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Long-range ordering and representational analysis of the jarosites
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The jarosites are the most studied family kafgomeantiferromagnets. Despite these works little is still
known about the detailed causes of the observed magnetic structures. In this article representational analysis is
used to determine the possible symmetry-allowed magnetic structures for the observed propagation vectors,
and to examine their stability conditions. Refinements are presented of the magnetic structures of
AgFe;(SO,),(0OD)g and (H;0)V3(SO,)2(0OH)g. The steps required for these calculations and the refinement
of the models against the neutron-diffraction data are detailed.
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[. INTRODUCTION and filled sites(experimentally observed occupations are
0.09 and 0.96, respectivglgauses the axis to be doubled;

Antiferromagnets withkagomegeometry have been the the remainder of the structure has no gross distortions away
subject of much recent experimental and theoretical interestom the idealized structur€:**In the alunite structure, the
after predictions that at low temperature they could condensB3* ions are coordinated by a distorted octahedron of four
into exotic ground state’sThe most studiettagomesystems  hyroxy and two sulfate oxygen atoms. These octahedra are
are those based on the jarosite serfeB;(SQ,),(OH)s  joined by corner sharing to form thegomenet. Within the
(where A=Na', K", Rb", Ag", H;O", and sP*"; B  sulfate layers between thagomdayers theA* ions occupy
=Fe*, CP", and \#"). Within this structure-type N& 12 coordinate sites.
long-range ordef;® highly fluctuatin§ and unconventional It is known that the jarosites are prone to nonstoichiom-
spin-glas§%°ground states have been observed. In the maetry on both theA and theB sites: up to 80% of thé cations
terials that possess long-range order, it is believed that thean be replaced by 40", while a deficiency of F& is
balance of energies required to stabilize nonconventional oreharge balanced by protonation of the hydroxy groups to
dering is broken by the presence of further-neighbor exform H,O. This leads to an occupation of Fesites that
change interactionsComparisons between the different pos-is generally less than 100%, and typically in the range
sible structures are important as they yield direct informatiorB3-93%. An exception is the hydronium salt
on the values of the exchange constants and other parameters
that are required for their stability.

In the present paper the technique of representational
analysis is used to calculate the basis functions of the group
D34 magnetic representations for the observeather than
typical) values of the propagation vector. These are used to
classify and determine the possible magnetic structures, and
to analyze the physical quantities that could be their cause.
Particular attention is given to a discussion of the conjecture
that single-ion effects play a role in defining the spin orien-
tations in these materiafs’

Il. THE ALUNITE CRYSTAL STRUCTURE

In terms of their crystallography, the jarosites crystal-
lize in the alunite structure [alunite itself is
KAl 3(SO,),(OH)el.tt As B=AI®" these compositions are
nonmagnetic. The term jarosite, which specifically refers to
the mineralogical familyAFe;(SOy),(OH)g, has now been

applied more generally to distinguish the magnetic composi- K .
tions with this structureB=Fe’*, CP*, and \P*.2%12The o O
compositions within this family that show a transition to
long-range Nel order are the subject of the following analy- OH O
Sis.
The majority of the jarosites are described in the space Fe
groupR3m and their crystal structure is displayed in Fig. 1. S °
The exception is plumbojarosite f4Fe;(SO,),(OH)g, in
which segregation of the Pb ions into alternatively vacant FIG. 1. The alunite crystal structure.
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(H30)Fg(S0y,),(0OH)g, which can be prepared with an iron IV. CASE OF k=0

5
content of~97%. A. Decomposition of the magnetic representation
and the basis vectors

In the hexagonal setting the magnetic Féons are found
on the 9l sites. For these sites the decomposition of the

The synthesis and full crystal structure refinement ofmagnetic representation according to E416) is
(H30)V3(SO,),(OH)g will be described in a separate
work.!® Due to synthetic difficulties the unusual step was ~ I'=1T'{P+or®P+2rP+or@+orP+3rP. (1
taken of using a protonated rather than a deuterated sample.

As this paper is focused on the magnetic structures we will | andau theory requires that only one representation can
restrict the description of (§D)V3(S0O,),(OH)g to the e involved in a critical transition, and so with this constraint
points necessary to refine the magnetic structure. Neutronhere are only three possible magnetic structures forkhis
diffraction data from (HO)V3(SQ,),(OH)s were collected These representations correspond to those that have a non-
using neutrons of wavelength 2.4 A using the D20 diffrac-zero contribution: the representatiokig, I'3, andT'g.

tometer of the Institut Laue-Langevin. The sample was held The basis vectors for these representations calculated ac-
in a vanadium can and data collected above and below agording to Eq.(A17) are given in Table I. The atomic sites
ordering temperatur&,=21 K. The large angular range of are labeled following the convention given in Sec. A 3.
the diffractometer allowed the collection of data over a suf-These basis vectors have varied forms and the types of mag-
ficient Q range for the analysis of both nuclear and magnetid'€tic structures to which they correspond will now be dis-

structures. Refinement of tfR8m nuclear structure was car- CUSI;:dr.esentationf and T are one dimensional. The
ried out using the PC translation of the GSAS stfit&@he P 1 3 : Y

. . therefore correspond to simple magnetic structures in which
magnetic strupture factors were then .calculated using th e atomic moments are orientated along particular crystal-
GENLES routine of the GSAS suite, while the symmetry andlographic axes. It is noteworthy that boh and i, corre-
orientations of the magnetic moments were controlled an%

_ _ pond to the so-calledd=0" spin structure!®?*a 120°
refined separately by the program SARRefine for  gnin structure with the total spin on any given triangle

GSAS!’ Refinement was madeirectly of the basis vector plaguette beingt;S.=0 (Fig. 2. While the two spin struc-
mi?<ing coefficients within the represen.tation unQer testingyres are related by a 60° reorientation of spins, the two
using a reverse-Monte Carl&&MC) algorithm® This tech-  representations differ in thél, allows the introduction of an
nigue examines a greater range of phase space than is StaBl‘i’t-of-pIane component, which corresponds/to The com-
using conventional least-squares refinement techniques, apghation of the two basis functions, and 5 creates a so-

so allows the investigation and location of other minima in¢4|jeq “umbrella structure,” in which the degree of out-of-
the refinement variable hyperspace. As magnetic StUClUrGlane canting is a refinement variable.

