

Accepted Manuscript

Collinear antiferromagnetic structure in R_2Ni_2In (R = Er, Tm)

S. Baran, A. Szytuła, A. Hoser

PII: S0925-8388(16)33979-2

DOI: [10.1016/j.jallcom.2016.12.072](https://doi.org/10.1016/j.jallcom.2016.12.072)

Reference: JALCOM 39994

To appear in: *Journal of Alloys and Compounds*

Received Date: 26 August 2016

Revised Date: 3 December 2016

Accepted Date: 5 December 2016

Please cite this article as: S. Baran, A. Szytuła, A. Hoser, Collinear antiferromagnetic structure in R_2Ni_2In (R = Er, Tm), *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2016.12.072.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Collinear antiferromagnetic structure in R_2Ni_2In ($R = Er, Tm$)

S. Baran^{a,*}, A. Szytuła^a, A. Hoser^b

^a*M. Smoluchowski Institute of Physics, Jagiellonian University, prof. Stanisława Łojasiewicza 11, PL-30 348 Kraków, Poland*

^b*Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Pl. 1, D-14 109 Berlin, Germany*

Abstract

R_2Ni_2In ($R = Er, Tm$) which crystallizes in the orthorhombic structure of the Mn_2AlB_2 -type was investigated by powder neutron diffractometry. At low temperatures the rare earth magnetic moments form an antiferromagnetic structure related to the propagation vector $\vec{k} = [\frac{1}{2}, 0, \frac{1}{2}]$. The magnetic moments are parallel to the b-axis and equal to $7.71(7) \mu_B$ and $5.76(4) \mu_B$ for Er and Tm, respectively. In order to verify validity of obtained magnetic structure model a symmetry analysis was performed.

Keywords:

intermetallics, rare earth alloys and compounds, neutron diffraction

1. Introduction

The compounds belonging to the R-Ni-In system (R – rare earth element) take two different crystal structure variants with stoichiometry close to 2:2:1:

- an orthorhombic one of the Mn_2AlB_2 -type (space group $Cmmm$), found in the stoichiometric composition R_2Ni_2In ($R = Y, Sm, Gd-Tm, Lu$) [1, 2],
- a tetragonal one of the Mo_2FeB_2 -type (space group $P4/mbm$) found in both stoichiometric composition R_2Ni_2In ($R = La, Ce-Nd$) and nonstoichiometric one $R_2Ni_{2-x}In$ ($x = 0.22, R = Y, Sm, Gd-Tm, Lu$) [2].

Studies of physical properties of R_2Ni_2In reveal that Ce_2Ni_2In is a non-magnetic intermediate-valence system [3, 4] while Nd_2Ni_2In orders antiferromagnetically below 8 K [5]. Recent paper on magnetic and thermodynamic properties of R_2Ni_2In ($R = Gd-Tm$) reports antiferromagnetic ordering in all these compounds [6]. The critical temperatures of magnetic order vary between approximately 5 K (Tm) and 40 K (Tb). In case of R_2Ni_2In ($R = Er$ and Tm), which are reported in this work, the Néel temperature depends slightly on the experimental method used and is equal to 7.2 K (χ_{ac}), 6.5 K (χ_{dc}) or 5.4 K (C_p – heat capacity) for Er_2Ni_2In while for Tm_2Ni_2In is equal to 5.0 K (χ_{ac}), 4.8 K (χ_{dc}) or 4.0 K (C_p). It is worth noting that for Tm_2Ni_2In additional anomalies were observed at 3.3 K (χ_{ac}) and 2.6 K (χ_{dc}). The values of effective magnetic moments suggest that Ni atoms do not carry magnetic moments. Neutron diffraction data indicate existence of antiferromagnetic structure in Tb_2Ni_2In [7]. The structure is related to the propagation vector $\vec{k} = [\frac{1}{2}, 0, \frac{1}{2}]$ and the terbium magnetic moments are parallel to the c-axis.

The nonstoichiometric $R_2Ni_{2-x}In$ ($R = Gd-Er$) compounds have also been found to order antiferromagnetically with the Néel temperatures ranging from 6.3 K (Er) up to 23.9 K (Tb) [8]. It is worth noting that the Néel temperature of nonstoichiometric compound is smaller than the one of respective stoichiometric compound.

In this work, the magnetic structures of R_2Ni_2In ($R = Er, Tm$) are reported for the first time. The structures have been derived from neutron powder diffraction data. In addition, a symmetry analysis of allowed magnetic structures is presented.

