

MAGNETIC ORDERING IN TbRh_2Si_2 AND CeRh_2Si_2

S. Quezel, J. Rossat-Mignod

Laboratoire de Diffraction Neutronique, Département de Recherche Fondamentale, Centre d'Etudes Nucléaires,
85X-38041 Grenoble Cedex, France

and

B. Chevalier, P. Lejay, J. Etourneau

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351, cours de la Libération
- 33405 Talence Cedex, France

(Received 28 October 1983 by E. F. Bertaut)

Magnetic measurements and a neutron diffraction study have been carried out on the ternary compounds TbRh_2Si_2 and CeRh_2Si_2 with a tetragonal structure of ThCr_2Si_2 -type. TbRh_2Si_2 is found to order antiferromagnetically below $T_N = 92$ K with moments along the c-axis. The structure, of wave vector $\mathbf{k} = [001]$, consists of a stacking of ferromagnetic (001) planes with a $+ - + -$ sequence. CeRh_2Si_2 develops below $T_N = 36$ K a structure described by a wave vector $\mathbf{k} = [1/2\ 1/2\ 0]$ in which the coupling within a (001) plane is antiferromagnetic. This change of coupling together with the large negative value of $\theta_p = -61$ K has been attributed to a change of the sign of the first nearest neighbour in-plane interaction which would correspond to an exchange mechanism different from the usual RKKY one in CeRh_2Si_2 .

1. INTRODUCTION

THE TERNARY SILICIDES $RM_2\text{Si}_2$ in which R is a rare earth metal and M is a 3d, 4d or 5d transition element have been extensively studied during the past years. They crystallize in a simple structure of ThCr_2Si_2 -type which is tetragonal of space group $I4/mmm$ [1]. These ternary silicides allow us to study many interesting physical properties as the superconductivity, the valence fluctuations, the Kondo effect or the magnetism [2–4].

The magnetic properties of the silicides with a 3d transition element (Mn, Fe, Co, Ni, Cu) have been studied in more detail than those with a noble metal as $M = \text{Ru, Rh, Ir}$. In a recent work we have shown that the $RRh_2\text{Si}_2$ ($R = \text{Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er}$) exhibit at low temperatures an antiferromagnetic ordering [2]. In this paper we report the results of a more detailed study on the CeRh_2Si_2 and TbRh_2Si_2 silicides by means of neutron diffraction and magnetic measurements.

1.1. Sample preparation

CeRh_2Si_2 and TbRh_2Si_2 have been prepared by the direct melting of the elements in an arc furnace under a purified argon atmosphere. The obtained compounds were analyzed by X-rays using a Guinier camera and proved to have the quadratic structure of ThCr_2Si_2 -type. The lattice parameters at room temperature of

CeRh_2Si_2 ($a = 4.075$ Å, $c = 10.13$ Å) and of TbRh_2Si_2 ($a = 4.031$ Å, $c = 9.96$ Å) are in good agreement with the previously published values [5].

In the case of TbRh_2Si_2 a single crystal (3 mm diameter and 2 mm height) has been grown by using a Czochralski method developed at the University of Bordeaux [6].

2. MAGNETIC MEASUREMENTS

The magnetic measurements have been performed between 4.2 K and 300 K by using a balance of Faraday type and a magnetometer with a vibrating sample.

CeRh_2Si_2 orders antiferromagnetically at $T_N = 36$ K. The magnetic susceptibility follows a Curie–Weiss law (Fig. 1). The effective moment value $\mu_{\text{eff}} = 2.56 \mu_B$ is in agreement with cerium in a trivalent state. The paramagnetic Curie temperature $\theta_p = -61$ K has a large negative value. These values differ significantly from the quite recent measurements of Godart *et al.* ($\theta_p = -72$ K, $\mu_{\text{eff}} = 2.9 \mu_B$) [7].

