

Crystal and Magnetic Structure of Sr_2MIrO_6 ($\text{M} = \text{Ca}, \text{Mg}$) Double Perovskites – A Neutron Diffraction Study

Paula Kayser,^{*[a]} María Jesús Martínez-Lope,^[a]
Jose Antonio Alonso,^[a] María Retuerto,^[b] Mark Croft,^[c]
Alexander Ignatov,^[c] and María Teresa Fernández-Díaz^[d]

Keywords: Iridium / Perovskite phases / Antiferromagnetic ordering / Magnetic properties / Spin–orbit coupling

$\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$ double perovskites have been prepared as polycrystalline powders from citrate precursors treated under oxygen pressure conditions. These compounds have been studied by X-ray and neutron powder diffraction (NPD), magnetic measurements, and X-ray absorption spectroscopy. The crystal symmetry of both oxides is monoclinic (space group $P2_1/n$), and the unit-cell parameters are related to the ideal simple perovskite cell as $a \approx \sqrt{2}a_0$, $b \approx \sqrt{2}a_0$, $c \approx 2a_0$, $\beta \approx 90^\circ$, where a_0 is the edge of the simple cubic ABO_3 perovskite. This superstructure is a result of the 1:1 ordering of Ca/Mg and Ir ions over the B site and the distortion of the oxygen sublattice, which leads to a tilted three-dimensional network of corner-sharing BO_6 octahedra. Magnetic measurements indicate an antiferromagnetic ordering below T_N

= 58 K for $\text{Sr}_2\text{CaIrO}_6$ and 74 K for $\text{Sr}_2\text{MgIrO}_6$. The low-temperature magnetic structure of $\text{Sr}_2\text{CaIrO}_6$ was determined by NPD and selected from the possible magnetic solutions compatible with the $P2_1/n$ space group according to the group-theory representation. The propagation vector is $k = (1/2 \ 1/2 \ 0)$. A canted antiferromagnetic structure is observed below T_N with an ordered magnetic moment of $1.33(2) \ \mu_{\text{B}}$ for the Ir^{6+} cations. $\text{Sr}_2\text{MgIrO}_6$ does not present magnetic reflections. An X-ray absorption spectroscopy investigation gives an insight into the Ir oxidation states and suggests a hexavalent state for the Ca compound and an admixture of Ir^{6+} and Ir^{5+} for the Mg perovskite, in agreement with the NPD data, which indicate a significant oxygen understoichiometry for this material.

Introduction

In recent years, the chemistry of mixed oxides containing 4d and 5d transition-metal cations has attracted a great deal of attention, as they present a wide variety of structures and exhibit interesting electronic and magnetic properties.^[1] The increased spatial extent of the 4d/5d orbitals of the second/third-row transition-metal ions, with respect to the rather localized 3d orbitals of the first-row transition-metal ions, gives rise to weaker Coulomb interactions. This leads to a greater level of splitting in the crystal field and a consequent increase of the sensitivity of these ions to lattice distortions, especially in layered oxides such as Sr_2RuO_4 , Sr_2RhO_4 , Sr_2IrO_4 ,^[2] and NaIrO_3 .^[3] Moreover, the spin–orbit coupling effect has to be considered in those compounds

containing 4d and 5d transition metals,^[4] as the characteristic energy of the spin–orbit coupling approaches that of the Coulomb interactions; this modifies the relative energy scale and, thus, the appearance of new phases with unusual electronic structures is expected.

Iridium-based perovskite or perovskite-like oxides are considerably less explored, although they are expected to exhibit interesting physical properties. The ability of Ir to exist in different oxidation states and its more extended 5d orbitals, together with the spin–orbit coupling, result in a rich variety of possibilities. Although Ir^{4+} is the most common oxidation state, Ir^{3+} has been described in the octahedral site of double perovskites such as $\text{Sr}_2\text{TaIrO}_6$ and $\text{Sr}_2\text{NbIrO}_6$.^[5] Ir^{5+} and Ir^{6+} can also be obtained under high oxygen pressure conditions. The stabilization of Ir^{5+} and Ir^{6+} is especially interesting because the Ir^{5+} –O and Ir^{6+} –O bonds should be among the strongest chemical bonds in an oxygen lattice. The covalency of such chemical bonding correlates with the magnetic-ordering temperatures. For instance, $\text{Sr}_2\text{CrIrO}_6$ is expected to present the highest T_C among the double perovskites.^[6] All these aspects were also discussed by Demazeau et al. in their pioneering work related to iridium double perovskites. In particular, $\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$ were first described by Demazeau et al.^[7–9] and they determined their crystal structures by X-ray diffraction as monoclinic and cubic, respectively.

[a] Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain
E-mail: paula.kayser@icmm.csic.es
<http://www.icmm.csic.es/>

[b] Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854-808, USA

[c] Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854-808, USA

[d] Institut Laue-Langevin, BP 156X, 38042 Grenoble, France

Supporting information for this article is available on the WWW under <http://dx.doi.org/10.1002/ejic.201301080>.

Subsequently, there have been exploratory studies on the $\text{Sr}_2\text{Ir}_{2-x}\text{M}_x\text{O}_6$ solid solutions;^[10–12] in particular, $\text{SrIr}_{1-x}\text{Mg}_x\text{O}_3$ ($x = 0.20$ and 0.33) have been described to crystallize in the orthorhombic $Pbnm$ space group and to show ferromagnetic properties.

The purpose of the present work is threefold: (1) we revisit the crystal structures of both perovskites from high-resolution neutron powder diffraction (NPD) data; we show that the symmetry for both perovskites is compatible with the $P2_1/n$ space group; (2) in addition, we report on the magnetism and the magnetic structure from low-temperature NPD data, and (3) we describe the results of an X-ray absorption spectroscopy investigation, which gives an insight into the Ir oxidation states.

Results and Discussion

Crystal Structures

$\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$ compounds were obtained as well-crystallized powders. The XRD patterns, shown in Figure 1, are characteristic of a perovskite structure and exhibit superstructure peaks corresponding to the $\text{Ca}^{2+}/\text{Mg}^{2+}$ – Ir^{6+} ordering. Both diagrams are indexed in a monoclinic cell ($P2_1/n$ space group). The cell parameters are related to a_0 (ideal cubic perovskite $a_0 \approx 3.8 \text{ \AA}$) as $a \approx \sqrt{2}a_0$, $b \approx \sqrt{2}a_0$, $c \approx 2a_0$, $\beta \approx 90^\circ$.