2. Experimental details

Polycrystalline samples of R_2Ni_2In ($R = Er, Tm$) were obtained by arc melting of constituent elements (purity 99.9 wt % or better) under argon atmosphere. The obtained ingots were encapsulated in evacuated silica tubes and annealed at 870 K for 1 month. The sample quality was checked by X-Ray powder diffraction at room temperature (PANalytical X'PERT diffractometer with $CuK\alpha$ -radiation).

Powder neutron diffraction patterns were collected at low temperature (1.5 K or 1.6 K) and at the paramagnetic state (approximately 10 K) on the E6 diffractometer at Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The incident neutron wavelength was 2.432 Å.

For Rietveld analysis of X-ray and neutron diffractograms the computer program *FullProf* was utilized [9] while for symmetry analysis the computer program *basireps*, which is distributed together with *FullProf*, was used.

3. Crystal structure

The X-ray and neutron diffraction data confirm that the samples crystalize in the orthorhombic crystal structure of the

*Corresponding author.
stanislaw.baran@uj.edu.pl

Phone: (+48 12) 6644686; e-mail:

61 Mn₂AlB₂-type (space group *Cmmm*), in agreement with pre- 93
 62 viously published reports [1, 2, 6]. The structure is shown in 94
 63 Fig. 1.

64 In R₂Ni₂In (R = Er, Tm), the atoms occupy the following 95
 65 Wyckoff sites (centering translation [$\frac{1}{2}, \frac{1}{2}, 0$] is skipped): 96

66 R at 4*j*: 0, y_R , $\frac{1}{2}$ 0, 1 - y_R , $\frac{1}{2}$ 97

67 Ni at 4*i*: 0, y_{Ni} , 0 0, 1 - y_{Ni} , 0 98

68 In at 2*a*: 0, 0, 0 99

70 In case of the rare earth atoms, which carry magnetic moments, 100
 71 the local symmetry is *m2m*. While taking into account distances 101
 72 not exceeding 3.5 Å, each rare earth atom is surrounded by non- 102
 73 magnetic elements, namely: 6 Ni atoms and 4 In atoms. 103

74 The Er₂Ni₂In sample was found to be single-phased while 103
 75 the Tm₂Ni₂In one contained small amounts of the TmNi₂ [10] 104
 76 (5.9 wt %) and Tm₂Ni_{1.78}In [2] (4.8 wt %) impurity phases. 105

77 The paramagnetic neutron powder diffractogram of 106
 78 Er₂Ni₂In, taken at 10.1 K, together with its best Rietveld fit is 107
 79 shown in Fig. 2. The refined crystal structure parameters for 108
 80 both Er₂Ni₂In and Tm₂Ni₂In are listed in Table 1.

Table 1: Crystal structure parameters of R₂Ni₂In (R = Er and Tm) as refined from neutron diffraction data collected at 10.1 K (Er) and 10.2 K (Tm) together with corresponding reliability factors.

Compound	Er ₂ Ni ₂ In	Tm ₂ Ni ₂ In
Crystal structure	Mn ₂ AlB ₂ -type	
Space group	<i>Cmmm</i>	(No. 65)
a [Å]	3.853(1)	3.852(1)
b [Å]	13.970(3)	13.965(4)
c [Å]	3.606(1)	3.603(1)
V [Å ³]	194.12(6)	193.82(6)
y_R	0.364(1)	0.364(1)
y_{Ni}	0.198(1)	0.197(1)
R _{profile} [%]	2.05	2.39
R _{Bragg} [%]	6.08	6.09
χ^2 [%]	4.72	1.23

4. Magnetic structure

78 The neutron diffraction patterns, collected at 1.6 K₁₁₉
 79 (Er₂Ni₂In) and 1.5 K (Tm₂Ni₂In), show presence of Bragg re-₁₂₀
 80 reflections of magnetic origin which can be indexed with a prop-₁₂₁
 81 agation vector \vec{k} = [$\frac{1}{2}, 0, \frac{1}{2}$]. In order to extract pure magnetic₁₂₂
 82 contribution, a set of differential diffraction patterns was cal-₁₂₃
 83 culated by subtracting the paramagnetic data from the patterns₁₂₄
 84 taken at lower temperatures. Fig. 3 shows such a differential₁₂₅
 85 pattern obtained for Tm₂Ni₂In. The so-derived data were used₁₂₆
 86 for the Rietveld-type analysis. The scale factor used while refin-₁₂₇
 87 ing magnetic phase was the one found previously for the para-₁₂₈
 88 magnetic pattern of the respective compound. 129

89 In order to find magnetic structure models allowed by sym-₁₃₀
 90 metry, a symmetry analysis has been performed. In this ap-₁₃₁
 91 proach the magnetic structure is determined by the basis vectors₁₃₂

of one irreducible representation of the magnetic group, which is formed by the propagation vector and the space group.

