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Long-range ordering and representational analysis of the jarosites

A. S. Wills
Département de Recherche Fondamentale sur la Matie`re Condense´e, SPSMS, CEA Grenoble, 38054 Grenoble, France

~Received 10 August 2000; published 24 January 2001!

The jarosites are the most studied family ofkagome´ antiferromagnets. Despite these works little is still
known about the detailed causes of the observed magnetic structures. In this article representational analysis is
used to determine the possible symmetry-allowed magnetic structures for the observed propagation vectors,
and to examine their stability conditions. Refinements are presented of the magnetic structures of
AgFe3(SO4)2(OD)6 and (H3O)V3(SO4)2(OH)6. The steps required for these calculations and the refinement
of the models against the neutron-diffraction data are detailed.
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I. INTRODUCTION

Antiferromagnets withkagome´ geometry have been th
subject of much recent experimental and theoretical inte
after predictions that at low temperature they could conde
into exotic ground states.1 The most studiedkagome´ systems
are those based on the jarosite seriesAB3(SO4)2(OH)6
~where A5Na1, K1, Rb1, Ag1, H3O1, and 1

2 Pb21; B
5Fe31, Cr31, and V31). Within this structure-type Ne´el
long-range order,2–6 highly fluctuating6 and unconventiona
spin-glass7–10,5ground states have been observed. In the m
terials that possess long-range order, it is believed that
balance of energies required to stabilize nonconventiona
dering is broken by the presence of further-neighbor
change interactions.6 Comparisons between the different po
sible structures are important as they yield direct informat
on the values of the exchange constants and other param
that are required for their stability.

In the present paper the technique of representatio
analysis is used to calculate the basis functions of the gr
D3d

5 magnetic representations for the observed~rather than
typical! values of the propagation vector. These are use
classify and determine the possible magnetic structures,
to analyze the physical quantities that could be their cau
Particular attention is given to a discussion of the conject
that single-ion effects play a role in defining the spin orie
tations in these materials.3,4

II. THE ALUNITE CRYSTAL STRUCTURE

In terms of their crystallography, the jarosites cryst
lize in the alunite structure @alunite itself is
KAl 3(SO4)2(OH)6#.11 As B5Al31 these compositions ar
nonmagnetic. The term jarosite, which specifically refers
the mineralogical familyAFe3(SO4)2(OH)6, has now been
applied more generally to distinguish the magnetic comp
tions with this structure,B5Fe31, Cr31, and V31.2–6,12The
compositions within this family that show a transition
long-range Ne´el order are the subject of the following anal
sis.

The majority of the jarosites are described in the sp
groupR3̄m and their crystal structure is displayed in Fig.
The exception is plumbojarosite Pb0.5Fe3(SO4)2(OH)6, in
which segregation of the Pb21 ions into alternatively vacan
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and filled sites~experimentally observed occupations a
0.09 and 0.96, respectively! causes thec axis to be doubled;
the remainder of the structure has no gross distortions a
from the idealized structure.13,14 In the alunite structure, the
B31 ions are coordinated by a distorted octahedron of f
hyroxy and two sulfate oxygen atoms. These octahedra
joined by corner sharing to form thekagome´ net. Within the
sulfate layers between thekagome´ layers theA1 ions occupy
12 coordinate sites.

It is known that the jarosites are prone to nonstoichio
etry on both theA and theB sites: up to 80% of theA cations
can be replaced by H3O1, while a deficiency of Fe31 is
charge balanced by protonation of the hydroxy groups
form H2O. This leads to an occupation of Fe31 sites that
is generally less than 100%, and typically in the ran
83–93 %. An exception is the hydronium sa

FIG. 1. The alunite crystal structure.
©2001 The American Physical Society30-1
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(H3O)Fe3(SO4)2(OH)6, which can be prepared with an iro
content of;97%.7

III. EXPERIMENT

The synthesis and full crystal structure refinement
(H3O)V3(SO4)2(OH)6 will be described in a separat
work.15 Due to synthetic difficulties the unusual step w
taken of using a protonated rather than a deuterated sam
As this paper is focused on the magnetic structures we
restrict the description of (H3O)V3(SO4)2(OH)6 to the
points necessary to refine the magnetic structure. Neut
diffraction data from (H3O)V3(SO4)2(OH)6 were collected
using neutrons of wavelength 2.4 Å using the D20 diffra
tometer of the Institut Laue-Langevin. The sample was h
in a vanadium can and data collected above and below
ordering temperatureTc.21 K. The large angular range o
the diffractometer allowed the collection of data over a s
ficient Q range for the analysis of both nuclear and magne

structures. Refinement of theR3̄m nuclear structure was car
ried out using the PC translation of the GSAS suite.16 The
magnetic structure factors were then calculated using
GENLES routine of the GSAS suite, while the symmetry a
orientations of the magnetic moments were controlled
refined separately by the program SARAh-Refine for
GSAS.17 Refinement was madedirectly of the basis vector
mixing coefficients within the representation under test
using a reverse-Monte Carlo~RMC! algorithm.18 This tech-
nique examines a greater range of phase space than is s
using conventional least-squares refinement techniques,
so allows the investigation and location of other minima
the refinement variable hyperspace. As magnetic struc
determination is frequently hindered by limited data sets
the possibilities of several magnetic structures with ident
structure factors, this technique gives more information
the quality of the refinement and the uniqueness of the s
tions. Once a minimum has been found, optimization us
least squares can be carried out. However, in cases invol
only two basis vectors, a RMC refinement made using 1
cycles was not found to be further improved by least-squa
optimization.