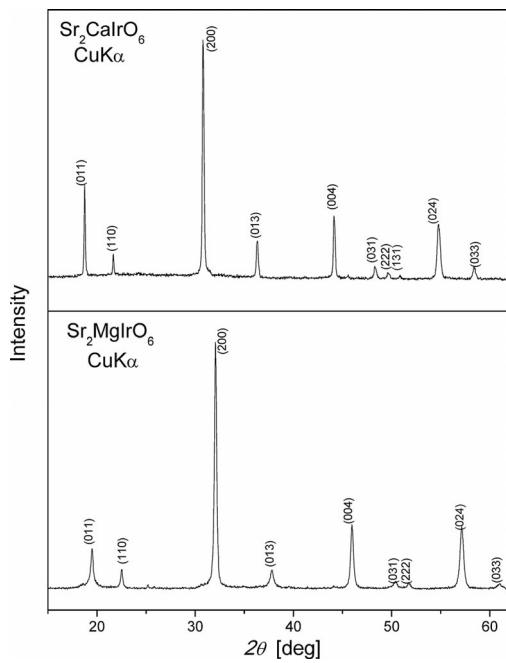


Figure 1. XRD patterns ($\text{Cu}-K_\alpha$, $\lambda = 1.5406 \text{ \AA}$) for Sr_2MIrO_6 ($\text{M} = \text{Ca}, \text{Mg}$).

The crystal-structure refinement was performed from high-resolution NPD data by using the monoclinic $P2_1/n$ (no. 14) space group previously considered by Demazeau et al.^[7] In this model, the Sr atoms are located at 4e (x, y, z) positions, the Ca/Mg atoms are at 2d ($1/2, 0, 0$) positions, the Ir atom are at 2c ($1/2, 0, 1/2$), and the O atoms are at 4e

(x, y, z) sites. The Rietveld analysis resulted in a satisfactory agreement between the observed and calculated profiles (Figure 2). In this former model, the Ca/Mg and Ir ions are placed at two different B sites with a rock-salt ordered arrangement. As a second step, the possibility of antisite disordering was checked by allowing some Ca/Mg atoms to occupy Ir sites and vice versa. The refinement of the inversion degree led to 5% antisite disordering for the Ca compound and 20% for the Mg compound. The oxygen content was also examined; the occupancy factor of oxygen atoms was refined, and the result confirms a full stoichiometry for the $\text{Sr}_2\text{CaIrO}_6$ sample and the presence of oxygen vacancies for $\text{Sr}_2\text{MgIrO}_{6-\delta}$ [$\delta = 0.11(1)$] at O2 positions. The remaining oxygen sites converged to values slightly higher than one and then were fixed to unity. Table 1 lists the most important atomic parameters of the structural refinement, and some selected room-temperature bond lengths and angles are included in Table 2.

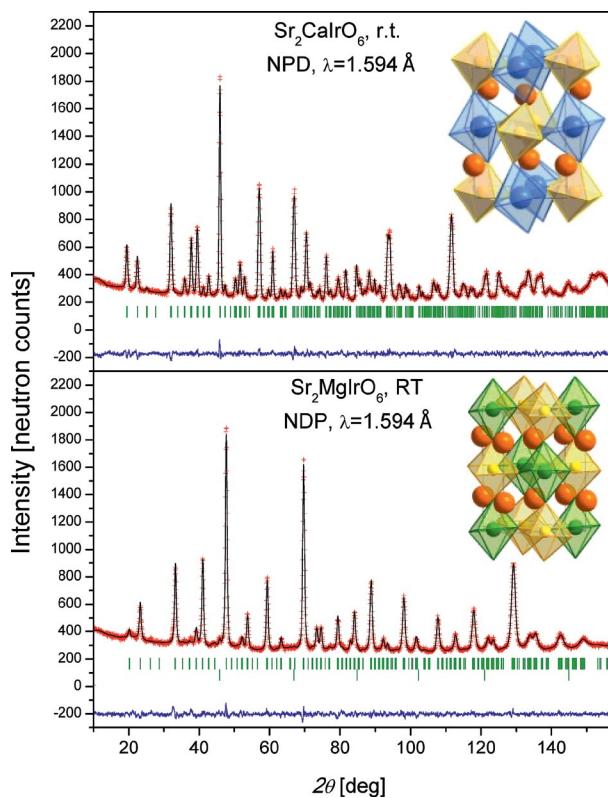


Figure 2. Observed (crosses), calculated (solid line), and difference (bottom) NPD Rietveld profiles for Sr_2MIrO_6 ($\text{M} = \text{Ca}, \text{Mg}$) at room temp. collected at the high flux D2B-ILL diffractometer. The first series of Bragg reflections corresponds to the main perovskite phase, and the second corresponds to vanadium from the sample holder. The inset shows a schematic representation of the monoclinic crystal structures, which involve a 1:1 long-range ordering of M and Ir atoms.

In the $\text{Sr}_2\text{MgIrO}_6$ perovskite, the smaller size of the Mg^{2+} ($\text{V}^1r_{\text{Mg}^{2+}} = 0.72 \text{ \AA}$) cation, with respect to that of Ca^{2+} ($\text{V}^1r_{\text{Ca}^{2+}} = 1.00 \text{ \AA}$), corresponding to the tolerance factors of $t_{\text{Sr}_2\text{CaIrO}_6} = 0.92$ and $t_{\text{Sr}_2\text{MgIrO}_6} = 0.98$, would suggest a structure with higher symmetry (tetragonal or cubic) at room temperature. Although the Rietveld analysis with a

Table 1. Unit-cell, positional, and thermal parameters for Sr_2MIrO_6 ($\text{M} = \text{Ca}, \text{Mg}$) defined in the monoclinic $P2_1/n$ (no. 14) space group, $Z = 2$, from NPD data at room temp.

