

Elastic neutron diffraction study of long-range antiferro-magnetic order in the $S = \frac{1}{2}$ quantum chain system CuSb_2O_6

B.J. Gibson^a, R.K. Kremer^{a,*}, A.V. Prokofiev^b, W. Assmus^b, B. Ouladdiaf^c

^a Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany

^b Physikalisches Institut, Johann Wolfgang Goethe-Universität, Postfach 111932, D-60054 Frankfurt, Germany

^c Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9, France

Abstract

CuSb_2O_6 crystallizes with a monoclinically distorted variant of the trirutile structure type with Cu^{2+} ions arranged in square planar nets being structurally well separated from each other by Sb–O building blocks. Using elastic neutron diffraction we have established the low-temperature nuclear structure and antiferromagnetic (afm) arrangement of Cu moments at 2 K. The magnetic unit cell is doubled with respect to the nuclear cell along the *a*- and *c*-axes. The magnetic anisotropy in the ordered state suggests that Cu moments of magnitude $0.51(2) \mu_B$ lie in the *a*–*b* plane.

© 2004 Elsevier B.V. All rights reserved.

PACS: 75.40.Cx; 75.10.Jm; 75.50.Ee

Keywords: CuSb_2O_6 ; Uniform Heisenberg chain; Afm ordering; Elastic neutron scattering; Quantum-chain

1. Introduction

Efforts to understand the underlying microscopic mechanism of high T_C superconductivity have refocused attention on the magnetic behavior of quantum spin $S = \frac{1}{2}$ chain and ladder systems. The system CuSb_2O_6 crystallizes in a monoclinically distorted trirutile structure type. It has been reported to exhibit magnetic strong short-range order (SRO) signalled by a broad susceptibility maximum centered around 60 K [1]. The susceptibility was reported to fit reasonably well to an afm uniform $S = \frac{1}{2}$ Heisenberg chain ($J = -49.6$ K) model with nearest neighbor coupling. A sharp decrease in the susceptibility below 8.6 K indicates the onset of long-range afm order due to interchain interactions. Initial powder neutron diffraction suggested a propagation

vector $k = (\frac{1}{2}, 0, \frac{1}{2})$ for the afm ordered phase. Various ordering models have been discussed in Ref. [2].

2. Experimental

Single crystals were grown by chemical vapor transport as described in detail previously [3]. Magnetic susceptibilities were measured in a MPMS7 magnetometer. Using the four circle diffractometer D10 (ILL, Grenoble) a single-crystal neutron diffraction measurement was carried out. The structure refinement was performed with standard routines of the Cambridge Crystallographic Subroutine Library [4].

3. Results and discussion

Fig. 1 displays the magnetic susceptibility and the heat capacity of a crystal of CuSb_2O_6 [4]. Long-rang order is evident from the heat capacity anomaly and the kinks in

*Corresponding author. Tel.: +49-711-689-1688; fax: +49-711-689-1689.

E-mail address: rekre@fkf.mpg.de (R.K. Kremer).

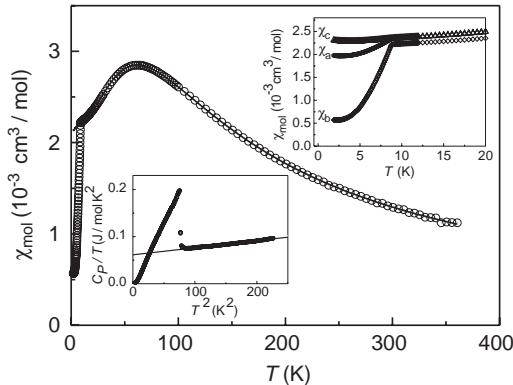


Fig. 1. Susceptibility of a single crystal of CuSb_2O_6 measured in a field of 0.1 T along the b -axis (B exp., full line: fit, see text). (a) Heat capacity indicating long-range ordering at $8.68(5)$ K. (b) Susceptibility along the c -, a -, and b -axis as indicated (top to bottom).