determination is frequently hindered by limited data sets and Representatiod’s is two dimensional and is repeated
the possibilities of several magnetic structures with identicalee times. It therefore corresponds to a six basis vector

structure factors, this technique gives more information oy, agnetic structure. As the general solution involves any lin-
the quality of the refinement and the uniqueness of the solus"compination of these six basis vectors we cannot ascribe
tions. Once a minimum has been found, optimization usingq, yhis representation a simple structure. However, there are

least squares can be carried out. However, in cases involvingations between the basis vectors and these will simplify
only two basis vectors, a RMC refinement made using 10Q,¢ (efinement of the mixing coefficients: = y;, % =y
cycles was not found to be further improved by Ieast—squaregn Ayt = o TamTe

6 ¥9-

optimization. . . e
. . o - As the atomic spins are real entities, in the case of com-
In the following refinements, the mixing coefficients for lex basis vectors it is necessary to introduce the correspond-
the basis vectors of each irreducible representation were cor% basis vectors of the propa yation vectok in order top
strained to have random values betweef and—1, such 9 : propag .
. . . make the summation of the two components real. This con-
that the sum of their magnitudes was of modulus unity. The

orientations of all the moments in the complete magnetic Cel?trrcl)m:r?i?e ;SO??f{gyn?;p:,ae'ggdm'msmesxa{nﬁgea;?; t/r:gti)lﬁttlﬁgt
for this random spin configuration, which lies within the pos—p P Y )

sible symmetry-allowed structures of the chosen represent lescribes the moment at positiop can be expressed in

tion, were calculated from these. During each RMC cycle erms of that atr; by the addition of the phase factor
three least-squares cycles were made in order to refine tﬁe@(p(%k'm)'
optimum magnitude of the magnetic moments, the only vari-
able allowed to refine during the RMC cycles. This was con- S(ri)=3(rj)-exp(2mk-Ar). 2
strained to be equal for all the atoms in the magnetic cell.

The neutron-diffraction data presented here, collecHere, the positions of the two atoms are related by a lattice
ted using neutrons of wavelength 2.52 A from translationAr,
AgFe;(S0O,),(OH)g at 1.5 K have been previously reported
in Ref. 5. ri=rj+Ar. 3

IIl. EXPERIMENT
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TABLE I. The basis functions of the irreducible group represent
magnetic representation with=0.

PHYSICAL REVIEW B 63 064430

atit®RB) of the space grouR3m (point groupD3,) appearing in the

IR Basis vector Atom 1 Atom 2 Atom 3
m, m, m, m, my m, m, m, m,
r, i 1 1 0 -1 0 0 0 -1 0
s o 1 -1 0 1 2 0 -2 -1 0
s 0 0 1 0 0 1 0 0 1
I'e Wy 1 0 0 0 _1__\/_§i 0 l_\/_éi l_\/_gi 0
2 2 2 2 2
1 43 1 3 1 3
0 1 0 a7 PR 0 T - 0 0
s 5t St St
1 43 1 3
0 0 1 0 0 T 0 0 T
e 5= st
1/ 0 1 0 1__\/_§i 1—\/—§i 0 _E_Ei 0 0
2 2 2 2 2 2
1 43 1 3 1 3
1 0 0 0 1T 0 a1 a1 0
g 2+ > 2+ > 2+ 5
1 43
o 0 0 -1 0 0 %—gi 0 0 St

Omitting the subscript of the atom, the atomic vector for
an atom in thenth cell related to that in theerah cell by
translationt,, is then given b§?

(4)

As for bothk=000 andk=00% the vectorsk and —k are
identical, we have-k=k, and so

SﬁzsgeZﬂ'ik»tn_i_Sa e*ZTrik»tn.

¥
® up
+ © down
¥, v
+ +
¥ ¥ X
W Ws Ys

FIG. 2. Moment directions for the basis vectagrs-ig. ¥, and
i, are related by a rotation of 60%, and ¢ are related by a
rotation of 120°.

Sl;:(sg_i_sak)eZﬂ'ik-tn (5)

A further simplification arises from the fact that the addi-
tion of the —k contribution corresponds to the addition of

the conjugate ok,2?i.e.,
S =St ()
We therefore obtain
SK=2 RgSK)cog2mik-t,) +i2 Re(S)sin(2mik-t,).
(7

For bothk=000 andk=00% the sine component vanishes
under the centering translations of the nonprimitive cell, or
integer translations of the crystallographic cell, and so Eq.
(7) reduces to

SK=2 Re(S{)cog 2mik-ty). 8

Therefore, when considering the translational properties
of the magnetic moments described by the complex basis
vectors associated withg, it is sufficient to add their com-
plex conjugate in order to arrive at real values for the atomic
moments.
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FIG. 3. In-plane magnetic structure of Kf€rO,),(0OD)g and
KCr3(S0O,),(0OD)g with the three Bravais sublatticesb,c of the Cly)
kagomeA layer. The layers have the hexagonal stacking sequence
...ABC... ' ' ' '
200 |- -

-
B. The magnetic structures of KFg(CrO,),(OD)g and I —\ j'

KCr 3(S0O,)2(0OD)g %

Both KFey(Cr0O,),(0OD)s and KCk(SOy),(OD), order wor

ik
ny
with the propagation vectde=000. Inspection of the mag- - ’
netic structure for KFgCrO,),(OD)s proposed by o, 100k ., y
Townsend quickly indicates that it does not correspond to "
any combination of the basis vectors given in Table | and so - '
is forbidden according to group theory. However, the obser- 4, / i
vation of a small ferromagnetic component at low tempera-
ture does allow the true magnetic structure to be deducec I \.
given the assumption of antiferromagnetic nearest-neighbo 0 . . . . T- .
exchange, as evidenced by bulk susceptibility mea- -10 05 0.0 05 1.0
surementé.This is possible as ferromagnetism is compatible Clys)
only with ordering under the representatibg, which per-
mits a ferromagnetic component parallel to thexis. The FIG. 4. x* as a function of the basis vector coefficiefgy,)
spin structure therefore corresponds to an umbrella mode ind C(¢2) during the refinement of the magnetic structure of
which the in-plane components of the moments are fixed*9F&(S0:)2(OD)s at 1.5 K.