TbRh_2Si_2 orders also antiferromagnetically at $T_N = 94$ K. The effective moment value $\mu_{\text{eff}} = 10.0 \mu_B$ is slightly larger than the free ion value of a Tb^{3+} ion ($\mu_{\text{eff}} = 9.72 \mu_B$) which may indicate a positive polarization of the conduction electrons. The paramagnetic Curie temperature $\theta_p = 43$ K has a positive value, as in most of the other $RRh_2\text{Si}_2$ ternaries [2], indicating that

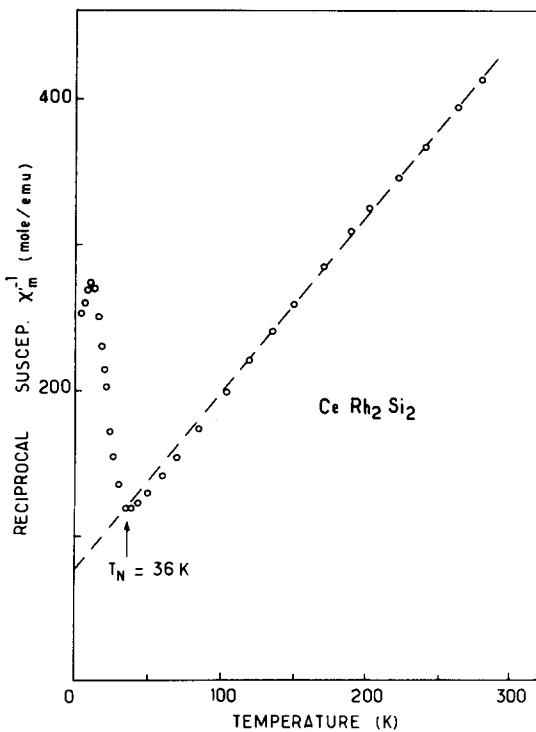


Fig. 1. Temperature dependence of the reciprocal magnetic susceptibility of $CeRh_2Si_2$.

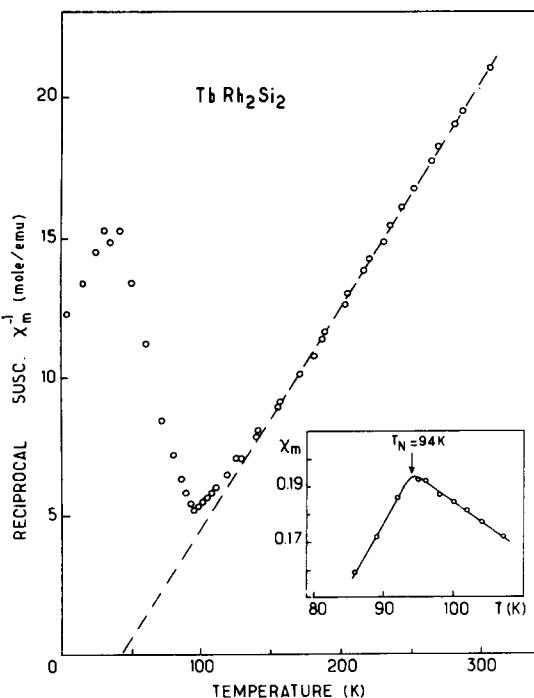


Fig. 2. Temperature dependence of the reciprocal magnetic susceptibility of $TbRh_2Si_2$.

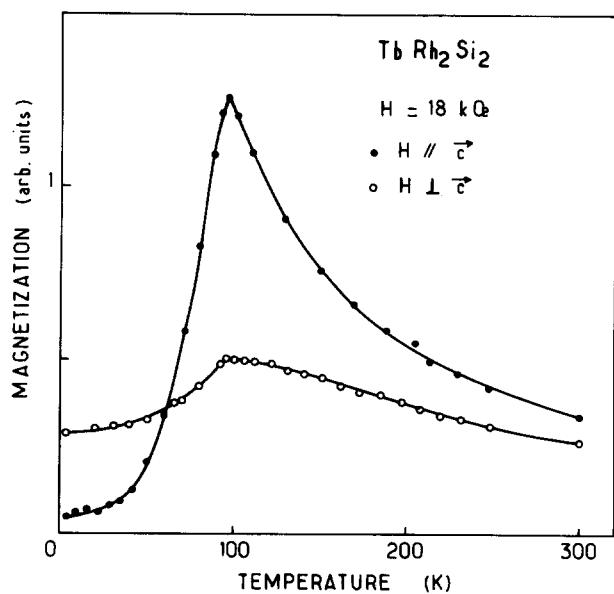


Fig. 3. Temperature dependence of the magnetization of a $TbRh_2Si_2$ single crystal measured with a magnetic field of 18 kOe applied along and perpendicularly to the c -axis.

the interactions have mainly a ferromagnetic character in $TbRh_2Si_2$ (Fig. 2). The magnetization measured on a single crystal, exhibits a large anisotropy depending on the magnetic field is applied along or perpendicularly to the c -axis (Fig. 3). The antiferromagnetic direction is along the c -axis.