the susceptibility below $T_N = 8.68(5)$ K. The fit of the susceptibility with the model of an afm $S = \frac{1}{2}$ Heisenberg chain with uniform nearest-neighbour coupling yields close to perfect agreement ($|\chi_{\text{mol}}^{\text{fit}} - \chi_{\text{mol}}^{\text{exp}}| \leq 0.4\%$; $10 \text{ K} < T < 350 \text{ K}$) using an exchange parameter of $J = -48.0(5)$ K. In addition to a phonon term ($\propto T^3$), the low-temperature heat capacity ($10 \text{ K} < T$) contains a linear magnetic term ($\propto T$) consistent with the expected value $C_{\text{mag}}/R = T/3J$ for a uniform afm $S = \frac{1}{2}$ Heisenberg chain [3,5].

Below T_N the susceptibility exhibits pronounced anisotropy. With the field aligned along the a - or b -axis, χ drops while for the field along the c -axis no decrease below T_N can be detected. This observation suggests that the ordered moment lie in the a - b plane with their major component along b .

Single crystal neutron diffraction on CuSb_2O_6 at room temperature and at low temperatures revealed additional weak Bragg reflections below T_N which can be indexed on the basis of a propagation vector $k = (\frac{1}{2}, 0, \frac{1}{2})$. A refinement of the nuclear structure at low temperature gave no indication of a structural phase transition. Using two different magnetic structure models and 89 magnetic reflections the refinement of the magnetic structure based on 89 magnetic reflections converged well with identical χ^2 and $R_2 = 7.4\%$ and 7.7% with moments either in the a - b or the b - c plane, respectively.¹ For both models the ordered moment at 2 K amounts to $0.51(2) \mu_B$ in good agreement with the estimate given in Ref. [2]. On the basis of the anisotropy of the susceptibility we suggest a magnetic structure as displayed in Fig. 2 with moments tilted $103(6)^\circ$ ($\text{Cu1} : (0, 0, 0)$) and $70(5)^\circ$ ($\text{Cu2} : (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$) away from the a -axis and oriented antiparallel along $(1\ 1\ 0)$ [4].

¹ R_2 is defined as the ratio of the sum of the weighted differences (observed–calculated) and the sum of the weighted observed intensities.



Fig. 2. Arrangement of the ordered Cu^{2+} moments in the afm long-range ordered phase of CuSb_2O_6 .

4. Summary

Magnetic susceptibility, heat capacity and neutron diffraction of a single crystal of CuSb_2O_6 indicate $S = \frac{1}{2}$ Heisenberg chain behavior above and long-range afm ordering below $T_N \approx 8.7$ K. The magnitude of the ordered Cu^{2+} moment amounts to $0.51 \mu_B$ and they lie in the a - b -plane with the major component along the b -axis.

5. Note added in proof

While proofreading we became aware of a neutron diffraction study on CuSb_2O_6 by Kato et al. [J. Phys. Soc. Jpn. 71 (2002) Suppl. 187 (2002)].

Acknowledgements

This work was supported by the DFG Schwerpunktprogramm, 'Kollektive Quantenzustände in elektro-nisch eindimensionalen Übergangsmetallverbindungen'.

References

- [1] A.M. Nakua, H. Yun, J.E. Greedan, J.N. Reimers, C. Stager, J. Solid State Chem. 91 (1991) 105.
- [2] A.M. Nakua, J.E. Greedan, J. Solid State Chem. 118 (1995) 199.
- [3] A.V. Prokofiev, F. Ritter, W. Assmus, B.J. Gibson, R.K. Kremer, J. Cryst. Growth 247 (2003) 457.
- [4] J.C. Matthewman, P. Thompson, P.J. Brown, J. Appl. Cryst. 15 (1982) 167.
- [5] D.C. Johnston, R.K. Kremer, M. Troyer, X. Wang, A. Klümper, S.L. Bud'ko, A.F. Panchula, P.C. Canfield, Phys. Rev. B 61 (2000) 9558.