In R₂Ni₂In (R = Er, Tm), the rare earth atoms occupy the 4*j* Wyckoff site with atoms at:

R₁₁ at 0, y_R , $\frac{1}{2}$

R₂₁ at 0, 1 - y_R , $\frac{1}{2}$

and two remaining ones related to the [$\frac{1}{2}, \frac{1}{2}, 0$] centering translation:

R₁₂ at $\frac{1}{2}, \frac{1}{2} + y_R$, $\frac{1}{2}$

R₂₂ at $\frac{1}{2}, \frac{1}{2} - y_R$, $\frac{1}{2}$

In the case of the *Cmmm* space group, the propagation vector \vec{k} = [$\frac{1}{2}, 0, \frac{1}{2}$] forms a star together with \vec{k}' = [- $\frac{1}{2}, 0, \frac{1}{2}$] while all the rare earth atoms at 4*j* site belong to the same orbit. The symmetry analysis gives four one-dimensional irreducible representations τ_1, \dots, τ_4 where τ_1 and τ_3 appear twice while τ_2 and τ_4 appear once (the labeling of representations and basis vectors follows the output of *basireps*). The list of basis vectors is presented in Table 2.

Table 2: Basis vectors of τ_1, \dots, τ_4 as listed for the rare earth atoms R₁₁ and R₂₁. The vectors for the remaining R₁₂ and R₂₂ atoms can be easily calculted by multiplying the below listed vectors by a factor of $\exp(-2\pi i \vec{k} \cdot \vec{\Delta r})$, where $\vec{\Delta r}$ corresponds to the difference in position vectors.

atom	R ₁₁	R ₂₁
τ_1	[1, 0, 0]	[-1, 0, 0]
	[0, 1, 0]	[0, 1, 0]
τ_2	[0, 0, 1]	[0, 0, 1]
τ_3	[1, 0, 0]	[1, 0, 0]
	[0, 1, 0]	[0, -1, 0]
τ_4	[0, 0, 1]	[0, 0, -1]

The Rietveld refinement of the neutron diffraction patterns, collected at 1.6 K (Er₂Ni₂In) and 1.5 K (Tm₂Ni₂In), unambiguously favors the magnetic structure related to τ_1 . The magnetic structure can be written as [u, v, 0] and [-u, v, 0] for the R₁₁ and R₂₁ atoms, respectively, where u and v parameters (they can be complex numbers, in general) have to be refined from experimental data. The refinement leads to u = 0 and v being a real number. Such a structure can be interpreted as a collinear one with all magnetic moments of the same magnitude being parallel to the b-axis, as shown in Fig. 4. All rare earth magnetic moments are coupled ferromagnetically within one crystallographic unit cell while the adjacent cells are coupled antiferromagnetically along the [100] or [001] directions. The refined parameters of the magnetic structures in R₂Ni₂In (R = Er and Tm) are listed in Table 3. The corresponding magnetic space group is *A_bmm2* (#38.193 in the Belov-Neronova-Smirnova notation) or *P_Amm2* (#25.8.162 in the Opechowski-Guccione notation). While determining the magnetic space group the symmetry-based computational tools for magnetic crystallography were used [11].

It is worth noting that all Bragg reflections of magnetic origin, present in the differential neutron diffraction pattern of Tm₂Ni₂In (see Fig. 3), are well fitted with the proposed magnetic structure model and no magnetic contribution arising from

Table 3: Magnetic structure parameters of R_2Ni_2In ($R = Er$ and Tm), refined from the neutron diffraction data, collected at 1.6 K (Er_2Ni_2In) and 1.5 K (Tm_2Ni_2In), together with corresponding reliability factors. \vec{k} denotes propagation vector, μ – magnetic moment on R^{+3} while DMM - direction of magnetic moment.

Compound	Er_2Ni_2In	Tm_2Ni_2In
T [K]	1.6	1.5
\vec{k}	$[\frac{1}{2}, 0, \frac{1}{2}]$	$[\frac{1}{2}, 0, \frac{1}{2}]$
$\mu [\mu_B]$	7.71(7)	5.76(4)
DMM	[010]	[010]
$R_{profile} [\%]$	2.30	2.58
$R_{magnetic} [\%]$	5.64	3.56
$\chi^2 [\%]$	6.55	1.29

133 the impurity phases mentioned in the section *Crystal structure*¹⁸⁷
 134 are detectable.