3. NEUTRON RESULTS

Neutron experiments have been carried out at the Siloe reactor of the CEN-Grenoble. The diffraction patterns were recorded with a linear multidetector spectrometer [8] using a neutron wavelength of 2.483 Å.

The scattering by the nucleus gives rise to nuclear Bragg peaks which can be well accounted by the extinction condition ($h + k + l = 2n + 1$) of the body centered-tetragonal space group $I4/mmm$. The crystal structure of $ThCr_2Si_2$ -type contains:

one R atom in the site $2a$: (000) of D_{4h} symmetry;
 two Rh atoms in the site $4d$: $(0\frac{1}{2}\frac{1}{2})$ and $(\frac{1}{2}0\frac{1}{2})$;
 two Si atoms in the site $4e$: $(00z)$ and $(00\bar{z})$.

Then the structure can be described as a stacking of atomic planes perpendicular to the c -axis with the sequence R -Si-Rh-Si- R and located respectively at $z = 0, 1/2 - z_{Si} = 0.125, 1/4, z_{Si} = 0.375$ and $1/2$. The fit of the calculated and integrated intensities gives no evidence for any mixing between Rh and Si atoms in $4d$ and $4e$ sites. As an example a comparison between observed and calculated intensities of a few nuclear peaks are given in Table 1 in the case of $TbRh_2Si_2$. A quite good agreement ($R = 2.7\%$) is obtained for $z_{Si} = 0.375$, the intensities were calculated using