along the directions shown in Fig. 3. i ) .
Recent observation of a small ferromagnetic component While representational analysis for both of these propaga-
at low temperatures in theS=2 chromium jarosite UtON vectors leads to the same symmetry-allowed basis vec-

KCrs(SO,),(OD)s by NMR? indicates that it too orders tors, we must remember that the different propagation vec-
with the same umbrella spin structure. tors will lead to different magnetic structures. In particular,

the reversal of the moments related by the lattice translations
of the primitive cell for thek= 003 prevents the formation of

—002 .
V. CASE OF k=003 a net moment for any spin structure.
A. Decomposition of the magnetic representation
and the basis vectors B. Refinement of the magnetic structure of AgFe(S0O,),(0OD)g

The decomposition of the magnetic representation for this The collected low-temperature neutron-diffraction data
propagation vector is were found to be most compatible with a magnetic structure
described by the basis vectafs and i3 of the representa-
r=or®P+2rP+orP+1r@+3r@+orP. (9  tion I'y(k=003). Figure 4 displays the value of? as a
function of the mixing coefficient€(,) and C(3). The
The symmetries of the representations are such that tHeest value ofx* corresponds to the coefficien(i,)

basis vectors of the representatibp(k=003) are identical —0-99=0.05 and C(4,)=0.01x0.05, and thetime-
reversedC(¢,)=—0.99+0.05 and C(¢,)=—0.01£0.05.

to those ofl'3(k=0), and that those dfy(k=003)=T's(k  The refined structure is therefore coplanar and the contribu-
=000) and ofl'5(k=003)=T'¢(k=0). Because of this re- tion from out-of-plane canting is zero within the error limits

lation we will continue to use the same basis vectors anaf these data. The final refined profile is presented in Fig. 5
numbering scheme presented in Table I. and the refined magnetic structure in Fig. 6. The final values
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FIG. 5. Experimental and calculated diffraction patterns for Clua)
AgFQi(SOAl)Z(OD)G at 1.5 K. 0037 . . . .
of x? and Rwp are 18.9 and 2.4 %, respectively; the size of g6 . _
the Fé™ moment refined to 3.508)ug - * ]
@
0035 |- . ¢ ] 5 i
C. Refinement of the magnetic structure p % .
of (Hz0)V3(S0,)2(OH)g 0034 | .. e |
The collected data are only well modeled by a strucure™ ‘o 4 s "
3 . . - 033 | . 4 'y J
based ol'5(k=003). As its basis vectors are split into three o
unique vectors and their complex conjugates, only the con- 0032 - ‘ ,' \ ! ]
tributions from the basis vectors,, 5, andyg are required \ , b‘ ]
in order to generate all the possible magnetic structures as .., | |
sociated with this representation. In fact, the out-of-plane . . . .
contribution from the/g refined to zero and the data are well -10 05 00 05 10
described with onlyy, ands. The values ofy? against the Clys)

various values of th€(¢,) andC(#s5) are displayed in Fig.
7, the final refined diffraction pattern in Fig. 8, and the mag- FIG. 7. x2 as a function of the basis vector coefficients and
netic structure is presented in Fig. 9. The final valueg©f s during the refinement of the magnetic structure of
andR,,, are 0.0013 and 1.07 %, respectively; the size of thgHs0)V3(S0;)2(OH)e at 1.5 K.

moment on the vanadium atom refined to 2(3fug, which

compares reasonably with the spin-only élevalue of

gSug=2ug if the g factor for V" is assumed to be 2. The

unusually low values of? are due to the high incoherent

background contribution to the scattering due to the protons

in the sample. ‘ .

15‘0
I
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20

FIG. 8. Experimental and calculated diffraction patterns for
FIG. 6. Magnetic structure of AgRESO,),(OD)g with the (H30)V3(SO,),(OH)g at 1.5 K with the three Bravais sublattices
three Bravais sublattices b,c of the kagomeA layer. a,b,c of the kagomeA layer.
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TABLE lll. The expansion of the interplane exchange energies
for the 120° structure for the propagation vectérs 000 andk

=003.
= —003

Moment k=000 k=003
’ ’

a Jinterplane_ 3‘]interplane _‘]interplane+ 3‘]interplane
! !

b ‘]interplane_ 3‘]interplane _‘]interplane+ 3‘]interplane
’ ’

c Jinterplane_ 3‘]interplane _‘]interplane+ 3‘]interplane
’ !

Total 3Jinterplane_ 9‘]interplane - 3Jinterpl.’:lne"' 9‘Jinterplane

of some small single-ion effects or a Dzyaloshinsky-Moriya
coupling?® rather than the superexchange interactions exam-
ined here. The weakness of the observed spontaneous mo-
ments indicates also that this canting is small and that its
effects on the Hamiltonians involved can be ignored at the
level of these calculations.

FIG. 9. Magnetic structure of (30)V3(SQy),(OH)s with
C(/4) =0.50, C(y5) =0.50.