In the following refinements, the mixing coefficients fo
the basis vectors of each irreducible representation were
strained to have random values between11 and21, such
that the sum of their magnitudes was of modulus unity. T
orientations of all the moments in the complete magnetic
for this random spin configuration, which lies within the po
sible symmetry-allowed structures of the chosen represe
tion, were calculated from these. During each RMC cy
three least-squares cycles were made in order to refine
optimum magnitude of the magnetic moments, the only v
able allowed to refine during the RMC cycles. This was co
strained to be equal for all the atoms in the magnetic ce

The neutron-diffraction data presented here, coll
ted using neutrons of wavelength 2.52 Å fro
AgFe3(SO4)2(OH)6 at 1.5 K have been previously reporte
in Ref. 5.
06443
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IV. CASE OF kÄ0

A. Decomposition of the magnetic representation
and the basis vectors

In the hexagonal setting the magnetic Fe31 ions are found
on the 9d sites. For these sites the decomposition of
magnetic representation according to Eq.~A16! is

G51G1
(1)10G2

(1)12G3
(1)10G4

(2)10G5
(2)13G6

(2) . ~1!

Landau theory requires that only one representation
be involved in a critical transition, and so with this constra
there are only three possible magnetic structures for thik.
These representations correspond to those that have a
zero contribution: the representationsG1 , G3, andG6.

The basis vectors for these representations calculated
cording to Eq.~A17! are given in Table I. The atomic site
are labeled following the convention given in Sec. A
These basis vectors have varied forms and the types of m
netic structures to which they correspond will now be d
cussed.

RepresentationsG1 and G3 are one dimensional. The
therefore correspond to simple magnetic structures in wh
the atomic moments are orientated along particular crys
lographic axes. It is noteworthy that bothc1 and c2 corre-
spond to the so-called ‘‘q50’’ spin structure:19–21 a 120°
spin structure with the total spin on any given triang
plaquette being( iSi50 ~Fig. 2!. While the two spin struc-
tures are related by a 60° reorientation of spins, the t
representations differ in thatG3 allows the introduction of an
out-of-plane component, which corresponds toc3. The com-
bination of the two basis functionsc2 andc3 creates a so-
called ‘‘umbrella structure,’’ in which the degree of out-o
plane canting is a refinement variable.

RepresentationG6 is two dimensional and is repeate
three times. It therefore corresponds to a six basis ve
magnetic structure. As the general solution involves any
ear combination of these six basis vectors we cannot asc
to this representation a simple structure. However, there
relations between the basis vectors and these will simp
the refinement of the mixing coefficientsc5* 5c7 , c4* 5c8,
andc6* 5c9.

As the atomic spins are real entities, in the case of co
plex basis vectors it is necessary to introduce the corresp
ing basis vectors of the propagation vector2k in order to
make the summation of the two components real. This c
struction is easily explained if we examine the translat
properties of the magnetic moments. The axial vector t
describes the moment at positionr i can be expressed in
terms of that atr j by the addition of the phase facto
exp(2pk•Dr ),

S~r i !5S~r j !•exp~2pk•Dr !. ~2!

Here, the positions of the two atoms are related by a lat
translationDr ,

r i5r j1Dr . ~3!
0-2
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TABLE I. The basis functions of the irreducible group representations~IGR! of the space groupR3̄m ~point groupD3d
5 ) appearing in the

magnetic representation withk50.

IR Basis vector Atom 1 Atom 2 Atom 3
mx my mz mx my mz mx my mz

G1 c1 1 1 0 21 0 0 0 21 0

G3 c2 1 21 0 1 2 0 22 21 0

c3 0 0 1 0 0 1 0 0 1

G6 c4 1 0 0 0 2
1

2
2

A3

2
i 0

1

2
2

A3

2
i

1

2
2

A3

2
i 0

c5 0 1 0
1

2
1

A3

2
i

1

2
1

A3

2
i 0 2

1

2
1

A3

2
i 0 0

c6 0 0 1 0 0 2
1

2
2

A3

2
i 0 0 2

1

2
1

A3

2
i

c7 0 1 0
1

2
2

A3

2
i

1

2
2

A3

2
i 0 2

1

2
2

A3

2
i 0 0

c8 1 0 0 0 2
1

2
1

A3

2
i 0

1

2
1

A3

2
i

1

2
1

A3

2
i 0

c9 0 0 21 0 0
1

2
2

A3

2
i 0 0

1

2
1

A3

2
i

fo

i-
of

s
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Omitting the subscript of the atom, the atomic vector
an atom in thenth cell related to that in thezeroth cell by
translationtn is then given by22

Sn
k5S0

ke2p ik•tn1S0
2ke22p ik•tn. ~4!

As for bothk5000 andk5003
2 the vectorsk and2k are

identical, we have2k5k, and so

FIG. 2. Moment directions for the basis vectorsc1–c6 . c1 and
c2 are related by a rotation of 60°;c4 and c5 are related by a
rotation of 120°.
06443
r Sn
k5~S0

k1S0
2k!e2p ik•tn ~5!

A further simplification arises from the fact that the add
tion of the 2k contribution corresponds to the addition
the conjugate ofk,23,24 i.e.,

S0
2k5S0

k* . ~6!

We therefore obtain

Sn
k52 Re~S0

k!cos~2p ik•tn!1 i2 Re~S0
k!sin~2p ik•tn!.

~7!

For bothk5000 andk5003
2 the sine component vanishe

under the centering translations of the nonprimitive cell,
integer translations of the crystallographic cell, and so
~7! reduces to

Sn
k52 Re~S0

k!cos~2p ik•tn!. ~8!