	$\text{Sr}_2\text{CaIrO}_6$	$\text{Sr}_2\text{MgIrO}_6$
a [Å]	5.7668(2)	5.5909(8)
b [Å]	5.8160(2)	5.5754(6)
c [Å]	8.1766(3)	7.8839(8)
β [°]	89.7208(2)	89.906(1)
V [Å ³]	274.24(2)	245.75(5)
Sr 4e (x, y, z)		
x	0.9932(6)	1.005(3)
y	0.0367(3)	-0.004(3)
z	0.2492(5)	0.249(2)
B [Å ²]	0.798(6)	1.15(2)
(Ca/Mg) 2d (1/2, 0, 0)		
Occ. (Ca-Mg/Ir) _{2d}	0.95(2)/0.05(2)	0.796/0.204
B [Å ²]	0.89(1)	0.47(2)
Ir 2c (1/2, 0, 1/2)		
Occ (Ir/Ca-Mg) _{2c}	0.95(2)/0.05(2)	0.796/0.204
B [Å ²]	0.208(6)	0.47(2)
O1 4e (x, y, z)		
x	0.0712(5)	0.023(1)
y	0.4790(6)	0.492(3)
z	0.2299(4)	0.246(2)
Occ (O1)	1.0	1.0
B [Å ²]	0.89(1)	0.61(8)
O2 4e (x, y, z)		
x	0.7310(6)	0.752(2)
y	0.3073(5)	0.252(3)
z	0.0380(5)	0.018(2)
Occ (O2)	1.0	0.947(6)
B [Å ²]	0.88(1)	1.16(8)
O3 4e (x, y, z)		
x	0.1908(6)	0.217(2)
y	0.2291(7)	0.226(3)
z	0.9589(4)	0.969(1)
Occ (O3)	1.0	1.0
B [Å ²]	0.85(1)	1.47(9)
Reliability Factors		
χ^2	1.66	1.55
R_p [%]	2.58	2.31
R_{wp} [%]	3.21	2.96
R_{exp} [%]	2.50	2.38
R_I [%]	3.92	1.90

tetragonal unit cell ($I4/m$ space group), in which the Sr atoms are placed at 4d (0, 1/2, 1/4) positions, the Mg atoms are placed at 2a (0, 0, 0), the Ir atoms are placed at 2b (0, 0, 1/2) positions, and the O atoms are placed at 4e (0, 0, z) and 8h ($x, y, 0$) sites, shows a reasonable agreement between the observed and calculated pattern, at high diffraction angles some unjustifiable reflections are noticeable (Figure S1). This confirms that the $\text{Sr}_2\text{MgIrO}_6$ perovskite crystallizes in the $P2_1/n$ space group. This splitting also discards the option of the cubic space group ($Fm\bar{3}m$) reported by Demazeau et al. for $\text{Sr}_2\text{MgIrO}_6$.^[7]

The unit-cell parameters, listed in Table 1, correlate with the size of the alkaline-earth ions Ca and Mg, for instance, the unit-cell volumes are $V = 274.24(2)$ and $245.75(5)$ Å³. In the same way, in $\text{Sr}_2\text{CaIrO}_6$, the monoclinic distortion is more pronounced than in $\text{Sr}_2\text{MgIrO}_6$, and the monoclinic β angles are 89.7208(2) and 89.906(1)°, respectively; in both cases, this angle is very close to 90°, and a and b are very

Table 2. Main interatomic bond lengths [Å] and selected angles [°] for Sr_2MIrO_6 ($\text{M} = \text{Ca}, \text{Mg}$) determined from NPD data at room temp.

	$\text{Sr}_2\text{CaIrO}_6$	$\text{Sr}_2\text{MgIrO}_6$	
SrO polyhedra			
Sr–O1	2.616(4)	Sr–O1	2.81(2)
Sr–O1	2.541(5)	Sr–O1	2.77(2)
Sr–O2	2.788(5)	Sr–O1	2.954(20)
Sr–O2	2.541(5)	Sr–O1	2.637(20)
Sr–O2	2.883(5)	Sr–O2	2.71(2)
Sr–O3	2.856(5)	Sr–O2	2.70(2)
Sr–O3	2.535(5)	Sr–O2	2.86(2)
Sr–O3	2.794(5)	Sr–O2	2.90(2)
$\langle \text{Sr–O} \rangle$	2.694(5)	Sr–O3	2.81(2)
		Sr–O3	3.10(2)
		Sr–O3	2.46(2)
		Sr–O3	2.83(2)
		$\langle \text{Sr–O} \rangle_{\text{8short}}$	2.716(20)
(Ca/Mg)O ₆ polyhedra			
Ca–O1 (× 2)	2.248(3)	Mg–O1 (× 2)	2.009(12)
Ca–O2 (× 2)	2.252(4)	Mg–O2 (× 2)	1.995(14)
Ca–O3 (× 2)	2.252(4)	Mg–O3 (× 2)	2.038(13)
$\langle \text{Ca–O} \rangle$	2.251(4)	$\langle \text{Mg–O} \rangle$	2.014(13)
IrO ₆ polyhedra			
Ir–O1 (× 2)	1.930(3)	Ir–O1 (× 2)	1.943(12)
Ir–O2 (× 2)	1.938(3)	Ir–O2 (× 2)	1.963(14)
Ir–O3 (× 2)	1.950(4)	Ir–O3 (× 2)	1.966(15)
$\langle \text{Ir–O} \rangle$	1.939(3)	$\langle \text{Ir–O} \rangle$	1.957(14)
Ca–O1–Ir	156.2(1)	Mg–O1–Ir	172.0(5)
ϕ	11.9	ϕ	4.0
Ca–O2–Ir	155.6(1)	Mg–O2–Ir	171.8(6)
ϕ	12.2	ϕ	4.1
Ca–O3–Ir	153.9(1)	Mg–O3–Ir	160.9(6)
ϕ	13.0	ϕ	9.5