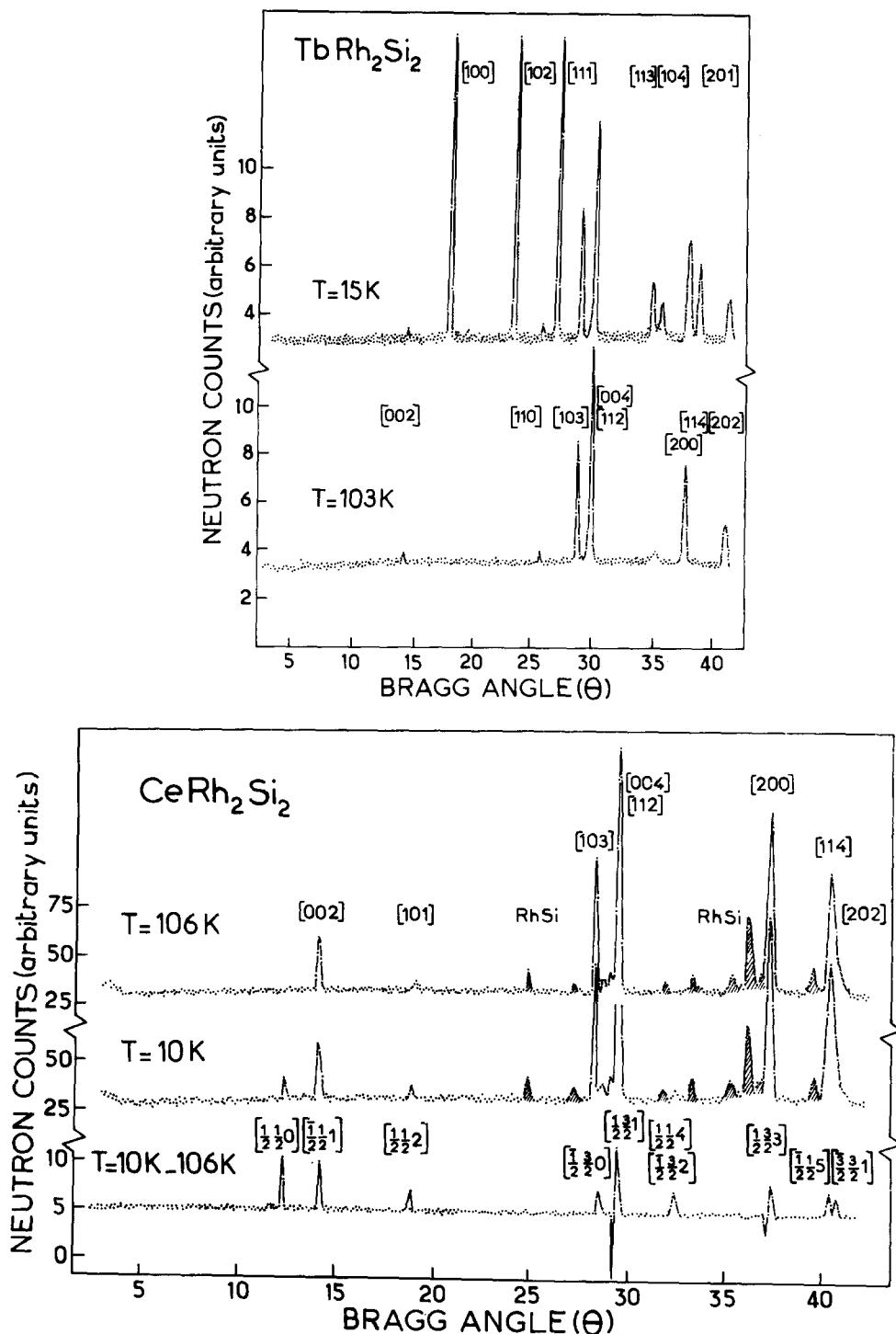


Fig. 4. (a) Neutron diffraction patterns from paramagnetic (103 K) and ordered (15 K) TbRh_2Si_2 . Magnetic reflections are associated with a wave vector $\mathbf{k} = [001]$. (b) Neutron diffraction patterns from paramagnetic (106 K) and ordered (10 K) CeRh_2Si_2 . Magnetic reflections are associated with a wave vector $\mathbf{k} = [1/2\ 1/2\ 0]$.

the following scattering lengths: $b_{\text{Tb}} = 0.756$, $b_{\text{Rh}} = 0.591$, $b_{\text{Si}} = 0.415 \times 10^{-12}$ cm. As far as the magnetic properties are concerned this structure is quite simple because the magnetic ions (rare earth) are located in one Bravais lattice.

TbRh_2Si_2

In the neutron diffraction diagrams given in Fig. 4 additional reflections can be identified at $T = 15\text{ K}$. These new reflections, due to the onset of the magnetic order, can be easily indexed on the basis of the

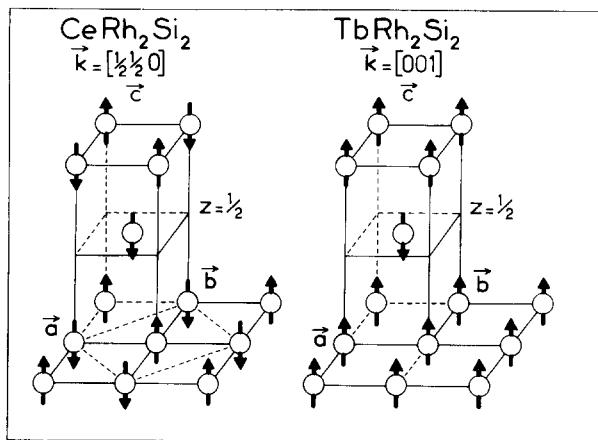


Fig. 5. Magnetic structures of TbRh_2Si_2 ($\vec{k} = [001]$) and CeRh_2Si_2 ($\vec{k} = [1/2 1/2 0]$).

Table 1. Calculated and observed intensities of the nuclear peaks in barn per TbRh_2Si_2 molecule at $T = 15$ K ($a = 4.027$ Å, $c = 9.952$ Å, $z_{\text{Si}} = 0.375$)

$hklI$	I_{obs}	I_{cal}
002	0.17	0.36
101	0.14	0.22
110	0.89	0.65
103	13.98	13.98
004		
112	31.58	31.19
200	26.67	29.05
114	14.58	13.34
200		
$R = 2.7\%$		

Table 2. Calculated and observed intensities of the magnetic superlattice peaks of TbRh_2Si_2 in barn/Tb atom at $T = 15$ K.

hkl	I_{obs}	I_{cal}
001	<i>n.0</i>	0
100	17.2	17.8
003	<i>n.0</i>	0
102	18.7	18.6
111	29.5	26.5
113	12.4	13.1
104	6.0	6.1
005	<i>n.0</i>	0
201	22.1	19.7
$m_0 = 8.5 \pm 0.3 \mu_B \quad R = 6.5\%$		

crystallographic unit cell with the following rule $h + k + l = 2n + 1$. The magnetic scattering vectors \mathbf{h} being defined by the relation $\mathbf{h} = \mathbf{H} + \mathbf{k}$, where \mathbf{H} spanned the different Brillouin zone centers i.e. the nuclear