Therefore, when considering the translational proper
of the magnetic moments described by the complex b
vectors associated withG6, it is sufficient to add their com-
plex conjugate in order to arrive at real values for the atom
moments.
0-3
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B. The magnetic structures of KFe3„CrO4…2„OD…6 and
KCr 3„SO4…2„OD…6

Both KFe3(CrO4)2(OD)6 and KCr3(SO4)2(OD)6 order
with the propagation vectork5000. Inspection of the mag-
netic structure for KFe3(CrO4)2(OD)6 proposed by
Townsend quickly indicates that it does not correspond
any combination of the basis vectors given in Table I and
is forbidden according to group theory. However, the obs
vation of a small ferromagnetic component at low tempe
ture does allow the true magnetic structure to be dedu
given the assumption of antiferromagnetic nearest-neigh
exchange, as evidenced by bulk susceptibility m
surements.2 This is possible as ferromagnetism is compati
only with ordering under the representationG3, which per-
mits a ferromagnetic component parallel to thec axis. The
spin structure therefore corresponds to an umbrella mod
which the in-plane components of the moments are fi
along the directions shown in Fig. 3.

Recent observation of a small ferromagnetic compon
at low temperatures in theS5 3

2 chromium jarosite
KCr3(SO4)2(OD)6 by NMR25 indicates that it too orders
with the same umbrella spin structure.

V. CASE OF kÄ003
2

A. Decomposition of the magnetic representation
and the basis vectors

The decomposition of the magnetic representation for
propagation vector is

G50G1
(1)12G2

(1)10G3
(1)11G4

(2)13G5
(2)10G6

(2) . ~9!

The symmetries of the representations are such that

basis vectors of the representationG2(k5003
2 ) are identical

to those ofG3(k50), and that those ofG4(k5003
2 )5G1(k

5000) and ofG5(k5003
2 )5G6(k50). Because of this re

lation we will continue to use the same basis vectors
numbering scheme presented in Table I.

FIG. 3. In-plane magnetic structure of KFe3(CrO4)2(OD)6 and
KCr3(SO4)2(OD)6 with the three Bravais sublatticesa,b,c of the
kagome´ A layer. The layers have the hexagonal stacking seque
. . . ABC . . .
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While representational analysis for both of these propa
tion vectors leads to the same symmetry-allowed basis v
tors, we must remember that the different propagation v
tors will lead to different magnetic structures. In particula
the reversal of the moments related by the lattice translat

of the primitive cell for thek5003
2 prevents the formation o

a net moment for any spin structure.

B. Refinement of the magnetic structure of AgFe3„SO4…2„OD…6

The collected low-temperature neutron-diffraction da
were found to be most compatible with a magnetic struct
described by the basis vectorsc2 andc3 of the representa-

tion G2(k5003
2 ). Figure 4 displays the value ofx2 as a

function of the mixing coefficientsC(c2) and C(c3). The
best value ofx2 corresponds to the coefficientsC(c1)
50.9960.05 and C(c2)50.0160.05, and the time-
reversedC(c1)520.9960.05 and C(c2)520.0160.05.
The refined structure is therefore coplanar and the contr
tion from out-of-plane canting is zero within the error limi
of these data. The final refined profile is presented in Fig
and the refined magnetic structure in Fig. 6. The final val

ce

FIG. 4. x2 as a function of the basis vector coefficientsC(c1)
and C(c2) during the refinement of the magnetic structure
AgFe3(SO4)2(OD)6 at 1.5 K.
0-4
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of x2 and Rwp are 18.9 and 2.4 %, respectively; the size
the Fe31 moment refined to 3.50~3!mB .

C. Refinement of the magnetic structure
of „H3O…V3„SO4…2„OH…6

The collected data are only well modeled by a struc

based onG5(k5003
2 ). As its basis vectors are split into thre

unique vectors and their complex conjugates, only the c
tributions from the basis vectorsc4 , c5, andc6 are required
in order to generate all the possible magnetic structures
sociated with this representation. In fact, the out-of-pla
contribution from thec6 refined to zero and the data are we
described with onlyc4 andc5. The values ofx2 against the
various values of theC(c4) andC(c5) are displayed in Fig.
7, the final refined diffraction pattern in Fig. 8, and the ma
netic structure is presented in Fig. 9. The final values ofx2

andRwp are 0.0013 and 1.07 %, respectively; the size of
moment on the vanadium atom refined to 2.18~3!mB , which
compares reasonably with the spin-only Ne´el value of
gSmB52mB if the g factor for V31 is assumed to be 2. Th
unusually low values ofx2 are due to the high incoheren
background contribution to the scattering due to the prot
in the sample.

FIG. 5. Experimental and calculated diffraction patterns
AgFe3(SO4)2(OD)6 at 1.5 K.

FIG. 6. Magnetic structure of AgFe3(SO4)2(OD)6 with the
three Bravais sublatticesa,b,c of the kagome´ A layer.
06443
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FIG. 7. x2 as a function of the basis vector coefficientsc4 and
c5 during the refinement of the magnetic structure
(H3O)V3(SO4)2(OH)6 at 1.5 K.

FIG. 8. Experimental and calculated diffraction patterns
(H3O)V3(SO4)2(OH)6 at 1.5 K with the three Bravais sublattice
a,b,c of the kagome´ A layer.
0-5
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A. S. WILLS PHYSICAL REVIEW B 63 064430
The refined values of the coefficients areC(c4) 0.45
60.05, C(c5) 0.5560.05, and C(c4)520.4560.05,
C(c5)520.5560.05.

VI. ANALYSIS OF THE ENERGIES OF THE OBSERVED
STRUCTURES

Given that the magnetic structures of the different irred
ible representations are eigenvalues of the exchange Ha
tonian, comparison of the different possible spin configu
tions gives information on the values of the exchan
constants required to stabilize them. In the following sect
the in-plane and interplane couplings in the observed m
netic structures of KCr3(SO4)2(OD)6 , AgFe3(SO4)2(OD)6,
and (H3O)V3(SO4)2(OH)6 are examined separately. The e
pansions for the exchange energies have been tabulate
Tables II–IV in terms of the nearest-neighbor~J! and next-
nearest-neighbor (J8) exchange couplings for both intra- an
interplane interactions. The exchange energy for spini is
defined by

Ei52(
j

Ji , jSi•Sj . ~10!