similar, which indicates a strong pseudotetragonal symmetry. In both compounds, the SrO polyhedron is reduced to an eightfold coordination owing to the tilting of the MO₆ octahedra. The average Sr–O bond lengths of 2.694(5) and 2.716(20) Å for $\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$, respectively, are in reasonable agreement with that expected from ionic radii sums of 2.66 Å for ^{VIII}Sr²⁺ (1.26 Å) and ^{VI}O²⁻ (1.40 Å).^[13] The average interatomic distances in the (Ca/Mg)O₆ polyhedron [2.251(4) and 2.014(13) Å for the Ca and Mg compounds, respectively] are slightly shorter than those expected from the sums of the Shannon^[13] effective radii of 2.40 and 2.12 Å (^{VI}Ca²⁺ = 1.00 Å, ^{VI}Mg²⁺ = 0.72 Å and ^{VI}O²⁻ = 1.40 Å), which indicates that the Ca²⁺/Mg²⁺cations are overbonded and under compressive stress. On the other hand, the $\langle \text{Ir–O} \rangle$ distance [1.939(9) Å] in the $\text{Sr}_2\text{CaIrO}_6$ perovskite is somewhat longer than that in the same compound reported by Demazeau et al. (1.92 Å).^[7] From their structural data, they gave an Ir⁶⁺ ionic radius of 0.52 Å. On the other hand, in $\text{Sr}_2\text{MgIrO}_6$, the average Ir–O bond length [1.957(14) Å] is even longer in spite of the smaller unit-cell parameters; this suggests the presence of some Ir⁵⁺ ions (0.57 Å), which are larger than Ir⁶⁺ ions, owing to the oxygen understoichiometry found in $\text{Sr}_2\text{MgIrO}_{5.89(1)}$. Another effect to take into account in the distances is the non-

negligible antisite disorder, more prominent in the case of Mg (ca. 20%). This disorder affects the observed over- and underbonding of Mg–O and Ir–O distances, respectively; as Ir⁶⁺ ions are partially introduced into Mg²⁺ sites, the average Mg–O distances decrease and vice versa. In the case of Ca, we only observe 5% of disorder; however, the difference in size between the Ca²⁺ and Ir⁶⁺ ions is larger than in the case of Mg, so we believe the disorder could also be the responsible for the over- and underbonding observed.

In the CaO₆, MgO₆, and IrO₆ octahedra, the three distances Ca/Mg–O and Ir–O are identical within error, which implies that there is a regular oxygen environment for the Ca²⁺/Mg²⁺ and Ir^{6+/5+} cations. As a measure of the octahedral distortion, the relationship between the largest B–O bond (*d*B–O)_L and the shortest one (*d*B–O)_S can be calculated. For Sr₂CaIrO₆, the calculated values are 1.002 for CaO₆ and 1.01 for IrO₆, and for the Mg-containing compound, this ratio is 1.02 for both octahedra. In addition, the O–Ca/Mg–O and O–Ir–O bond angles are all virtually 90°; thus, all of them are quasiregular octahedra.

To optimize the Sr–O bond lengths, the (Ca/Mg)O₆ and IrO₆ octahedra are forced to tilt. The average tilt angles can be estimated as $\phi = (180 - \omega)/2$, where ω is the Ca/Mg–O–Ir bond angle (Table 2). The monoclinic structure contains alternating (Ca/Mg)O₆ and IrO₆ octahedra tilted in anti-phase along the (100) and (010) directions of the pseudo-cubic cell and tilted in phase along the (001) direction, as corresponds to the $a^-a^-c^+$ Glazer notation for Sr₂CaIrO₆ and Sr₂MgIrO₆, derived by Woodward et al.^[14]

It is interesting to compare Sr₂MgIrO₆ with the previously reported SrIr_{1-x}Mg_xO₃ ($x = 0.20$ and 0.33) series.^[10] In SrIr_{1-x}Mg_xO₃, the amount of Mg is not large enough to establish long-range order over the B site, and these compounds are described with orthorhombic symmetry. In contrast, Sr₂MgIrO₆ exhibits rock-salt order and crystallizes in the monoclinic *P2₁/n* space group. The internal parameters are directly affected by the oxidation state of the iridium cation. Contrary to expectations, considering the greater ionic radii of the Mg cations with respect to the Ir cations, the volumes of the SrIr_{1-x}Mg_xO₃ phases are larger than the corresponding volume of Sr₂MgIrO₆, which suggests that the cell expansion is related to the presence of Ir^{4+/5+} ions instead of Ir⁶⁺ ions.

Magnetic Properties

Figure 3 displays the molar magnetic susceptibility versus temperature curves of Sr₂CaIrO₆ and Sr₂MgIrO₆. Transitions to antiferromagnetic orderings are observed with Néel temperatures (T_N) of ca. 58 and 74 K, respectively. The magnetization versus magnetic field curves for both samples, measured at 4, 50, and 300 K (Figure 4), present an almost linear response with no hysteresis or remanent magnetization. The shapes of the curves at low temperatures exhibit the characteristic behavior of antiferromagnetic materials.

In the paramagnetic region, the inverse molar susceptibility versus temperature curves of each compound follow

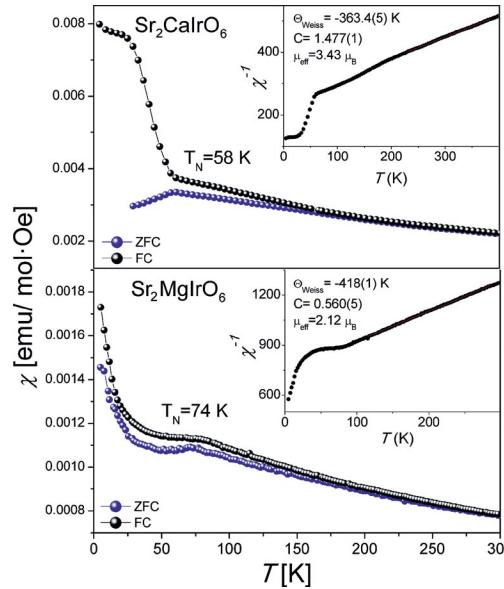


Figure 3. Temperature dependence of the direct current (dc) magnetic susceptibility for the Sr₂MlIrO₆ (M = Ca, Mg) perovskites measured under a 0.1 T magnetic field. The inset shows the reciprocal susceptibility vs. temperature.