135 5. Conclusions and Discussion

136 Neutron diffraction experiment confirms that the R_2Ni_2In ¹⁹⁴
 137 ($R = Er$ and Tm) intermetallics crystallize in the orthorhombic¹⁹⁵
 138 Mn_2AlB_2 -type structure (space group $Cmmm$, No. 65) with all¹⁹⁶
 139 rare earth atoms occupying the same $4j$ Wyckoff position. The¹⁹⁷
 140 structure is highly anisotropic – the b -axis is more than four¹⁹⁸
 141 times longer than two remaining ones (see Fig. 1). As a result,¹⁹⁹
 142 a natural multilayer structure is formed. The structure consists²⁰⁰
 143 of stacked a - c planes containing different elements in sequence²⁰¹
 144 $In-R-Ni-R-In-R-Ni-R-In$. Such a structure should lead to highly²⁰²
 145 anisotropic physical properties.²⁰³

146 The low temperature neutron diffraction data confirm antiferromagnetic²⁰⁴
 147 ordering at low temperatures suggested in the previous²⁰⁵
 148 report [6]. The positions of Bragg reflections of magnetic²⁰⁶
 149 origin correspond to the propagation vector $\vec{k} = [\frac{1}{2}, 0, \frac{1}{2}]$. Rietveld²⁰⁷
 150 refinement together with symmetry analysis led to the²⁰⁸
 151 magnetic structure model with all rare earth magnetic moments²⁰⁹
 152 of the same magnitude being parallel to the b -axis. However, in²¹⁰
 153 Tb_2Ni_2In the rare earth moments are parallel to the c -axis [7].²¹¹
 154 In the isostructural R_2Ni_2Pb ($R = Dy, Ho, Er$) compounds the²¹²
 155 magnetic moments point at different crystallographic directions²¹³
 156 depending on the rare earth element considered, namely: they²¹⁴
 157 are confined to the a - c plane (Dy) [12], parallel to the c -axis²¹⁵
 158 (Ho) [13] or parallel to the b -axis with possible small a -axis²¹⁶
 159 component (Er) [14]. Such a result suggest a strong influence of²¹⁷
 160 crystalline electric field (CEF). Another evidence of the CEF influence²¹⁸
 161 is a reduction of rare earth magnetic moments. The moments²¹⁹
 162 found at low temperatures [1.6 K (Er_2Ni_2In) and 1.5 K²²⁰
 163 (Tm_2Ni_2In)] from neutron diffraction data equal 7.71(7) μ_B (Er)²²¹
 164 and 5.76(4) μ_B (Tm) and are significantly lower than the respective²²²
 165 free R^{+3} ion values [9.0 μ_B (Er) and 7.0 μ_B (Tm)]. The²²³
 166 reduction of magnetic moments was also observed in the previously²²⁴
 167 reported magnetometric measurements [6].

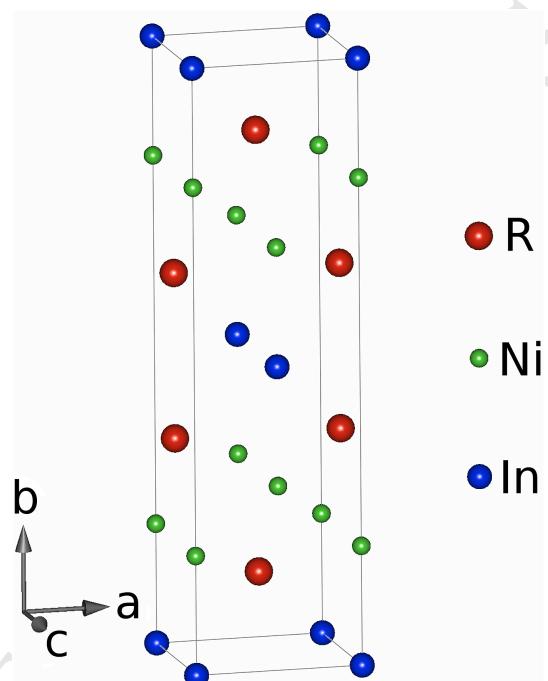
168 The results presented in this work suggest no magnetic moment²²⁵
 169 on the Ni atoms. The same conclusion comes from magnetometric²²⁶
 170 measurements [6]. Such a result was also obtained²²⁷
 171 from ab initio calculations for U_2Ni_2X ($X = In, Sn$) [15, 16].