In the case of ordering under the repeated first-order

resentationsG1(k5000) orG4(k5003
2 ), the assumption ha

been made that the moments lie in thekagome´ plane. This is
not the case for all the compositions as KCr3(SO4)2(OD)6
and KFe3(CrO4)2(OD)6 display a small spontaneous m
ment. Such a canting cannot be ascribed to simple intrap
or interplane exchange, and therefore is likely to be the re

FIG. 9. Magnetic structure of (H3O)V3(SO4)2(OH)6 with
C(c4)50.50, C(c5)50.50.

TABLE II. The expansion of the intraplane exchange energ
for the 120° and (H3O)V3(SO4)2(OH)6 orderings.

Moment 120° (H3O)V3(SO4)2(OH)6

a 2J12J8 22J22J8
b 2J12J8 0
c 2J12J8 0

Total 6J16J8 22J22J8
06443
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of some small single-ion effects or a Dzyaloshinsky-Mori
coupling,26 rather than the superexchange interactions ex
ined here. The weakness of the observed spontaneous
ments indicates also that this canting is small and that
effects on the Hamiltonians involved can be ignored at
level of these calculations.

A. Zero-energy moments and additional degeneracies in
„H3O…V3„SO4…2„OH…6

Inspection of Tables II and IV reveals that the observ
magnetic structure of (H3O)V3(SO4)2(OH)6 is extraordi-
nary. The expansions for the exchange energy show tha
three Bravais sublattices are separated into two classes.
first, labeleda in Fig. 10, experiences an intraplane exchan
energy of

E522J22J8 ~11!

and an interplane exchange energy of

Einterplane5Jinterplane13Jinterplane8 . ~12!

Those with labelsb andc show a much more unusual energ
profile as despite a nonzero exchange field being prese
their sites, their orientations are such that they possess
intraplane exchange energy, even to the approximation
next-nearest neighbors. The only nonzero-energy term
pears to be from the interplane coupling to the next-nea
neighbors

Einterplane53Jinterplane8 . ~13!

In addition to the nearest-neighbor exchange energ
cancelling for these moments, theb and c sites have addi-
tional localized and extended degeneracies that may be
pected to affect the low-temperature physics. The locali
modes are demonstrated in Fig. 10 and correspond to a s

s

TABLE III. The expansion of the interplane exchange energ
for the 120° structure for the propagation vectorsk5000 andk

5003
2 .

Moment k5000 k5003
2

a Jinterplane23Jinterplane8 2Jinterplane13Jinterplane8

b Jinterplane23Jinterplane8 2Jinterplane13Jinterplane8

c Jinterplane23Jinterplane8 2Jinterplane13Jinterplane8

Total 3Jinterplane29Jinterplane8 23Jinterplane19Jinterplane8

TABLE IV. The expansion of the interplane exchange energ
for the structure observed in (H3O)V3(SO4)2(OH)6 for the propa-

gation vectorsk5000 andk5003
2 .

Moment k5000 k5003
2

a 23Jinterplane8 Jinterplane13Jinterplane8

b 23Jinterplane8 3Jinterplane8

c 23Jinterplane8 3Jinterplane8

Total 29Jinterplane8 Jinterplane19Jinterplane8
0-6
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LONG-RANGE ORDERING AND REPRESENTATIONAL . . . PHYSICAL REVIEW B 63 064430
b or c moment per triangle spinning about the axis defined
the mirror plane relating the two remaining moments of
triangle. This motion is continuously degenerate as it co
zero intraplane and interplane exchange energy, to the n
nearest-neighbor level of approximation. These modes
however interact if they are present at the distance of furth
neighbor atoms or closer.

Extended zero-energy modes are also possible, at
nearest-neighbor level of approximation, in which lines ob
andc moments rotate simultaneously about the axis defi
by thea moments, as shown in Fig. 11.

B. Interplane exchange in„H3O…V3„SO4…2„OH…6

Making the assumption that intra- and interplane e
change are uncorrelated, comparisons between the stru
of (H3O)V3(SO4)2(OH)6 with the possible and the observe

propagation vectorsk5000 andk5003
2 gives information

on the interplane exchange energies: thek5000 and k
5003

2 structures are stable if

218Jinterplane8 ,Jinterplane ~14!

and

FIG. 10. Localized zero-energy excitations
(H3O)V3(SO4)2(OH)6 involving the continuous rotation of oneb
or c moment per triangle.

FIG. 11. Extended zero-energy excitations
(H3O)V3(SO4)2(OH)6 involving the simultaneous rotation of line
of b andc moments.
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218Jinterplane8 .Jinterplane, ~15!

respectively. As the nearest-neighbor exchange is typic
far stronger than the next-nearest exchange, it is usefu
examine these relations in the limit of zero next-neare
neighbor exchange,Jinterplane8 50. This then shows that the
k5000 structure is stabilized by ferromagnetic interactio

while thek5003
2 is stabilized by antiferromagnetic interac

tions.

C. Intraplane exchange in AgFe3„SO4…2„OD…6 and
„H3O…V3„SO4…2„OH…6

Comparison of the total intraplane exchange energ
given in Table II indicates that the coplanar 120° ordering
stabilized if the inequality

J,J8 ~16!

is satisfied. While conversely, the structure observed
(H3O)V3(SO4)2(OH)6 is stabilized if

J.J8. ~17!