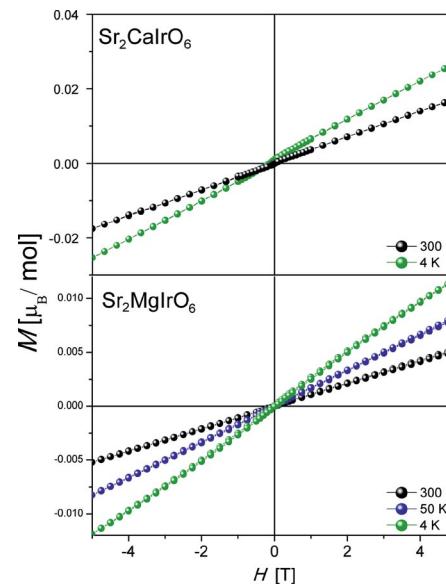


Figure 4. Magnetization vs. magnetic field isotherms at 4 and 300 K for Sr₂CaIrO₆ and at 4, 50, and 300 K for Sr₂MgIrO₆ measured under a magnetic field field ranging from -5 to 5 T.

the Curie–Weiss law. The Curie constant and the Weiss temperature estimated from the fits are shown in the inset of Figure 3. The negative values of θ_W [$\theta_W(\text{Sr}_2\text{CaIrO}_6) = -363.4(5)$ K and $\theta_W(\text{Sr}_2\text{MgIrO}_6) = -418(1)$ K] suggest that the main magnetic interactions are antiferromagnetic. Effective magnetic moments (μ_{eff}) of 3.43 and 2.12 μ_B for Sr₂CaIrO₆ and Sr₂MgIrO₆, respectively, obtained from the Curie constants, indicate the presence of Ir with lower oxidation state in the Mg compound. As the effective magnetic moment of Ir⁶⁺ ions, experimentally obtained, is rather close to the spin-only value ($S = 3/2$ $\mu_{\text{cal}} = 3.87 \mu_B$) in Sr₂CaIrO₆, the

spin-orbit coupling characteristic of the 5d metal transition is then not observed on the Ir^{6+} magnetic moment value. In $\text{Sr}_2\text{MgIrO}_6$, the discrepancy between the experimental and the calculated magnetic moment values is larger, and the reduced moment suggests the presence of Ir^{5+} ions (this ion has been described as nonmagnetic in previous work)^[1,15–18] or perhaps the presence of short-range correlations in the high-temperature region in which the Curie-Weiss law has been applied.

A typical feature of geometrically frustrated materials is the divergence in the zero-field-cooled (ZFC) and field-cooled (FC) curves at low temperature. We observe such divergence in both compounds, although it is more pronounced in $\text{Sr}_2\text{CaIrO}_6$, at temperatures much higher than the transition temperature; this again suggests the presence of magnetic correlations, probably short-range interactions, at temperatures above the magnetic-order temperature. Frustration effects in the magnetic cell are linked to different types of magnetic interactions or geometrical frustrations and give rise to spin-glass behavior in some materials.

Magnetic Structure

The low-temperature magnetic structure has been determined from the Rietveld analyses of the NPD diagrams collected at 2 K with the D1B instrument for $\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$. With respect to the room-temperature pattern (Figure 2), the 2 K neutron pattern of $\text{Sr}_2\text{CaIrO}_6$ shows weak low-angle reflections, which are forbidden for the crystallographic Bragg reflections and indicate a long-range antiferromagnetic ordering. To study the temperature dependence of the magnetic peaks, the thermal evolution of the NPD patterns, sequentially acquired upon cooling, was followed in the temperature range 2–100 K (Figure 5, a). At 50 K, the intensity of some magnetic reflections regularly increases as the temperature decreases and this corresponds to the antiferromagnetic ordering of the Ir^{6+} moments. The ordered magnetic temperature agrees with the Néel temperature obtained from the magnetic measurements.

For $\text{Sr}_2\text{CaIrO}_6$, the magnetic peaks could be indexed with the propagation vector $k = (1/2 \ 1/2 \ 0)$. After checking all of the possible magnetic modes compatible with the space-group symmetry and the propagation vector, the best agreement with the experimental data was obtained for the magnetic structure given by the basis vectors of the irreducible representation Γ_4 : the two magnetic atoms present in the unit cell, Ir1 at $(1/2 \ 0 \ 1/2)$ and Ir2 at $(0 \ 1/2 \ 0)$, are magnetically coupled as $m_{1x} = -m_{2x}$ and $m_{1z} = -m_{2z}$. This magnetic arrangement leads to a good agreement between the observed and calculated magnetic intensities. Figure 6 shows the final Rietveld plot including the crystallographic phase and the magnetic phase. The refined components of the magnetic moment along the crystallographic axes are $m_x = 0.4(2) \ \mu_B$ and $m_z = 1.27(7) \ \mu_B$, and the net moment has a value of $1.33(2) \ \mu_B$. As shown in Figure 7, the magnetic structure consists of antiferromagnetic [011] layers of Ir^{6+} moments coupled antiferromagnetically with the spins di-

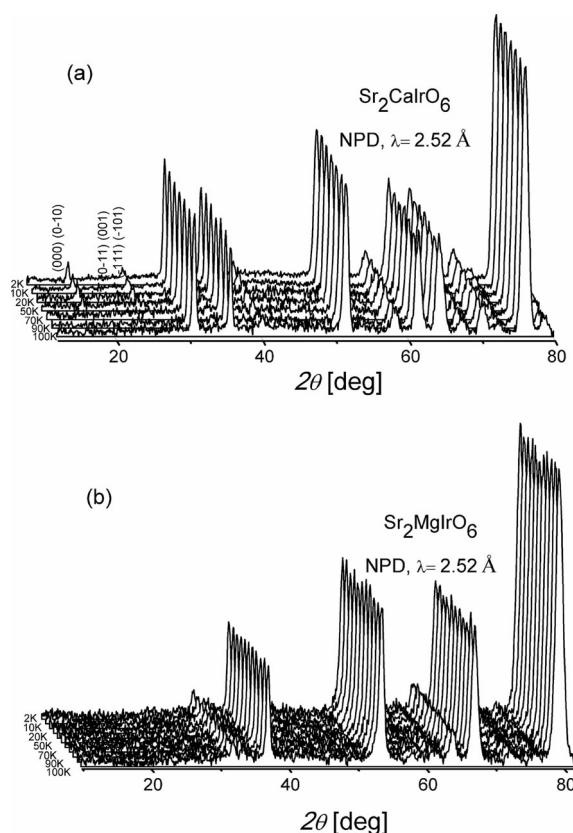


Figure 5. Thermal evolution of the NPD patterns of (a) $\text{Sr}_2\text{CaIrO}_6$ and (b) $\text{Sr}_2\text{MgIrO}_6$ acquired with $\lambda = 2.52 \text{ \AA}$ in the temperature interval $2 < T < 100 \text{ K}$.