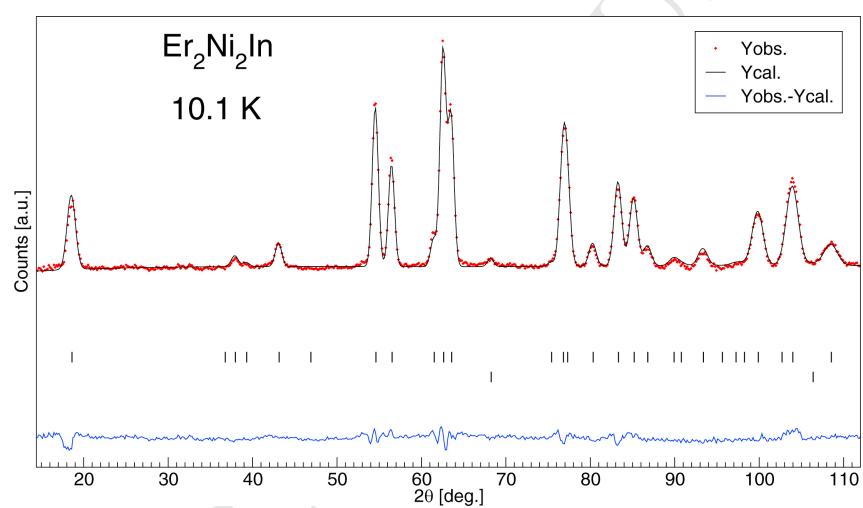
Acknowledgements

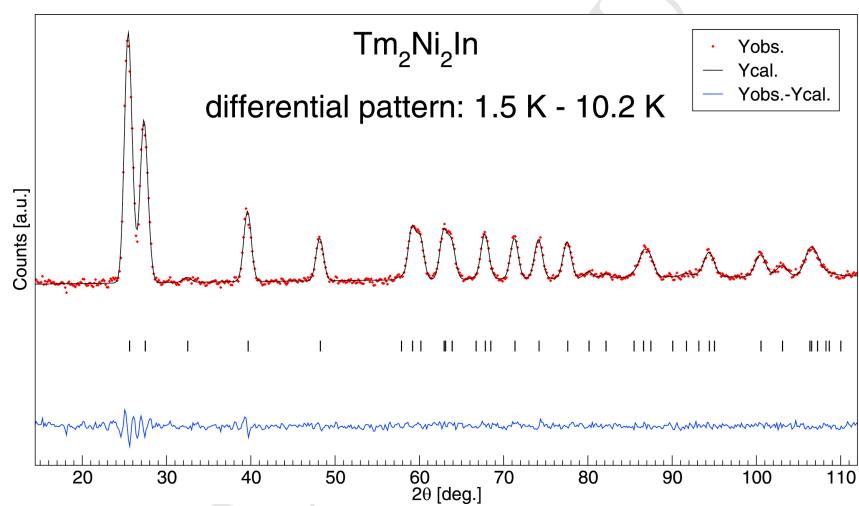
The authors would like to thank Prof. Wiesława Sikora from the AGH University of Science and Technology in Kraków for help in determination of the magnetic space group and Dr Yuriy Tyvanchuk from the Ivan Franko National University of Lviv for the preparation of samples.

This research project has been supported by the European Commission under the 7th Framework Programme through the 'Research Infrastructure' action of the 'Capacities' Programme, NMI3-II Grant number 283883.