In the J850 limit, this shows that the 120° structures
the types observed in AgFe3(SO4)2(OD)6 and
KCr3(SO4)2(OD)6 are stabilized by antiferromagneti
nearest-neighbor intraplane exchange, while that
(H3O)V3(SO4)2(OH)6 is stabilized by ferromagnetic
nearest-neighbor exchange.

D. Interplane exchange in AgFe3„SO4…2„OD…6 and
KCr 3„SO4…2„OD…6

Continuing the comparison for the 120° spin structu

with the propagation vectorsk5000 andk5003
2 indicates

that thek5000 ordering is stabilized if

Jinterplane,3Jinterplane8 ~18!

and conversely, that with the propagation vectork5003
2 by

Jinterplane.3Jinterplane8 . ~19!

In the limit of zero next-nearest-neighbor interactions,
find that thek5000 spin structure is stabilized by antiferro
magnetic nearest-neighbor interplane exchange, in ag
ment with the proposal of Leeet al.6 That with the propaga-

tion vector k5003
2 is stabilized by ferromagnetic neares

neighbor interplane exchange.

VII. DISCUSSION

The determination of the magnetic structures ofkagome´
antiferromagnets features a special difficulty due to the v
tex sharing exchange geometry: for any given value of
propagation vector the nearest-neighbor exchange is an
sufficient criterion to stabilize a single magnetic structu
and a large number of possibilities with equal neare
neighbor exchange energy exist. Representational analys
especially useful in this case as it reduces greatly the num
0-7



f
re

le
co
a

or
ta
re
a

t
th

th

th
em
n

-

i

n
or
ar

he
pi
m
an
th

a
-
he

s

e
e

try
e

en
ig
th
a

or
-
nt
m

ien-
This
mo-
un-

this
ag-
hat
re is
se
re.
nd
that

ysis
sed

sess
rved

ba-
act
hat
fin-
alt
-
ce of

e
he
al
s a
ag-

e for
he
nal

le
, it
for
m-
ive
can
re-

f the
ral
re-

A. S. WILLS PHYSICAL REVIEW B 63 064430
of possible magnetic structures. Indeed, in the jarosites
both propagation vectors we find that there are only th
ordering patterns possible for the ions of akagome´ layer: a
120° structure, an umbrella mode, and a more comp
structure. Of these, at present only magnetic structures
responding to the umbrella and the complex structures
observed.

The analyses presented clearly support previous w6

that proposed that interplane interactions play an impor
role in the stabilization of the observed magnetic structu
This is particularly well demonstrated by the different prop
gation vectors of AgFe3(SO4)2(OD)6 and
KFe3(CrO4)2(OD)6, systems where the only significan
change in terms of the magnetism is the substitution of
XO4

22 ion.
Recent neutron-diffraction measurements have shown

magnetic ordering in samples of KFe32xAl y(SO4)2(OD)6
involves the formation of an intermediate phase where
moments have an umbrella structure, and that at lower t
perature a second transition occurs in which the mome
collapse into thekagome´ plane.27 The absence of an out-of
plane component at low temperature in KFe3(SO4)2(OH)6
has been confirmed by neutron-diffraction studies made w
full polarization analysis on a natural sample.28 As yet, the
physical properties responsible for these structures are
certain, but the group-theory arguments given here end
suggestions4 that the orientations of the moments along p
ticular crystallographic directions in the observed ‘‘q50’’
structures are a result of single-ion effects. However, t
indicate that rather than simply defining the specific s
directions in thekagome´ plane, a more indirect mechanis
can occur, one in which the presence of an out-of-plane c
ing fixes, because of the symmetry of the basis vectors,
directions of the inplane components.

An important consequence of the tilting of the coordin
tion octahedra around theB atoms is that an Ising-type an
isotropy will give rise to an out-of-plane component to t
moments. The second transition that involves a collapse
the moments into the plane may therefore be either the re
of a diminution in this anisotropy, or the increase in som
other influence that pushes the moments into thekagome´
plane. The latter is unlikely to involve an order-by-disord
mechanism29–31as this operates at temperatures that are g
erally far lower thatJ, which is of the order of 40 and 15 K
in the iron and chromium jarosites, respectively.5,6,32There is
no apparent reason for this transition to involve a symme
breaking transition to the singly repeated first-order repres

tations G1(k5000) or G4(k5003
2 ), rather than remaining

within representationG3(k5000) or G2(k5003
2 ), as both

these in-plane 120° structures have the same exchange
gies. Accordingly, it may be the presence of a canting at h
temperatures that continues to define the directions of
moments at low temperature, even when the canting is
sent.

The magnetic structure determined f
(H3O)V3(SO4)2(OH)6 is intriguing as it cannot be ex
plained in terms of simplistic exchange energy argume
despite the presence of nonzero exchange fields, the
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ments on two of the three Bravais sublattice sites are or
tated such that their intraplane exchange energy is zero.
points to a more unconventional reason for the observed
ment directions. The most apparent candidates are the
usual localized and extended zero-energy modes within
structure. However, the observation that the sublattice m
netization is close to the spin-only magnitude indicates t
the moments are largely frozen in the ordered state. The
therefore an apparent contradiction in the ability of the
modes to influence the stability of the observed structu
Further theoretical work is required in order to understa
the details of this magnetic structure and the influences
lead to its formation.