rected approximately along the c axis interleaved with Ca layers. The reduction of the ordered magnetic moment [$1.33(2) \ \mu_B$] with respect to that expected for a t_{2g}^3 configuration of $3 \ \mu_B$ is probably related to the divergence of the ZFC and FC curves and suggests that the presence of irre-

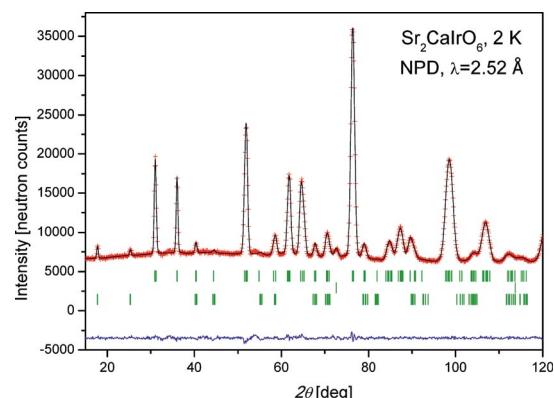


Figure 6. Observed (crosses), calculated (solid line), and difference (bottom) NPD Rietveld profiles for $\text{Sr}_2\text{CaIrO}_6$ at 2 K collected at the D1B-ILL diffractometer. The first series of Bragg reflections corresponds to the main perovskite phase, the second one corresponds to the vanadium used as a sample holder, and the third one corresponds to the magnetic structure.

versibilities, frustration, or freezing of the magnetic moments prevent the establishment of a perfect long-range ordering in this material.

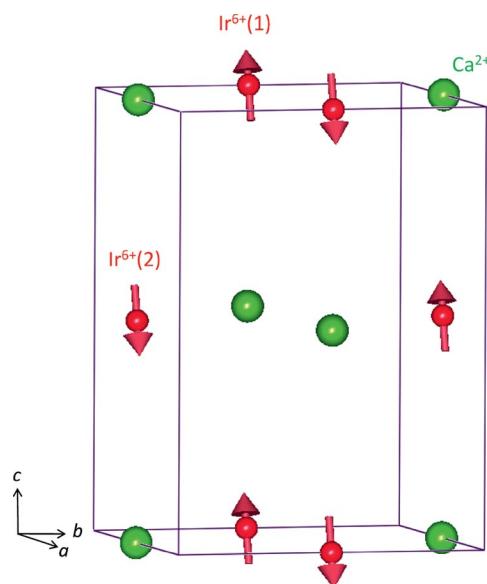


Figure 7. Schematic view of the magnetic structure of $\text{Sr}_2\text{CaIrO}_6$ below T_N .

For $\text{Sr}_2\text{MgIrO}_6$, no differences have been observed between the high- and low-temperature neutron diffraction patterns (Figure 5, b). Therefore, there is no long-range magnetic ordering detectable by NPD. The reason for this could be the small value of the magnetic moment (below the detection limit of the neutron diffraction) or the freezing of the moments because of the above-mentioned frustration effects in relationship with the large divergence between the ZFC and FC curves.

X-ray Absorption Measurements

The $\text{L}_{2,3}$ edges of transition-metal (T) compounds manifest very intense “white line” (WL) features owing to dipole transitions into final d states. The intensity, chemical shift, and spectral distribution of the WL features can provide information on the valence/T-d-orbital occupancy and the energy distribution of unoccupied density of states in transition-metal compounds.^[19,20] Figure 8 shows the Ir L_3 edges of Sr_2MIrO_6 with $\text{M} = \text{Mg, Ca}$. For comparison, the spectra of the double perovskite with $\text{M} = \text{Sc}$ along with those of elemental Ir and IrO_2 have also been measured and are included in Figure 8. The area of the WL feature in the Ir^{4+} IrO_2 standard is greatly enhanced and is chemically shifted to a higher energy relative to that of the elemental Ir standard. Both of these observations are consistent with a higher valence/d-hole count of the oxide. Similarly, relative to the Ir^{4+} IrO_2 standard, the $\text{Sr}_2\text{ScIrO}_6$ spectrum has a greater WL feature area and it is at higher energy supporting its Ir^{5+} d^4 (2t_{2g} hole) configuration. The $\text{Sr}_2\text{CaIrO}_6$ spectrum is quite similar to that of the $\text{M} = \text{Sc}$ compound but with an additional chemical shift to higher energy and

the WL area increases motivated by the Ir^{6+} d^3 (3t_{2g} hole) configuration of the $\text{M} = \text{Ca}$ compound. The unresolved, bimodal WL structure of the $\text{M} = \text{Sc}$ and Ca spectra will be discussed at greater length below. The $\text{Sr}_2\text{MgIrO}_6$ spectrum, shown in Figure 8, manifests a clear chemical shift of the WL feature to higher energy relative to that of the $\text{M} = \text{Sc}$ spectrum but below that of Ca and supports the expected admixture of Ir^{6+} d^3 (3t_{2g} hole) and Ir^{5+} d^4 (2t_{2g} hole) configurations associated with the Mg compound. However, the even larger chemical shift of the Ca compound (from the next row down in the periodic Table) emphasizes that solid-state ligand-field splittings and bandwidth effects can lead to substantial variations in the WL structure and chemical shift.