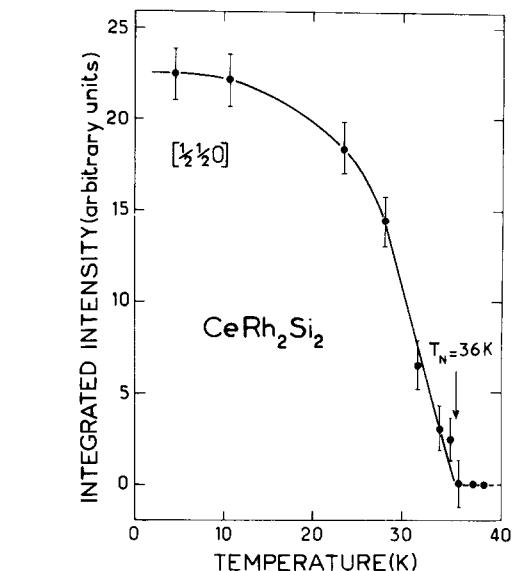
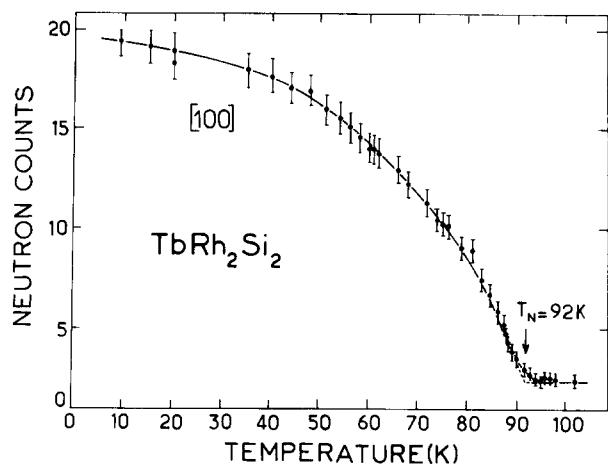



Fig. 6. (a) Temperature dependence of the magnetic intensity of the [100] reflection of TbRh_2Si_2 . (b) Temperature dependence of the integrated intensity of the $[1/2 1/2 0]$ magnetic reflection of CeRh_2Si_2 .

lattice vectors, the ordering is described by the wave vector $\mathbf{k} = [001]$. This wave vector corresponds to a symmetry point of the Brillouin zone (for $c > a$) i.e. it describes a truly antiferromagnetic structure [9]. The structure consists of a stacking of ferromagnetic (001) planes with a $+-+-$ sequence along the \vec{c} -axis (Fig. 5). The absence of the [001], [003] magnetic peaks indicates without any ambiguity that the moments are aligned along the \vec{c} -axis. The observed intensities (Table 2) can be well accounted ($R = 6.7\%$) by using the Tb^{3+} form factor given by [10]. A moment value $m_0 = 8.5 \pm 0.3 \mu_B$ is found at $T = 15$ K indicating that the terbium magnetic moment is close to the free ion value ($g_J = 9 \mu_B$). Moreover there is no evidence of any magnetic moment on the rhodium atoms.

The temperature dependence of the [100] magnetic

Table 3 Calculated and observed intensities of the magnetic superlattice peaks of CeRh_2Si_2 in barn/Ce atom at $T = 10\text{ K}$. Magnetic peaks are indexed in the domain associated with $\mathbf{k}_1 = [1/2\ 1/2\ 0]$.

$h\ k\ l$	I_{obs}	I_{cal}
$\frac{1}{2}\frac{1}{2}0$	0.294	0.300
$\frac{1}{2}\frac{1}{2}1$	0.405	0.438
$\frac{1}{2}\frac{1}{2}2$	0.240	0.236
$\frac{1}{2}\frac{1}{2}3$	<i>n.0</i>	0.123
$\frac{1}{2}\frac{1}{2}0$	0.472	0.466
$\frac{1}{2}\frac{3}{2}1$	1.418*	0.855
$\frac{1}{2}\frac{3}{2}2$	0.756	0.757
$\frac{1}{2}\frac{1}{2}4$		
$\frac{1}{2}\frac{3}{2}3$	0.622*	0.494
$\frac{3}{2}\frac{3}{2}0$	<i>n.0*</i>	0.186
$\frac{3}{2}\frac{3}{2}1$	0.609*	0.390
$\frac{1}{2}\frac{1}{2}5$		
$m_0 = 1.50 \pm 0.15 \mu_B$		$R = 8\%$

*The intensity of these peaks are affected by a large uncertainty because they are superimposed to nuclear peaks.

peak intensity is reported in Fig. 6(a) giving an ordering temperature $T_N = 92\text{ K}$ which is a quite large value for rare earth ternary compounds of ThCr_2Si_2 -type structure.