VIII. CONCLUSION

In this paper the techniques of representational anal
and reverse-Monte Carlo Rietveld refinement have been u
to determine the magnetic structures of jarosites that pos
long-range magnetic order. In both the cases of the obse

propagation vectorsk5000 and k5003
2 , only three

symmetry-allowed magnetic structures are found, and the
sis vectors for the different propagation vectors are in f
identical. Examination of the refined structures shows t
the interplane exchange interactions are important in de
ing the observed magnetic structures. The s
(H3O)V3(SO4)2(OH)6 is of particular interest as the ob
served magnetic structure appears to be the consequen
localized and extended zero-energy excitations.
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APPENDIX: GROUP-THEORY CALCULATIONS

1. Space-group settings and notation

There has been much comment made of the preferenc
using primitive cells as the crystallographic frame for t
group-theory calculations that make up representatio
analysis.23,24,33–38While this leads to a reduction in possib
confusion, particularly over the correct propagation vector
is certainly not necessary and the calculations are valid
any lattice setting, given that its particular translational sy
metry is correctly taken into account. Thus, the nonprimit
space groups more commonly used by crystallographers
be directly used. To demonstrate this, the calculations p
sented have been made using the hexagonal setting o
R3̄m space group rather than the primitive rhombohed
description. This setting has the additional advantage of
taining the coplanar symmetry of thekagome´ lattice. Opera-
0-8
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tions that involve its three centering translations are not u
in these calculations as they lead only to a trivial scaling
the results.

Before entering into the details of the calculations, a wo
must first be made about the notations used in this work.
historical development of the application of group theory
the determination of magnetic structures has left the pres
day reader with an inconsistent array of terms and variab
In this work, clarification is made where possible of t

TABLE V. Symmetry elements of the space groupR3̄m. The
notations used are of the International Tables II~Ref. 42!, where the
elements are separated into rotation and translation compon
and theJones faithful representationsof the rotation parts. The
latter corresponds to the vector formed from the operation of
rotation part of the element on position (x,y,z).
06443
d
f

d
e

t-
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terms used and relations are stated with the other con
tions.

In keeping with Kovalev’s notation,39 h andt are used to
symbolize the rotational and translational parts of the sy
metry operatorg. However, theh labels used for the rota
tional symmetry elements in this work are not related
those used by Kovalev as the axes, definitions are not
same. To depict the representations an extension is mad
the notation used by Bertaut, and a representationa, which is
of orderb, is depicted with the symbolGa

(b) .
The program SARAh17 was used to perform the group

theory calculations. The allowed irreducible representati
of the little group are calculated by Zak’s inductio
procedure40,41 and the basis vectors then calculated as
scribed in the following sections.

2. The irreducible representations

In general, for a given propagation vectork, we find that
some of the operatorsg5$hut% of the space groupG0 leave
it invariant while others transform it into an equivalent ve
tor that differs by some arbitrary translation of the recipro
lattice b according to

kh5k1b. ~A1!

This set of elements make up the so-called little groupGk ,
which is a subgroup ofG0. The irreducible representations o
this little group are given by the symbolGn , wheren is the
label of the irreducible representation, and the matrix t
corresponds to the symmetry elementg is labeled bydn

k(g).

The space groupR3̄m contains 12 symmetry operator
These are listed in Table V using a number of different co
ventions. The jarosite systems make up a particularly in
esting example as the observed propagation vectorsk5000

andk5003
2 ~in the hexagonal dual basis settings! possess the

same irreducible representations. This is becausek5003
2

corresponds to a symmetry point of the Brillouin zone and
all elements of the groupG0 are present in the little group o
the propagation vectorGk . The irreducible representation
of the little group are given in Tables VI and VII.

As Table VII shows, the second-order representationsG5
andG6 have the same elements for symmetry operations 1
and are related by a factor of (21) for the operations 7–12

These irreducible representations may be verified aga
tabulated values of the projective~or ‘‘loaded’’! representa-
tions dn

pr , given in works such as those by Bradley a
Cracknell41 and Kovalev.39 ~Particular care must be take
when comparing these values as the work of Kovalev use
unconventional setting of the hexagonal axes.! These tabu-
lated representations are given for the various point-gr
symmetries and can be converted into the irreducible re
sentations of the little groupGk of the propagation vectork
by the multiplication of a phase factor

dn5dn
pr exp~22pk•t!, ~A2!

wheret is the translation part of the symmetry operator
which dn is associated.

ts,

e

0-9
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TABLE VI. First-order irreducible representations for the groupD3d
5 for the vectorsk5000 andk5003

2 .

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

G1 1 1 1 1 1 1 1 1 1 1 1 1
G2 1 1 1 1 1 1 21 21 21 21 21 21
G3 1 1 1 21 21 21 1 1 1 21 21 21
G4 1 1 1 21 21 21 21 21 21 1 1 1
a

on

le

r

b
se
on

tw

a

tion

ra-
ve
the

ssar-

al

he
ub-
While the presented two-dimensional representations
complex, Herring’s criterion@Eq. ~A18!# indicates that the
representations proper are real:24

h5
1

n~Gk! (
h: k→2k

xn~h2!55
11 if dkn is real,

0 if dkn is complex

and dkn;” ~dkn!* ,

21 if dkn is complex

and dkn;~dkn!* .

~A3!

Here,n is the index of the representation under investigati
and the summation is extended over all elementshPGk ,
which transform the vectork into a vector equivalent to
2k. xn(h2) is the character of the representation of the e
ment that is the square ofh. As in both the casesk5000 and

k5003
2 , the vectorsk and2k are identical, the sum is ove

all the elements ofGk , and soh51.
Rather than make these complex representations real

unitary rotation, we will continue our calculations with the
in complex form for pedagogic reasons in order to dem
strate the application of complex basis vectors.

3. Effect of symmetry element on a moment bearing atom:
The magnetic representation

The symmetry operatorg5$hut% acts on both the position
r j of the atom and on the componentsa of the axial vector
that describes the moment. The combination of these
results are described by the magnetic representationG. In the
following section we will examine these two effects sep
rately.
06443
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a. Effect of symmetry element on atom positions:
The permutation representation

The operation that sendsr j in the zeroth cell to r i in the
pth cell can be symbolically stated as

g~ j 0!→~ i p!. ~A4!