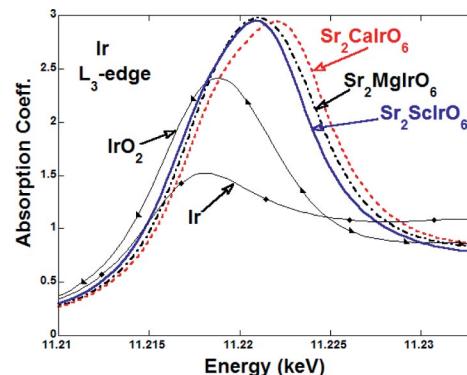


Figure 8. The Ir L_3 edges of Sr_2MIrO_6 with $\text{M} = \text{Mg, Ca, and Sc}$ along with those of elemental Ir and IrO_2 .

The proximity of Ca and Sc in the periodic table motivates a more detailed comparison of their double perovskite Ir L_3 spectral shape (i.e., their A–B feature structure) as shown in Figure 9. A more detailed description of the meaning of A and B features in perovskite oxides is incorporated in the Supporting Information (Figure S2). The $\text{M} = \text{Ca}$, Ir^{6+} d^3 (3t_{2g} hole) spectrum in Figure 9 includes a prominent A-feature shoulder on the low-energy side of the B-feature peak. By comparison, the A feature in the $\text{M} = \text{Sc}$, Ir^{5+} d^4 (2t_{2g} hole) spectrum is a less intense/prominent. For the spectral comparison in Figure 9, the Sc spectrum

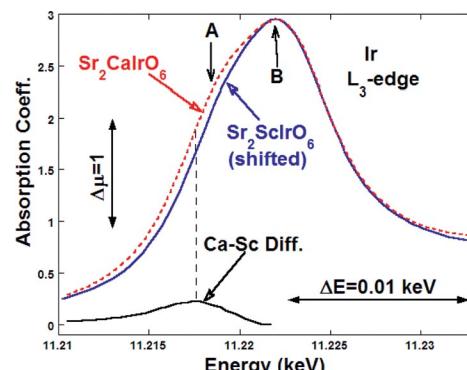


Figure 9. A superimposed comparison of the Ir L_3 edges of the Sr_2MIrO_6 ($\text{M} = \text{Ca and Sc}$) compounds. Here, the spectrum of the Sc compound has been displaced to higher energy until its e_g hole, B-peak feature coincides with that of the Ca spectrum.

was shifted up in energy until its B feature coincided with that of the Ca spectrum. A spline fit interpolation of the shifted $M = \text{Sc}$ spectrum was then subtracted from the $M = \text{Ca}$ spectrum to extract the Ca–Sc difference spectrum, which is also plotted in Figure 9. Here, this difference spectrum is intended to illustrate the distribution of excess t_{2g} hole states in the A feature in the Ca compound. Thus, although the A-feature intensity decreases with increasing t_{2g} electron occupancy is more subtle in the Ir compounds of Figure 9 than it was in the almost empty d-orbital cases illustrated in Figure S2, the effect is still clearly discernible.

Conclusions

$\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$ oxides with a perovskite-related structure have been synthesized under oxygen pressure conditions. The structural refinement from room-temperature NPD data was performed in the monoclinic $P2_1/n$ space group. The magnetic measurements show a transition to an antiferromagnetic ordering at Néel temperatures (T_N) of ca. 58 and 74 K, respectively. The effective magnetic moments calculated from the linear fit of the Curie–Weiss law at high temperatures indicate the presence of Ir^{6+} ions and also the absence of spin–orbit coupling for $M = \text{Ca}$ and an admixture with Ir^{5+} ions for $M = \text{Mg}$; this is related to the oxygen understoichiometry determined for this oxide by NPD. The magnetic structure of $\text{Sr}_2\text{CaIrO}_6$ compound is defined by the propagation vector $k = (1/2 \ 1/2 \ 0)$ and the arrangement for the Ir^{6+} magnetic moments have been defined as $m_{1x} = -m_{2x}$ and $m_{1z} = -m_{2z}$; for $M = \text{Mg}$, no long-range magnetic ordering is detected by NPD. X-ray absorption measurements for the Ir L_3 edges of Sr_2MIrO_6 with $M = \text{Mg}$ and Ca compared with the double perovskite for $M = \text{Sc}$ clearly show a $\text{Ir}^{6+} d^3$ ($3t_{2g}$ hole) configuration of the $M = \text{Ca}$ compound, whereas for $\text{Sr}_2\text{MgIrO}_6$, the chemical shift of the WL feature to higher energy relative to the $M = \text{Sc}$ spectrum but below that of Ca supports the expected admixture of $\text{Ir}^{6+} d^3$ ($3t_{2g}$ hole) and $\text{Ir}^{5+} d^4$ ($2t_{2g}$ hole) configurations.

Experimental Section

$\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$ were prepared by the citrate–nitrate method by using wet chemistry procedures. Stoichiometric amounts of $\text{Sr}(\text{NO}_3)_2$, IrO_2 , and CaCO_3 or MgO , respectively, were dissolved in an aqueous citric acid solution with HNO_3 (1 mL). IrO_2 was not dissolved in the solution but stayed in suspension under magnetic stirring. This suspension was slowly evaporated to afford organic resins that contain a homogeneous distribution of the involved cations. After evaporation, the resulting resins were dried at 140 °C and then heated at 600 °C for 12 h to decompose the organic materials and eliminate the nitrate ions. Sequential annealing treatments in an oxidizing atmosphere were necessary to obtain these perovskite oxides as pure phases, owing to the presence of Ir^{4+} ions. In both samples, the obtained precursor powders were ground and heated at 800 °C in an O_2 flow for 12 h and then reground and heated at 950 °C under high oxygen pressure (200 bar) for 12 h for $\text{Sr}_2\text{CaIrO}_6$ and at 800 °C under 200 bar of

oxygen for 36 h for $\text{Sr}_2\text{MgIrO}_6$. The reaction progress was followed after each treatment by X-ray diffraction (XRD) by using a Bruker-AXS D8 diffractometer (40 kV, 30 mA) controlled by the DRIFTFACT^{PLUS} software in Brag–Brentano reflection geometry with $\text{Cu}-K_\alpha$ radiation ($\lambda = 1.5418 \text{ \AA}$) and a position-sensitive detector (PSD).

