropic, providing
an explanation for the observed ∼120◦ helical magnetic
ordering.

V. CONCLUSION

In this paper, we presented a detailed investigation of the
magnetic order in the distorted triangular antiferromagnet
α-CaCr2O4. The first single-crystal growth is reported and
bulk properties measurements along with powder and single-
crystal x-ray and neutron diffraction were performed. The
ordering wave vector was found to be close to commensurate
k = (0,1/3,0) and we unambiguously determined that the
magnetic ordering is helical with the spin moments forming
a ∼120◦ structure between nearest neighbors in the ac plane.
It is important to note that a small deviation from the com-
mensurate wave vector is probable due to the orthorhombic
crystal symmetry. The apparent contradiction between the
observed ideal magnetic structure and the distorted crystal
structure was resolved by exploring the magnetic phase
diagram. The distortions in the triangular plane are only
significant on individual nearest-neighbor distances, while
on the length scale of a unit cell, the average exchange
interactions along any triangular axis are approximately
equal.
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