CeRh_2Si_2

The neutron diffraction diagrams given in Fig. 4(b) show that CeRh_2Si_2 develops, at low temperature, a magnetic order different from that found in TbRh_2Si_2 . The superlattice magnetic peaks can be indexed by considering the structure to be associated with the wave vector $\mathbf{k} = [1/2\ 1/2\ 0]$ which corresponds also to a symmetry point of the Brillouin zone. It describes a simple antiferromagnetic ordering within (001) planes with a $+-+-$ stacking sequence along a $[110]$ direction. The magnetic cell ($a\sqrt{2}$, $a\sqrt{2}$, c) is actually two times larger than the crystallographic one.

The star of \mathbf{k} contains two non-equivalent wave vectors $\mathbf{k}_1 = [1/2\ 1/2\ 0]$ and $\mathbf{k}_2 = [1/2\ \bar{1}/2\ 0]$ defining two K -domains. In both of them the magnetic order is the same within a (001) plane, it differs only by the coupling between adjacent (001) planes, i.e. by the coupling between the magnetic moments in (000) and $(1/2\ 1/2\ 1/2)$. In the domain $\mathbf{k}_1 = [1/2\ 1/2\ 0]$ the coupling is antiferromagnetic (see Fig. 5) while it is ferromagnetic in domain $\mathbf{k}_2 = [1/2\ \bar{1}/2\ 0]$. Therefore the stacking sequence of (001) planes along the c -axis will not depend on the sign of the exchange interaction I' between nearest neighbouring planes.

The best fit ($R = 8\%$) between observed and calculated magnetic intensities (Table 3) indicates that the

antiferromagnetic direction is along the c -axis and gives a moment value $m_0 = 1.50 \pm 0.15 \mu_B$ at $T = 10\text{ K}$, close to the free ion value $g_J J = 2.14 \mu_B$. The intensities were calculated by using the form factor given by [10] and the Fermi lengths: $b_{\text{Ce}} = 0.482$, $b_{\text{Rh}} = 0.591$ and $b_{\text{Si}} = 0.415$. The thermal variation of the intensity of the first magnetic peak $[1/2\ 1/2\ 0]$, reported in Fig. 6(b), gives an ordering temperature $T_N = 36\text{ K}$.

4. DISCUSSION

The investigation of the magnetic ordering in CeRh_2Si_2 and TbRh_2Si_2 provides interesting information about the magnetic anisotropy and the exchange interactions in the $RR\text{h}_2\text{Si}_2$ ternary compounds.

The large value of the magnetic moment found in TbRh_2Si_2 indicates that the crystal field, of D_{4h} symmetry, acting on the Tb^{3+} ions must lead to a ground state with two very close singlets $1/\sqrt{2} (|6\rangle + |-6\rangle)$ and $1/\sqrt{2} (|6\rangle - |-6\rangle)$; then the magnetic moments are quenched along the c -axis giving rise to an Ising-like behaviour. However, in CeRh_2Si_2 a moment reduction exists which can be explained by a crystal field effect. Actually, a crystal field level scheme similar to that found in CeCu_2Si_2 [11] with a ground state doublet $|0\rangle = 0.9 |\pm 5/2\rangle + 0.18 |\mp 3/2\rangle$ explains quite well the observed moment value.

As far as the magnetic interactions are concerned, they are quite different in both compounds: in CeRh_2Si_2 the coupling is antiferromagnetic within (001) planes whereas it is ferromagnetic in TbRh_2Si_2 . Actually, a ferromagnetic planar coupling was found in almost all compounds crystallizing with the structure of ThCr_2Si_2 -type [12]. In the ternaries $RM_2\text{Si}_2$ or $RM_2\text{Ge}_2$ the $M = 3d$, $4d$ or $5d$ atoms are non-magnetic excepted with Mn [13] and the lanthanides or actinides order all with a ferromagnetic coupling in the (001) planes, but the coupling between planes has been found to be ferromagnetic ($\mathbf{k} = 0$), antiferromagnetic ($\mathbf{k} = [100]$), commensurate ($\mathbf{k} = [001/2]$) or incommensurate ($\mathbf{k} = [00k_z]$) [12].