The refined values of the coefficients a@{,) 0.45
+0.05, C(¢s) 0.55+0.05, and C(i,)=—0.45+0.05,

C(ts)=—0.55+0.05. A. Zero-energy moments and additional degeneracies in
(H30)V3(S0,),(0OH)g
VI. ANALYSIS OF THE ENERGIES OF THE OBSERVED Inspection of Tables Il and IV reveals that the observed
STRUCTURES magnetic structure of (¥0)V3(SOy),(OH)g is extraordi-

) ) ) ) nary. The expansions for the exchange energy show that the
Given that the magnetic structures of the different irreducthree Bravais sublattices are separated into two classes. The

ible representations are eigenvalues of the exchange Hamiirst, labeleda in Fig. 10, experiences an intraplane exchange
tonian, comparison of the different possible spin configuraenergy of

tions gives information on the values of the exchange

constants required to stabilize them. In the following section E=-2J-2J (11
the in-plane and interplane couplings in the observed ma
netic structures of KG(SQy),(OD)g, AgFe;(SO,)»(OD)g,
and (H,0)V;5(SO,),(OH)g are examined separately. The ex-
pansions for the exchange energies have been tabulated in
Tables lI-IV in terms of the nearest-neighkidy and next-  Those with labeld andc show a much more unusual energy
nearest-neighbord() exchange couplings for both intra- and Profile as despite a nonzero exchange field being present at

defined by intraplane exchange energy, even to the approximation of

next-nearest neighbors. The only nonzero-energy term ap-

pears to be from the interplane coupling to the next-nearest
Ei= —Ej) JiS-S. (100 neighbors

%nd an interplane exchange energy of

Einterplane:JinterpIane+ 3Ji,nterplane' (12)

E; lane=3J! . (13
In the case of ordering under the repeated first-order rep- nerplane nterplane

resentation§’; (k=000) orI",(k=00%), the assumption has In addition to the nearest-neighbor exchange energies
been made that the moments lie in #egonieplane. This is cancelling for these moments, theand c sites have addi-

not the case for all the compositions as K(S0,),(OD)g tional localized and extended degeneracies that may be ex-
and KFe(CrO,),(OD), display a small spontaneous mo- pected to affect the low-temperature physics. The localized

ment. Such a canting cannot be ascribed to simple intraplarf@0des are demonstrated in Fig. 10 and correspond to a single

or interplane exchange, and therefore is likely to be the result TABLE IV. The expansion of the interplane exchange energies

TABLE II. The expansion of the intraplane exchange energiesfor the structure observed in g8)V3(S0;)z(OH)s for the propa-

; — —003
for the 120° and (KO)V5(S0Oy,),(OH)s orderings. gation vectorsk=000 andk=003.
Moment 120° (HO)V5(SOy)»(OH)s Moment k=000 k=005
a 2J+2J —-2J-2J a _3‘]i,nterplane Jinterplane+ 3Ji,nterplane
b 2J+2J 0 b _3‘]i’nterplane 3‘]i’nterplane
¢ 2J+2) 0 c _3‘]i,nterplane 3Ji,nterplane
Total 6J+6J' -2J-2J Total —9Jterplane Jinterplanet 9interpiane
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» Z L 7 ket - 18Ji,nterplane>‘]interplaner (19
7 respectively. As the nearest-neighbor exchange is typically
- far stronger than the next-nearest exchange, it is useful to
SANC examine these relations in the limit of zero next-nearest-

neighbor exchangelj,ierpiane=0- This then shows that the
> \ k=000 structure is stabilized by ferromagnetic interactions,
A a
A
Y

while thek=003 is stabilized by antiferromagnetic interac-

A b /4 tions.

C €— C. Intraplane exchange in AgFg(SQO,),(0OD)g and
(H30)V3(S04)2(OH)g

Comparison of the total intraplane exchange energies
FIG. 10. Localized  zero-energy  excitations  in given in Table Il indicates that the coplanar 120° ordering is
(H30)V3(S0,),(OH)g involving the continuous rotation of orfe  stabilized if the inequality
or ¢ moment per triangle.
J<J’ (16)

borc moment per triangle spinning about the axis defined bys satisfied. While conversely, the structure observed in
the mirror plane relating the two remaining moments of the(H3O)V3(SO4)2(OH)6 is stabilized if

triangle. This motion is continuously degenerate as it costs

zero intraplane and interplane exchange energy, to the next- J>J. (17)

nearest-neighbor level of approximation. These modes do

however interact if they are present at the distance of further- In theJ’ =0 limit, this shows that the 120° structures of

neighbor atoms or closer. the types observed in AgEE&O,),(0OD)s and
Extended zero-energy modes are also possible, at tH€Cr3(SO,),(OD)g are stabilized by antiferromagnetic

nearest-neighbor level of approximation, in which linesof nearest-neighbor intraplane exchange, while that of

andc moments rotate simultaneously about the axis definedH;0)V3(SO;),(OH)g is stabilized by ferromagnetic

by thea moments, as shown in Fig. 11. nearest-neighbor exchange.
B. Interplane exchange in(H30)V3(S0,),(OH)g D. Interplane exchange in AgFg(S0,),(0D)s and
KCr 3(S0O,),(0OD)g

Making the assumption that intra- and interplane ex-
change are uncorrelated, comparisons between the structure Continuing the comparison for the 120° spin structures
of (H30)V3(SQy) »(OH)g with the possible and the observed with the propagation vectos=000 andk=002 indicates
propagation vector&=000 andk=003 gives information that thek=000 ordering is stabilized if
on the interplane exchange energies: the 000 andk

i
=002 structures are stable if Jinterplane=3Jinterpiane (18)

, and conversely, that with the propagation vedter003 by
B 18Jinterp|ane<‘]interplane (14

Jinterplane>3Ji,nterplane' (19)

In the limit of zero next-nearest-neighbor interactions, we
find that thek=000 spin structure is stabilized by antiferro-
magnetic nearest-neighbor interplane exchange, in agree-
ment with the proposal of Leet al® That with the propaga-

tion vectork=003 is stabilized by ferromagnetic nearest-
neighbor interplane exchange.

and

VII. DISCUSSION

The determination of the magnetic structureskatjome
antiferromagnets features a special difficulty due to the ver-
tex sharing exchange geometry: for any given value of the
propagation vector the nearest-neighbor exchange is an in-
sufficient criterion to stabilize a single magnetic structure,