In other terms, the effect of a symmetry operationg is to
permute the column matrix of atom labelsP,

g~P!→P8. ~A5!

This operation is governed by a permutation representa
Gperm, which has matrices of orderNA , whereNA is the
number of Bravais sublattices~Wyckoff sites! for this atomic
position. It is important to note that when a symmetry ope
tion results in an atomic position that is outside the primiti
zeroth cell, a phase factor must be included to relate
generated position to that in thezeroth cell. The translation
that relates atoms of the same Bravais sublattice is nece
ily zero or some primitive lattice translation.! This phase is
simply given by

f522pk•T, ~A6!

whereT is the translation vector which relates the origin
and generated atoms.

As an example, from Tables VIII and IX we see that t
permutation equation for the atoms of the three Bravais s
lattices under theg25$31u000% operation is

S 2•exp~fa!

3•exp~fb!

1•exp~fc!
D 5GpermS 1

2

3
D , ~A7!
TABLE VII. Second-order irreducible representations for the groupD3d
5 for the vectorsk5000 andk

5003
2 . e5exp(22p/3).

h1 h2 h3 h4 h5 h6

G5 ,G6 1 0

0 1

e 0

0 e2

e2 0

0 e

0 1

1 0

0 e2

e 0

0 e

e2 0

h7 h8 h9 h10 h11 h12

G5 21 0

0 21

2e 0

0 2e2

2e2 0

0 2e

0 21

21 0

0 2e2

2e 0

0 2e

2e2 0

G6 1 0

0 1

e 0

0 e2

e2 0

0 e

0 1

1 0

0 e2

e 0

0 e

e2 0
0-10
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TABLE VIII. The permutation ofB31 atoms~at position 9d) and the transformation of the axial components of the moment unde

different symmetry operators of theR3̄m space group~point groupD3d
5 ) for k5000. Thecharacters of the representationsGperm andṼ are

given.

Element g5$hut% Atoms xperm Axial-vector components x Ṽ

1 2 3 mx my mz

g1 $1 u 0 0 0% 1 2 3 3 mx my mz 3
g2 $31 u 0 0 0% 2 3 1 0 2my mx2my mz 0
g3 $32 u 0 0 0% 3 1 2 0 2mx1my 2mx mz 0
g4 $2 u 0 0 0% 1 3 2 1 my mx 2mz 21
g5 $2 u 0 0 0% 3 2 1 1 mx2my 2my 2mz 21
g6 $2 u 0 0 0% 2 1 3 1 2mx my2mx 2mz 21
g7 $1̄ u 0 0 0% 1 2 3 3 mx my mz 23

g8 $3̄1 u 0 0 0% 2 3 1 0 2my mx2my mz 0

g9 $3̄ u 0 0 0% 3 1 2 0 my2mx 2mx mz 0

g10 $m u 0 0 0% 1 3 2 1 my mx 2mz 21
g11 $m u 0 0 0% 3 2 1 1 mx2my 2my 2mz 21
g12 $m u 0 0 0% 2 1 3 1 2mx my2mx 2mz 21
nd
e

ns-

nta-

on
ent
s a
han
where the atomic positions follow the labeling 15( 1
2

1
2

1
2 ),

25( 1
2 0 1

2 ), 35(0 1
2

1
2 ). For the operationg25$31u000%,

fa5fb5fc50 for bothk5000 andk5003
2 . The permu-

tation representation is therefore given by

Gperm
$31u000%5S 0 1 0

0 0 1

1 0 0
D . ~A8!

The character of this representationxperm for each sym-
metry operator is then simply the sum of the phasesf(g) for
the atoms that are transformed into an equivalent atom u
a symmetry operation, and so for both the propagation v

tors,xperm
$31u000%50.
06443
er
c-

b. Effect of symmetry element on moment vectors:
The axial-vector representation

The second effect of this symmetry operation is to tra
form the spin components with indexa (a5x,y,z) of the
reference spinj into the indexa8 of the atom atr i .36 These
transformations are described by the axial-vector represe
tion Ṽ, the character of which is given by

x Ṽ
h
5tr~Rab

h !dh5 (
a5b

Rab
h dh , ~A9!

where Rab
h refers to a specific elementa,b of the rotation

matrix h, and dh represents the determinant of the rotati
matrix Rh, and takes into account that the magnetic mom
is not reversed by the inversion operation. This arises a
magnetic moment is described by an axial vector, rather t
r the
TABLE IX. The permutation ofB31 atoms~at position 9d) and the transformation of the axial components of the moment unde

different symmetry operators of theR3̄m space group~point groupD3d
5 ) for k5003

2 . The characters of the representationsGperm andṼ are
given.

Element g5$hut% Atoms xperm Axial- vector components x Ṽ

1 2 3 mx my mz

g1 $1 u 0 0 0% 1 2 3 3 mx my mz 3
g2 $31 u 0 0 0% 2 3 1 0 2my mx2my mz 0
g3 $32 u 0 0 0% 3 1 2 0 2mx1my 2mx mz 0
g4 $2 u 0 0 0% 21 23 22 21 my mx 2mz 21
g5 $2 u 0 0 0% 23 22 21 21 mx2my 2my 2mz 21
g6 $2 u 0 0 0% 22 21 23 21 2mx 2mx1my 2mz 21
g7 $1̄ u 0 0 0% 21 22 23 23 mx my mz 23

g8 $3̄1 u 0 0 0% 22 23 21 0 2my mx2my mz 0

g9 $3̄ u 0 0 0% 23 21 22 0 2mx1my 2mx mz 0

g10 $m u 0 0 0% 1 3 2 1 my mx 2mz 21
g11 $m u 0 0 0% 3 2 1 1 mx2my 2my 2mz 21
g12 $m u 0 0 0% 2 1 3 1 2mx 2mx1my 2mz 21
0-11
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by a polar vector.dh has the value of11 for a proper and
21 for an improper rotation. The operation ofh(31) on the
moment vectorMW 5(mxmymz) therefore gives

R~31!MW 5dhS 0 21 0

1 21 0

0 0 1
D S mx

my

mz

D ~A10!