- [1] V.I. Zaremba, V.A. Bruskov, P.Yu. Zavalii, Ya.M. Kalychak, Inorg. Mater. 24 (1988) 409-411
- [2] Ya.M. Kalychak, V.I. Zaremba, V.M. Baranyak, P.Yu. Zavalii, V.A. Bruskov, L.V. Sysa, O.V. Dmytrakh, Inorg. Mater. 26 (1990) 94-96
- [3] R. Hauser, H. Michor, E. Bauer, G. Hilscher, D. Kaczorowski, Physica B: Condensed Matter 230–232 (1997) 211-213
- [4] D. Kaczorowski, P. Rogl, K. Hiebl, Phys. Rev. B 54 (1996) 9891-9902
- [5] S. Maskova, S. Danis, A. Llobet, H. Nakotte, L. Havela, Acta Physica Polonica A 126 (2014) 282-283
- [6] A. Szytuła, S. Baran, J. Przewoźnik, Yu. Tyvanchuk, Ya. Kalychak, J. Magn. Magn. Mater. 387 (2015) 83–89
- [7] A. Szytuła, S. Baran, A. Hoser, Ya.M. Kalychak, B. Penc, Yu. Tyvanchuk, Acta Physica Polonica A 124 (2013) 994-997
- [8] Yu. Tyvanchuk, S. Baran, T. Jaworska-Gołęb, R. Duraj, Ya.M. Kalychak, A. Szytuła, Acta Physica Polonica A 121 (2012) 678-681
- [9] J. Rodriguez-Carvajal, Physica B 192 (1993) 55-69
- [10] A. Iandelli, A. Palenzona, in: *Handbook on the Physics and Chemistry of Rare Earths*, edited by K.A. Gschneidner Jr. and L. Eyring, Vol. 2 (1979) ch. 13 pp. 1-54, North-Holland Publishing Company
- [11] J.M. Perez-Mato, S.V. Gallego, E.S. Tasci, L. Elcoro, G. de la Flor, M.I. Aroyo, Annu. Rev. Mater. Res. 45 (2015) 217-248
- [12] K. Prokeš, E. Muñoz-Sandoval, A.D. Chinchure, J.A. Mydosh, Phys. Rev. B 63 (2003) 134427
- [13] K. Prokeš, E. Muñoz-Sandoval, A.D. Chinchure, J.A. Mydosh, Eur. Phys. J. B 43 (2005) 163-174
- [14] K. Prokeš, E. Muñoz-Sandoval, A.D. Chinchure, J.A. Mydosh, Phys. Rev. B 78 (2008) 014425
- [15] M. Diviš, M. Olšovec, M. Richter, H. Eschrig, J. Magn. Magn. Mater. 140-144 (1995) 1365-1366
- [16] S.F. Matar, J. Magn. Magn. Mater. 151 (1995) 263-272


Figure captions


Figure 1: Crystal structure of R_2Ni_2In ($R = Er, Tm$). It is orthorhombic of the Mn_2AlB_2 -type.


Figure 2: Neutron diffraction pattern of Er_2Ni_2In collected at 10.1 K (paramagnetic state), together with its Rietveld fit and the difference plot. The upper row of vertical ticks indicates positions of Bragg reflections originating from Er_2Ni_2In while the bottom row refers those arising from vanadium sample container.

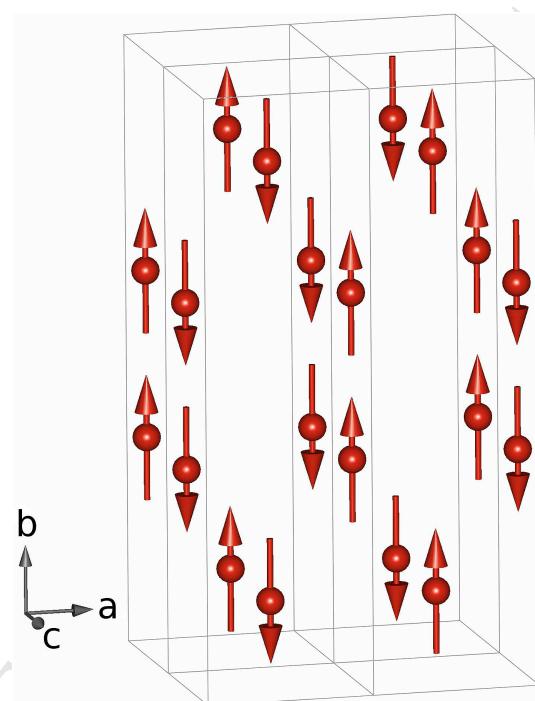

Figure 3: Differential neutron diffraction pattern of Tm_2Ni_2In constructed as a difference between the experimental data collected at 1.5 K and 10.2 K. The solid line represents the Rietveld fit. The difference plot is shown in the bottom. The vertical ticks indicate positions of Bragg reflections originating from antiferromagnetic structure formed by the rare earth magnetic moments, as described in the section *Magnetic structure*.

Figure 4: Magnetic unit cell in R_2Ni_2In ($R = Er, Tm$). It is doubled along the [100] and [001] directions when compared with the crystallographic one.

Highlights

- 1) magnetic structure in R_2Ni_2In ($R = Er, Tm$) is reported for the first time
- 2) the structure is related to the propagation vector $k = [1/2, 0, 1/2]$
- 3) validity of the proposed structure model is verified by symmetry analysis