FIG. 11. Extended zero-energy excitatons in and a large number of possibilities with equal nearest-
(H30)V3(S0y,),(OH)g involving the simultaneous rotation of lines neighbor exchange energy exist. Representational analysis is
of b andc moments. especially useful in this case as it reduces greatly the number
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of possible magnetic structures. Indeed, in the jarosites foments on two of the three Bravais sublattice sites are orien-
both propagation vectors we find that there are only threg¢ated such that their intraplane exchange energy is zero. This
ordering patterns possible for the ions okagomelayer: a  points to a more unconventional reason for the observed mo-
120° structure, an umbrella mode, and a more complexnent directions. The most apparent candidates are the un-
structure. Of these, at present only magnetic structures copsual localized and extended zero-energy modes within this
responding to the umbrella and the complex structures arstructure. However, the observation that the sublattice mag-
observed. netization is close to the spin-only magnitude indicates that
The analyses presented clearly support previous fvorkthe moments are largely frozen_in. the_ordered s_t.ate. There is
that proposed that interplane interactions play an importarifiérefore an apparent contradiction in the ability of these
role in the stabilization of the observed magnetic structuresodes to influence the stability of the observed structure.

This is particularly well demonstrated by the different propa-':hurt(rj"ar 'Flheofre';]ipal work is required in %rdre]:r t_oﬂundersta?]d
gation  vectors  of  AgFESO,),(OD),  and  he details of this magnetic structure and the influences that

KFe3(CrO,),(0OD)g, systems where the only significant lead to its formation.

change in terms of the magnetism is the substitution of the

X03~ ion.
Recent neutron-diffraction measurements have shown that Viil. CONCLUSION
magnetic ordering in samples of KfgAl(SG,;),(OD)e In this paper the techniques of representational analysis

involves the formation of an intermediate phase where thend reverse-Monte Carlo Rietveld refinement have been used
moments have an umbrella structure, and that at lower temp determine the magnetic structures of jarosites that possess
perature a second transition occurs in which the momentgng-range magnetic order. In both the cases of the observed
collapse into th&kagomeplane?’ The absence of an out-of- propagation vectorsk=000 and k=002, only three

plane component at low temperature in KE0O,),(OH)g ) . )
has been confirmed by neutron-diffraction studies made Witﬁymmetry allowed magnetic structures are found, and the ba

L . sis vectors for the different propagation vectors are in fact
full polarization analysis on a natural sampfeAs yet, the ) S .
: ; : identical. Examination of the refined structures shows that
physical properties responsible for these structures are n . . . ) . .
) . e interplane exchange interactions are important in defin-
certain, but the group-theory arguments given here endorse .
the observed magnetic structures. The salt

: . ) i
suggestiorfsthat the orientations of the moments along par- : . . i
ticular crystallographic directions in the observed=0" (H50)V5(S0)o(OH)s is of particular interest as the ob

; . served magnetic structure appears to be the consequence of
structures are a result of single-ion effects. However, the 9 PP q

indicate that rather than simply defining the specific Spig(ocallzed and extended zero-energy excitations.

directions in thekagomeplane, a more indirect mechanism
can occur, one in which the presence of an out-of-plane cant-
ing fixes, because of the symmetry of the basis vectors, the ACKNOWLEDGMENTS

directions of the inplane components. . The author is grateful to the Marie-Curie project of the
~ An important consequence of t_he tilting of Fhe coordina-gc and the Royal Society of Chemistry for funding, to the
tion octahedra around th# atoms is that an Ising-type an- |nstitut Laue-Langevin for the provision of experimental
isotropy will give rise to an out-of-plane component to thetime and to T. Hansen for excellent technical support. It is a
moments. The second transition that involves a collapse Oﬁleasure also to acknowledge the Grenoble School of Mag-

the moments into the plane may therefore be either the resulfetism for their tuition and many stimulating discussions.
of a diminution in this anisotropy, or the increase in some

other influence that pushes the moments into khgome
plane. The latter is unlikely to involve an order-by-disorder
mechanisr? ! as this operates at temperatures that are gen-
erally far lower that], which is of the order of 40 and 15 K 1. Space-group settings and notation
in the iron and chromium jarosites, respectivef{??There is

APPENDIX: GROUP-THEORY CALCULATIONS

: " . There has been much comment made of the preference for
no apparent reason for this transition to involve asymmetry—using primitive cells as the crystallographic frame for the

breaking transition to the singly repeated first-order represer}jroup-theory calculations that make up representational
tations I';(k=000) or I'y(k=003), rather than remaining analysi?®2433-38hile this leads to a reduction in possible

within representatior3(k=000) or I',(k=00%), as both  confusion, particularly over the correct propagation vector, it
these in-plane 120° structures have the same exchange entr-certainly not necessary and the calculations are valid for
gies. Accordingly, it may be the presence of a canting at higi@ny lattice setting, given that its particular translational sym-
temperatures that continues to define the directions of thEetry is correctly taken into account. Thus, the nonprimitive

moments at low temperature, even when the canting is akipace groups more commonly used by crystallographers can
sent. be directly used. To demonstrate this, the calculations pre-

The magnetic structure determined for sented have been made using the hexagonal setting of the
(H30)V;3(S0,),(0OH)g is intriguing as it cannot be ex- R3m space group rather than the primitive rhombohedral
plained in terms of simplistic exchange energy argumentsdescription. This setting has the addition,al advantage of re-
despite the presence of nonzero exchange fields, the meaining the coplanar symmetry of tth@gomelattice. Opera-
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TABLE V. Symmetry elements of the space groBBm. The  terms used and relations are stated with the other conven-
notations used are of the International Table@kf. 49, where the  tions.
elements are separated into rotation and translation components, In keeping with Kovalev’s notatiof® h and 7 are used to
and theJones faithful representationsf the rotation parts. The symbolize the rotational and translational parts of the sym-
latter corresponds to the vector formed from the operation of themetry operatorg. However, theh labels used for the rota-

rotation part of the element on positior,¥,z). tional symmetry elements in this work are not related to

- those used by Kovalev as the axes, definitions are not the
Element T Jones Rotation same. To depict the representations an extension is made to
number notation symbol matrix (%)

the notation used by Bertaut, and a representatjavhich is
of orderb, is depicted with the symbdl{? .