51S 2my

mx2my

mz

D . ~A11!

As 31 is a proper rotation,d(31)51 and the character ofṼ

for h(31) is x Ṽ
31

50.

c. The magnetic representationG

As already stated, the magnetic representationG describes
both the result of the symmetry operation on the atomic
sitions and on the axial vectors that describe the magn
moments. These effects are independent, and consequen
the magnetic representation is given by their dir
product36,23,33,24

G5Ṽ3Gperm. ~A12!

Or, in terms of the matrices for the representations the
selves,

D (h,th)
G 5D (h)

Ṽ 3D (h,th)
Gperm. ~A13!

Their characters are therefore related according to

xG5x Ṽ3xperm. ~A14!

4. Reduction of the representationG

The magnetic representation for a particular site can
decomposed into contributions from the irreducible repres
tations of the little group

G5(
n

nnGn , ~A15!
. B

te

. B
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wherenm is the number of times the irreducible represen
tion Gm appears in the magnetic representationG,

nn5
1

n~Gk!
(

hPGk

xG~h!xG
n*
~h!. ~A16!

Here xG is the character of the magnetic space group a
xn

G is the character of the irreducible representation with
index n.

5. Calculation of the basis vectorsC

Them unique basis vectorscn that transform according to
the m dimensional irreducible representationGn

m are pro-
jected out of any given row of the representation matrixDn
using the projection operator formula41

cn
il5 (

hPGk

D (n)
l* (

i
d i ,gidhRhc ia. ~A17!

The summation is over the rotational parts of the symme
elements of the little groupGk . c is a spin component tha
we represent by a column matrixc(r ).

In our calculations them elements are those that corr
spond to the first column of the matrix ofDn . As for each
element labeledl51, . . . ,m, three componentsa are pro-
jected out, and there are in total 3m projected components
The number of unique projected components for a repres
tation is of course the same as calculated using Eq.~A16!.

6. Refinement of basis vectors mixing coefficients

Following the Landau theory of a second-order pha
transition, any linear combination of basis vectors within t
representation that becomes critical is necessarily
symmetry-allowed basis vector. The atomic spin on a p
ticular atomSi is therefore most generally given by the su
of the basis vectors for a particular irreducible representa

Si5(
n

Cn
i cn

i , ~A18!

whereCi
n is the mixing coefficient for atomi of the basis

vectorn. In refining the orientation of an atomic moment, w
are in effect refining the mixing coefficientsCi

n of the basis
vectors within the irreducible representation being examin
The number of variables in the refinement is simply the nu
ber of unique basis vectors that transform according t
given representation, i.e.,nnm.
B

h.
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K. Sköld and D.L. Price~Academic Press, New York, 1987!.
23E.F. Bertaut, J. Magn. Magn. Mater.24, 267 ~1981!.
24Yu.A. Izymov, V.E. Naish, and R.P. Ozerov,Neutron Diffraction

of Magnetic Materials~Consultants Bureau, New York, 1991!.
25M. Nishiyama, T. Morimoto, S. Maegawa, T. Inami, and Y. Ok

Proceedings of Highly Frustrated Magnetism 2000@Can. J.
Phys.~to be published!#.
06443
e

le

r-

26T. Moriya, Phys. Rev.120, 91 ~1960!.
27J. Frunzke, T. Hansen, A. Harrison, J. S. Lord, G.S. Oakley,

Visser, and A.S. Wills, J. Mater. Chem.~to be published!.
28E. Lelievre-Berna, A. Harrison, G. Oakley, and D. Visser, Annu

Report of the Institut Laue-Langevin for 1999, No. Exp
5-61-37 2000~unpublished!.

29J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys.~Paris!
41, 1263~1980!.

30C.L. Henley, Phys. Rev. Lett.62, 2056~1989!.
31J.T. Chalker, P.C.W. Holdsworth, and E.F. Shender, Phys. R

Lett. 68, 855 ~1992!.
32A.S. Wills, Proceedings of Highly Frustrated Magnetism 200

@Can. J. Phys.~to be published!#.
33Yu.A. Izyumov and V.E. Naish, J. Magn. Magn. Mater.12, 239

~1979!.
34E.F. Bertaut, J. Appl. Phys.33, 1138~1962!.
35E.F. Bertaut, Acta Crystallogr., Sect. A: Cryst. Phys., Diff

Theor. Gen. Crystallogr.A24, 217 ~1968!.
36E.F. Bertaut, J. Phys.~Paris!, Colloq. C1, 462 ~1971!.
37Yu.A. Izyumov and V.E. Naish, J. Magn. Magn. Mater.12, 249

~1979!.
38Yu.A. Izyumov and V.E. Naish, J. Magn. Magn. Mater.13, 267

~1979!.
39O.V. Kovalev, Irreducible Representations of the Space Grou

~Gordon and Breach, New York, 1961!.
40J. Zak, J. Math. Phys.1, 165 ~1960!.
41C.J. Bradley and A.P. Cracknell,The Mathematical Theory o

Symmetry in Solids~Clarendon Press, Oxford, 1972!.
42International Tables for Crystallography, edited by T. Hahn

~Kluwer Academic Publishers, Dordrecht, 1996!.
0-13