The only exception is TbNi_2Si_2 [14] in which the in-plane coupling was found to be antiferromagnetic as in CeRh_2Si_2 .

Using a molecular field approximation, a simple analysis of the possible magnetic structures can be done in the structure of ThCr_2Si_2 -type because magnetic ions are located in a single body-centered tetragonal Bravais lattice. An antiferromagnetic structure being defined by a wave vector corresponding to a symmetry point of the Brillouin zone ($\mathbf{k} = \mathbf{H}/2$) [2], the body-centered tetragonal Bravais lattice with $c > a$, allows, in addition to the ferromagnetic order ($\mathbf{k} = 0$), only three types of antiferromagnetic structures: AFI with $\mathbf{k} = [001]$, AFII with $\mathbf{k} = [1/2\ 1/2\ 0]$ and AFIII with $\mathbf{k} = [1/2\ 0\ 1/2]$.

By considering the in-plane interactions (I_1, I_2, \dots) as stronger than the inter-plane ones (I', I'', \dots), the ordering within a (001) plane can be only ferro or antiferromagnetic if only two exchange integrals I_1 and I_2 are taken into account. Actually, three exchange integrals are needed to get an incommensurate or a commensurate order within a (001) plane. The order will be ferromagnetic ($\mathbf{k} = 0$) or antiferromagnetic ($\mathbf{k} = [1/2 1/2 0]$) according to $I_1 > 0$ or $I_1 < 0$, at least if I_2 has not too large a negative value; in that case ($|I_2| > |I_1|/2$), the wave vector will be $\mathbf{k} = [1/2 0 0]$. Actually the coupling between planes of *RKKY*-type is not weak, an estimation can be done easily, when the in-plane coupling is ferromagnetic, by comparing the values of T_N and θ_p . For TbRh_2Si_2 we get $T_N = 92$ K and $\theta_p = 43$ K indicating that the inter-plane coupling ($\theta_p - T_N$) is antiferromagnetic and of the same order of magnitude than the in-plane ferromagnetic coupling. Then, in the case of large inter-plane couplings, incommensurate structures can be stabilized in addition to the antiferromagnetic ones. It must be pointed out that the in-plane component of the wave vector will depend on both the in-plane (I_1, I_2) and inter-plane (I', I'') exchange integrals. Up to now only the incommensurate structure with a wave vector $\mathbf{k} = [00k_z]$ has been found in PrCo_2Ge_2 , UPd_2Si_2 and UPd_2Ge_2 , and a commensurate structure with $\mathbf{k} = [001/2]$ exists in UCu_2Ge_2 [12].

Coming back to the RRh_2Si_2 compounds, susceptibility measurements [2] have shown that they exhibit at low temperatures an antiferromagnetic order probably with a ferromagnetic in-plane coupling as, for all of them, θ_p has a large positive value like in TbRh_2Si_2 , in particular in NdRh_2Si_2 the following values $\theta_p = 27$ K and $T_N = 57$ K [2] have been measured. The only exception in the series would be CeRh_2Si_2 where θ_p has an unusually large negative value ($\theta_p = -61$ K), but in comparison a rather small value of the ordering temperature ($T_N = 36$ K). The explanation of this unexpected result is only due to a change of sign of the first nearest neighbour exchange integral I_1 which has a positive value for normal rare earths and a negative value in the case of cerium. Actually, the ferromagnetic ($\mathbf{k} = 0$) and the antiferromagnetic coupling with $\mathbf{k} = [1/2 1/2 0]$ are dual by changing the sign of I_1 . Moreover in this antiferromagnetic structure, imposed by the in-plane exchange integrals I_1 and I_2 , the nearest neighbouring exchange integral between (001) planes (I') is not involved to determine the stacking sequence of (001) planes while it has a large value. Actually, in CeRh_2Si_2 as in TbRh_2Si_2 , I' has a large negative value which explains the important difference between the values of T_N and θ_p . Then the large negative value of θ_p in CeRh_2Si_2 is the consequence that the main interactions are all antiferromagnetic ($I_1 < 0, I_2 < 0$ and $I' < 0$). A large negative value of θ_p has been

found also in CePd_2Si_2 ($\theta_p = -75$ K), CeAu_2Si_2 ($\theta_p = -12$ K) and CeAg_2Si_2 ($\theta_p = -15$ K) [15] while these compounds order antiferromagnetically below 10 K. Therefore, these cerium compounds may develop a magnetic order similar to that found in CeRh_2Si_2 , at least in CePd_2Si_2 .