To study the crystallographic structures, NPD patterns were collected at room temperature with the high-resolution D2B diffractometer ($\lambda = 1.594 \text{ \AA}$) of the Institute Laue–Langevin (ILL) in Grenoble. To analyze the thermal evolution of the crystallographic structures as well as the eventual existence of a magnetic structure at low temperatures, NPD data were acquired in the temperature range from 2 to 100 K with the D1B instrument ($\lambda = 2.52 \text{ \AA}$). The crystal structures were refined from NPD data by the Rietveld method^[21] by using the FULLPROF refinement program.^[22] A pseudo-Voigt function was chosen to generate the line shape of the diffraction peaks. No regions were excluded in the refinement. The following parameters were refined in the final runs: scale factor, background coefficients, zero-point error, pseudo-Voigt corrected for asymmetry parameters, positional coordinates, and isotropic displacement.

The magnetic properties were studied with a commercial superconducting quantum interference device (SQUID) magnetometer from Quantum Design. The magnetic susceptibility was measured both in zero-field-cooled (ZFC) mode and field-cooled (FC) mode in the $4 \leq T \leq 400 \text{ K}$ range under an applied magnetic field of 0.1 T. Isothermal magnetization curves were obtained for magnetic fields from –5 to 5 T at 4 and 300 K.

The X-ray absorption spectroscopy (XAS) measurements were made in both fluorescence and transmission modes with the X-19A beamline at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory by using a Si(111) double-crystal monochromator. A simultaneous standard was run with all the spectra. The data were processed with the standard linear pre- and post-edge background subtraction. By convention, the absorption coefficient (μ) is normalized to 1.0 over an average energy region well above the edge. To compare the samples of $\text{Sr}_2\text{CaIrO}_6$ and $\text{Sr}_2\text{MgIrO}_6$ with related compounds, $\text{Sr}_2\text{ScIrO}_6$ was prepared by a two-step procedure. Firstly, precursor powders were synthesized by a citrate route, and in a second step, the powders were heated at 800 °C in an O_2 flow for 12 h and then reground and heated at 1100 °C for 12 h.

Supporting Information (see footnote on the first page of this article): NPD patterns of $\text{Sr}_2\text{MgIrO}_6$ refined in the $P2_1/n$ and $I4/m$ space groups, L_3 edges of a series of d0/d1 double perovskite Ta, W, and Re compounds.

Acknowledgments

The authors thank the Spanish Ministry of Science and Technology (project number MAT2010-16404) and the Comunidad de Madrid (QUIMAPRES project number S2009PPQ-1551) for financial support. Dr. M. García-Hernández is thanked for the magnetic measurements and the authors are grateful to the Institut Laue–Langevin (ILL) for making all facilities available. Use of the National Synchrotron Light Source, Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-98CH10886.

[1] A. V. Powell, J. G. Gore, P. D. Battle, *J. Alloys Compd.* **1993**, 201, 73.

[2] S. J. Moon, M. W. Kim, K. W. Kim, Y. S. Lee, J.-Y. Kim, J.-H. Park, B. J. Kim, S.-J. Oh, S. Nakatsuji, Y. Maeno, I. Nagai, S. I. Ikeda, G. Cao, T. W. Noh, *Phys. Rev. B* **2006**, *74*, 113104.

[3] M. Bremholm, S. E. Dutton, P. W. Stephens, R. J. Cava, *J. Solid State Chem.* **2011**, *184*, 601.

[4] J. P. Clancy, N. Chen, C. Y. Kim, W. F. Chen, K. W. Plumb, B. C. Jeon, T. W. Noh, Y.-J. Kim, *Phys. Rev. B* **2012**, *86*, 195131.

[5] D.-Y. Jung, G. Demazeau, J. H. Choy, *J. Mater. Chem.* **1995**, *5*, 517.

[6] T. K. Mandal, C. Felser, M. Greenblatt, J. Kübler, *Phys. Rev. B* **2008**, *78*, 134431.

[7] D.-Y. Jung, G. Demazeau, *J. Solid State Chem.* **1995**, *115*, 447.

[8] D.-Y. Jung, G. Demazeau, G. Etourneau, *J. Mater. Res. Bull.* **1995**, *30*, 113.

[9] D.-Y. Jung, P. Gravereau, G. Demazeau, *Eur. J. Solid State Inorg. Chem.* **1993**, *30*, 1025.

[10] I. Qasim, B. J. Kennedy, M. Avdeev, *J. Mater. Chem. A* **2013**, *1*, 13357.

[11] I. Qasim, B. J. Kennedy, M. Avdeev, *J. Mater. Chem. A* **2013**, *1*, 3127.

[12] M. Bremholm, C. K. Yim, D. Hirai, E. Climent-Pascual, Q. Xu, H. W. Zandbergen, M. N. Ali, R. J. Cava, *J. Mater. Chem.* **2012**, *22*, 16431.

[13] R. D. Shannon, *Acta Crystallogr., Sect. A* **1976**, *32*, 751.

[14] P. M. Woodward, *Acta Crystallogr., Sect. B* **1997**, *53*, 32.

[15] J. H. Choy, D. K. Kim, S. H. Hwang, G. Demazeau, D. Y. Jung, *J. Am. Chem. Soc.* **1995**, *117*, 8557.

[16] P. D. Battle, G. R. Blake, T. C. Gibb, J. F. Vente, *J. Solid State Chem.* **1999**, *145*, 541.

[17] S. J. Mugavero, M. D. Smith, H. C. Zur Loye, *J. Solid State Chem.* **2005**, *178*, 200.

[18] M. Walewski, B. Buffat, G. Demazeau, F. Wagner, M. Pouchard, P. Hagenmuller, *Mater. Res. Bull.* **1983**, *18*, 881.

[19] G. Popov, M. Greenblatt, M. Croft, *Phys. Rev. B* **2003**, *67*, 024406.

[20] Q. Lin, M. Greenblatt, M. Croft, *Pol. J. Soil Sci. J. Solid State Chem.* **2005**, *178*, 1356.

[21] H. M. Rietveld, *J. Appl. Crystallogr.* **1969**, *2*, 65.

[22] J. Rodríguez-Carvajal, *J. Phys. B* **1993**, *192*, 55.

Received: August 21, 2013

Published Online: December 2, 2013