The program SARA'’ was used to perform the group-
theory calculations. The allowed irreducible representations
of the little group are calculated by Zak's induction
procedur&®*! and the basis vectors then calculated as de-
scribed in the following sections.

o
o

gl 1(000) X,y,Z

g2 3% (000) Jx—y.2

- _ 2. The irreducible representations
g3 370000 y—X,X,Z P

In general, for a given propagation vectarwe find that
some of the operatoig=1{h|7} of the space grous, leave
it invariant while others transform it into an equivalent vec-
tor that differs by some arbitrary translation of the reciprocal
lattice b according to

g4 2(000) y.x.2

g3 2000 xX=y.3.7 kh=k-+b. (A1)
This set of elements make up the so-called little gr@yp
which is a subgroup dB,. The irreducible representations of
this little group are given by the symbbl,, wherewv is the
label of the irreducible representation, and the matrix that
corresponds to the symmetry elemeris labeled byd¥(g).

The space grouf®3m contains 12 symmetry operators.
These are listed in Table V using a number of different con-
ventions. The jarosite systems make up a particularly inter-
esting example as the observed propagation ve&tsr800

andk= 002 (in the hexagonal dual basis settingsssess the

same irreducible representations. This is becakis®03
corresponds to a symmetry point of the Brillouin zone and so
all elements of the grou@, are present in the little group of
the propagation vectoB,. The irreducible representations
of the little group are given in Tables VI and VII.

As Table VII shows, the second-order representations
andI'g have the same elements for symmetry operations 1-6
and are related by a factor of-(1) for the operations 7-12.

These irreducible representations may be verified against
tabulated values of the projectiver “loaded”) representa-
tions dP", given in works such as those by Bradley and
Cracknelf! and Kovalev®® (Particular care must be taken
when comparing these values as the work of Kovalev uses an
unconventional setting of the hexagonal axé&hese tabu-
tions that involve its three Centering translations are not Use%ted representaﬂons are given for the Various point-group
in these calculations as they lead only to a trivial scaling ofsymmetries and can be converted into the irreducible repre-

the results. _ _ sentations of the little grou@, of the propagation vectde
Before entering into the details of the calculations, a wordyy the multiplication of a phase factor

must first be made about the notations used in this work. The

historical development of the application of group theory to d,=d? exp— 27k 7), (A2)
the determination of magnetic structures has left the present-

day reader with an inconsistent array of terms and variablesvhere 7 is the translation part of the symmetry operator to
In this work, clarification is made where possible of thewhich d, is associated.

g6 2000 —X,y—X,Z

g7 1(000) %y,7

28 37 (000) Y.y —X,Z

g9 3000 X—y,%,2

g10 m (00 0) .5z

N S N S S S e e e e

oo~ oo rloorrloorrloOorrloOorRrloOoRRIOORR, OO~ © O = O

= o O
S

gll m (00 0) Y —X,y,Z

e e Y e e e e U e e e U

SO RO RO O R, R, O RIOCOC ORIO RIRFRIO OFR O P OO RIFRIOC OO O

—_

gl12 m (000) X,X—y,Z

ORIl R, —, O ORI ORI R, O RIOCO R OO RIFRIOC OFR O O~ O RlIrlo ~—

—
[ e
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TABLE VI. First-order irreducible representations for the grdhliqj for the vectork=000 andkzOO%.

hl h2 h3 h4 h5 h6 h7 h8 h9 h10 hll h12
Iy 1 1 1 1 1 1 1 1 1 1 1 1
I, 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
I 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1
r, 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1

While the presented two-dimensional representations are a. Effect of symmetry element on atom positions:

complex, Herring’s criteriofEq. (A18)] indicates that the The permutation representation
representations proper are réal: The operation that sends in the zerah cell tor; in the

pth cell can be symbolically stated as
+1 if d“ isreal,

0 if d“ iscomplex g(jo)—(ip). (A4)
1
7= Gy xu(h?)= and d“"+(d“")*, In other terms, the effect of a symmetry operat@is to
Wk —1 if d* is complex permute the column matrix of atom labd?s
and dkv,\,(de)*_ g(P)HP’ (AS)

(A3) This operation is governed by a permutation representation
Here, v is the index of the representation under investigationI',¢,, which has matrices of orded,, whereN, is the
and the summation is extended over all elemdntsG,, number of Bravais sublattic&8Vyckoff site9 for this atomic
which transform the vectok into a vector equivalent to position. It is important to note that when a symmetry opera-
—k. x,(h?) is the character of the representation of the eletion results in an atomic position that is outside the primitive
ment that is the square bf As in both the casds=000 and zerdh cell, a phase factor must be included to relate the

k=002, the vectork and —k are identical, the sum is over 9generated position to that in theerch cell. The translation
all the elements 06, , and soy=1. that relates atoms of the same Bravais sublattice is necessar-

Rather than make these complex representations real by"é{ zero or some primitive lattice translationThis phase is
unitary rotation, we will continue our calculations with these SIMPIy given by
in complex form for pedagogic reasons in order to demon- b= —2mk-T (A6)
strate the application of complex basis vectors. ’
whereT is the translation vector which relates the original
and generated atoms.