In normal rare earth ternary compounds the magnetic coupling is of the *RKKY*-type and it is quite important in the RRh_2Si_2 series probably due to a high density of states at the Fermi energy. However, the sudden change of the sign of I_1 in CeRh_2Si_2 indicates that the interactions are not only of the *RKKY*-type in this compound, in particular the usual intra-atomic $4f$ - $5d$ exchange interaction is not the dominant mechanism. Actually, the dominant exchange interaction in CeRh_2Si_2 would be due to the large mixing between $4f$ and conduction electrons leading to a Kondo-like behaviour. Such a mixing process gives rise to anisotropic indirect interactions in which one part behave as *RKKY* ones [16] but the other part is always antiferromagnetic and decreases exponentially with the distance [17]. This latter contribution could explain the change of sign of I_1 . A more extensive study of the magnetic properties of CeRh_2Si_2 and similar compounds as CePd_2Si_2 would be interesting to confirm this idea.

REFERENCES

1. W. Rieger & E. Parthé, *Mh. Chem.* **100**, 444 (1969).
2. B. Chevalier, P. Lejay, J. Etourneau & P. Hagenmuller, *Mat. Res. Bull.* **18**, 315 (1983), and unpublished results.
3. F. Steglich, J. Aarts, C.B. Bredl, W. Lieke, D. Meschede, W. Franz & H. Schäfer, *Phys. Rev. Lett.* **43**, 1892 (1979).
4. E.R. Bauminger, D. Froindlich, I. Nowik, S. Ofer, I. Felner & I. Mayer, *Phys. Rev. Lett.* **30**, 1053 (1973).
5. R. Ballestracci, *C.R. Acad. Sci.* **282**, 291 (1976).
6. B. Bressel, B. Chevalier, J. Etourneau & P. Hagenmuller, *J. Cryst. Growth* **47**, 429 (1979).
7. C. Godart, L.C. Gupta & M.F. Ravet-Krill, *J. Less Common Metals* **94**, 187 (1983).
8. E. Roudaut, *Proc. Workshop on Position-Sensitive Detection of Thermal Neutron*, ILL-Grenoble (1982), to be published by Academic Press.
9. J. Rossat-Mignod, *Systematics and the Properties of the Lanthanides* (Edited by S.P. Sinha) p. 255. (1982).
10. A.J. Freeman & J.P. Desclaux, *J. Magn. Magn. Mat.* **12**, 11 (1979).
11. S. Horn, E. Holland-Moritz, M. Lovenhaupt, F. Steglich, H. Scheuer, A. Benoit & J. Flouquet, *Phys. rev. B* **23**, 3171 (1981).
12. J. Leciejewics, *Proc. IV Int. Conf. on Crystal Electric Field and Structural Effects in f-Electron-Systems* (Edited by R. Guertin, W. Suski & Z. Zolnierk), p. 279 Academic Press, New York (1982).

13. A. Szytula & S. Siek, *J. Magn Magn Mat.* **27**, 49 (1982).
14. V.N. Nguyen, F. Tchéou, J. Rossat-Mignod & R. Ballestracci, *Solid State Commun.* **45**, 209 (1983).
15. V. Murgai, S. Raaen, L.C. Gupta & R.D. Parks, *Valence Instabilities* (Edited by P. Wachter & H. Boppert) p. 537. (1982).
16. R. Siemann & B.R. Cooper, *Phys. Rev. Lett.* **44**, 1015 (1980); B.R. Cooper and R. Siemann, *Crystalline Electric Field and Structural Effects in f-Electron Systems* (Edited by I.E. Crow, R.P. Guertin & T.W. Mikalisin) p. 241. Plenum Press (1980).
17. C. Proetto & A. Lopez, *Phys. Rev. B* **24**, 3031 (1981).