As an example, from Tables VIII and IX we see that the
permutation equation for the atoms of the three Bravais sub-

The symmetry operatay={h| 7} acts on both the position lattices under thg2=1{3"|000} operation is
r of the atom and on the componenisof the axial vector

that describes the moment. The combination of these two 2-exp(¢,)
results are described by the magnetic representatidn the
following section we will examine these two effects sepa- 3-exp¢p) | =Tperm| 2 |, (A7)
rately. 1-exp(¢e) 3

3. Effect of symmetry element on a moment bearing atom:
The magnetic representation

TABLE VII. Second-order irreducible representations for the grBug for the vectorsk=000 andk
=003. e=exp(-27/3).

h1 h2 h3 h4 h5 hé
Is,Ig 10 €0 €0 01 0 € 0e
01 0 € 0e 10 €0 €20
h7 h8 ho h10 h11 h12
Is -1 0 -€ 0 - 0 0-1 0—¢ 0—¢
0-1 0—¢ 0—¢ -1 0 - 0 -2 0
I 10 €0 €0 01 0 € 0e
01 0 ¢? 0e 10 €0 €20
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TABLE VIII. The permutation of8®" atoms(at position @) and the transformation of the axial components of the moment under the

different symmetry operators of tHR3m space grougpoint groungd) for k=000. Thecharacters of the representatidig, andV are
given.

Element g={h|7} Atoms Xperm Axial-vector components Xv
1 2 3 my m, m,

gl {1 |000Q 1 2 3 3 my m, m, 3
g2 {3* |000 2 3 1 0 -m, m,—m, m, 0
g3 {3~ |000 3 1 2 0 —me+m, —my m, 0
g4 {2 |000O 1 3 2 1 m, my -m, -1
g5 {2 |000 3 2 1 1 m,—m, -m, -m, -1
g6 {2 |000O 2 1 3 1 —my my—m, -m, -1
g7 {1 |000O 1 2 3 3 m, m, m, -3
g8 {3* |000 2 3 1 0 -m, m,—m, m, 0
g9 {3 |000 3 1 2 0 m,— my —my m, 0
gl0 {m |000 1 3 2 1 m, m, -m, -1
gl1 {m |000O 3 2 1 1 m,—m, -m, -m, -1
gl2 {m |000 2 1 3 1 —m, my—m, -m, -1
where the atomic positions follow the labeling=1311), b. Effect of symmetry element on moment vectors:

The axial-vect tati
2=(303), 3=(033). For the operationg2={3*|000}, & axahvector representation

ha= dp= =0 for bothk=000 andk=003. The permu-
tation representation is therefore given by

The second effect of this symmetry operation is to trans-
form the spin components with index (a=X,y,z) of the
reference spilj into the indexa’ of the atom ar; .® These

transformations are described by the axial-vector representa-
tion V, the character of which is given by
perm

010
rfloog_{ o o 1|, (A8)
100 ngtr(Rgb)éh:aZb R Sh, (A9)

The character of this representatigpem for each sym-  where R}, refers to a specific elememtb of the rotation
metry operator is then simply the sum of the phaggs) for  matrix h, and &, represents the determinant of the rotation
the atoms that are transformed into an equivalent atom undegatrix R", and takes into account that the magnetic moment
a symmetry operation, and so for both the propagation veGs not reversed by the inversion operation. This arises as a

tors, x2,19°%=0. magnetic moment is described by an axial vector, rather than

TABLE IX. The permutation of8®* atoms(at position @) and the transformation of the axial components of the moment under the

different symmetry operators of tR8m space grougpoint groungd) for k=00§. The characters of the representatidig,, andV are
given.

Element g=1{h|7} Atoms Xperm Axial- vector components XY
1 2 3 m, m, m,
gl {1 |000 1 2 3 3 my m, m, 3
g2 {3* |o00 2 3 1 0 -m, m,—m, m, 0
g3 {3~ |000 3 1 2 0 —me+m, —-my m, 0
g4 {2 |000 -1 -3 -2 -1 m, m, -m, -1
g5 {2 |000O -3 -2 -1 -1 m,—m, -m, -m, -1
g6 {2 |ooG -2 -1 -3 -1 —my —my+m, -m, -1
g7 {1 |000 -1 -2 -3 -3 m, m, m, -3
g8 {3* |ooG -2 -3 -1 0 -m, my,—m, m, 0
g9 {3 |000O -3 -1 -2 0 —m,+m, —m, m, 0
gl0 {m |000O 1 3 2 1 m, my -m, -1
gll {m |000O 3 2 1 1 m,—m, -m, -m, -1
gl2 {m |000O 2 1 3 1 —m, —m,+m, -m, -1
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by a polar vectors, has the value of-1 for a proper and wheren,, is the number of times the irreducible representa-
—1 for an improper rotation. The operationiof3*) on the  tion I', appears in the magnetic representatign

moment vectoM =(mymym;,) therefore gives 1
n=ray 2 xr(hxrx(h). (A16)
0 —1 0\ /m, N(Gy) n<B, v
R(3*)l\7| =51 -1 0 m, (A10) Hsr.e x" is the character Qf the magnetic space group and
X, Is the character of the irreducible representation with
o 0 1 m; index v.
—-m, 5. Calculation of the basis vectors¥
=1 mye—my |. (A11) The u unique basis vectorg, that transform according to
m, the u dimensional irreducible representatidif, are pro-

jected out of any given row of the representation mal¥ix

As 3" is a proper rotations(3*) =1 and the character &  Using the projection operator formdfa
+
for h(3*) is x5 =0. : .
v lﬁ'yhzh% D?:)Z 8 gi SR <. (A17)
c. The magnetic representatiolt . “ .
_ _ The summation is over the rotational parts of the symmetry
As already stated, the magnetic representdfiatescribes  elements of the little grou, . ¢ is a spin component that
both the result of the symmetry operation on the atomic powe represent by a column matrix(r).
sitions and on the axial vectors that describe the magnetic In our calculations thew elements are those that corre-
moments. These effects are independent, and consequentiadlgond to the first column of the matrix &f,. As for each
the magnetic representation is given by their directelement labeled.=1, ... u, three components are pro-
product®23:33.24 jected out, and there are in total3projected components.
The number of unique projected components for a represen-
r=Vvx T perm: (A12) tationis of course the same as calculated using(E6).

Or, in terms of the matrices for the representations them- 6. Refinement of basis vectors mixing coefficients

selves, Following the Landau theory of a second-order phase
- transition, any linear combination of basis vectors within the

D(Fh B )=Dz/h)><D(the”;‘. (A13)  representation that becomes critical is necessarily a

o *h symmetry-allowed basis vector. The atomic spin on a par-

Their characters are therefore related according to ticular atoms' is therefore most generally given by the sum
of the basis vectors for a particular irreducible representation

XT=XVX Xperm- (A14) ) o
s=> C.,, (A18)
4. Reduction of the representationl’
P where C; is the mixing coefficient for aton of the basis

The magnetic representation for a particular site can bgectory. In refining the orientation of an atomic moment, we
decomposed into contributions from the irreducible represens e i effect refining the mixing coefficien@’ of the basis

tations of the little group vectors within the irreducible representation being examined.
The number of variables in the refinement is simply the num-
F=2 nT,, (A15) bgr of unique ba_sis vectors that transform according to a

v given representation, i.en,,u.

1For recent reviews, see J.E. GreedBmceedings of Materials 5A.S. Wills, A. Harrison, C. Ritter, and R.l. Smith, Phys. Rev. B

Discussion 3J. Mater. Chem(to be published; A. P. Ramirez, 61, 6156(2000.

Handbook of Magnetic Material@North-Holland, Amsterdam, 6S.H. Lee, C. Broholm, M.F. Collins, L. Heller, A.P. Ramirez, Ch.

in press. Kloc, E. Bucher, R.W. Erwin, and N. Lacevic, Phys. Revo®
2M.G. Townsend, G. Longworth, and E. Roudaut, Phys. Rev. B 8091(1997).

33, 4919(1986. "A.S. Wills and A. Harrison, J. Chem. Soc., Faraday Tré%.
3T. Inami, S. Maegawa, and M. Takano, J. Magn. Magn. Mater. 2161(1996.

177, 752(1998. 8A.S. Wills, A. Harrison, S.A.M. Mentink, T.E. Mason, and Z.
4T. Inami, M. Nishiyama, S. Maegawa, and Y. Oka, Phys. Rev. B Tun, Europhys. Lett42, 325(1998.

61, 12 181(2000. 9A.S. Wills, V. Dupuis, E. Vincent, J. Hammann, and R. Calem-

064430-12



LONG-RANGE ORDERING AND REPRESENTATIONA. . .

czuk, Phys. Rev. B52, R9264(2000.
05 A. Earle, A.P. Ramirez, and R.J. Cava, Physic262 199
(1999.
115 B. Hendricks, Am. Mineral22, 773(1937).
12p . s, Wills, Ph.D. thesis, The University of Edinburgh, 1997.
133.E. Dutrizac and S. Kaiman, Can. Minerad, 151 (1976.
143.T. Szymanski, Can. Minera23, 659 (1985.
15A.S. Wills, A. Harrison, and T. Hansefunpublishedl

PHYSICAL REVIEW B 63 064430

26T Moriya, Phys. Rev120, 91 (1960.

273. Frunzke, T. Hansen, A. Harrison, J. S. Lord, G.S. Oakley, D.
Visser, and A.S. Wills, J. Mater. Chertto be published

28E. Lelievre-Berna, A. Harrison, G. Oakley, and D. Visser, Annual
Report of the Institut Laue-Langevin for 1999, No. Expt.
5-61-37 200Q(unpublishegl

293, Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Pltpsris
41, 1263(1980.

18A.C. Larson and R.B. von Dreele, GSAS, General Structure®°C.L. Henley, Phys. Rev. Let62, 2056(1989.

Analysis System(LANSCE, Los Alamos National Laboratory,
Los Alamos, 1994
A.S. Wills, Physica B276-278 680 (2000; SARAh, Simulated

313.T. Chalker, P.C.W. Holdsworth, and E.F. Shender, Phys. Rev.
Lett. 68, 855(1992.
32,8, Wills, Proceedings of Highly Frustrated Magnetism 2000

Annealing and Representational Analysis. Programs available [Can. J. Phys(to be publishej.

from ftp.ill.fr/pub/dif/sarah/.

8R.L. McGreevy, inStructural Modelling in Inorganic Crystallog-
raphy, edited by R.A. Catlow(Academic Press, New York,
1997).

33Yu.A. Izyumov and V.E. Naish, J. Magn. Magn. Matég, 239
(1979.

S4E.F. Bertaut, J. Appl. Phy83, 1138(1962.

35E F. Bertaut, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr.,

19E F. Shender, V.B. Cerepanov, P.C.W. Holdsworth, and A.J. Ber- Theor. Gen. CrystallogiA24, 217 (1968.

linsky, Phys. Rev. Lett70, 3812(1993.

20C. Zeng and V. Elser, Phys. Rev.42, 8436(1990.

21p B. Harris, C. Kallin, and A.J. Berlinsky, Phys. Rev.45, 2899
(1992.

223. Rossat-Mignod, iMethods in Experimental Physjosdited by
K. Skdd and D.L. Price(Academic Press, New York, 1987

23E.F. Bertaut, J. Magn. Magn. Mate24, 267 (1981).

24vy.A. Izymov, V.E. Naish, and R.P. OzeroMeutron Diffraction
of Magnetic Material§ Consultants Bureau, New York, 1991

25M. Nishiyama, T. Morimoto, S. Maegawa, T. Inami, and Y. Oka,
Proceedings of Highly Frustrated Magnetism 2000an. J.
Phys.(to be published.

36E.F. Bertaut, J. PhysPari9, Collog. C1, 462 (1971).

37Yu.A. Izyumov and V.E. Naish, J. Magn. Magn. Matég, 249
(1979.

%8yu.A. Izyumov and V.E. Naish, J. Magn. Magn. Matés, 267
(1979.

390.V. Kovalev, Irreducible Representations of the Space Groups
(Gordon and Breach, New York, 1961

403, Zak, J. Math. Physl, 165(1960.

41c.J. Bradley and A.P. Cracknelllhe Mathematical Theory of
Symmetry in Solid&Clarendon Press, Oxford, 1972

“2|nternational Tables for Crystallographyedited by T. Hahn
(Kluwer Academic Publishers, Dordrecht, 1996

064430-13



