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Magnetic order and low-energy excitations in the quasi-one-dimensional antiferromagnet
CuSe2O5 with staggered fields
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Ground-state and low-energy excitations of the quasi-one-dimensional antiferromagnet CuSe2O5 where finite
interchain interactions promote long-range antiferromagnetic order below TN = 17 K, were experimentally
studied using bulk magnetization, neutron diffraction, muon spin relaxation, and antiferromagnetic resonance
measurements. The derived spin-canted structure is characterized by the magnetic propagation vector k = (1,0,0)
and the reduced magnetic moment m = [0.13(7),0.50(1),0.00(8)]μB . The values of the magnetic anisotropies
determined from the field and angular dependencies of the antiferromagnetic resonance comply well with a
previous electron paramagnetic resonance study and correctly account for the observed magnetic ground state
and spin-flop transition.
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I. INTRODUCTION

Experimentally obtained in-depth information about the
magnetic properties of one-dimensional (1D) quantum spin
systems is important for testing predictions of ground states
and low-energy excitations in advanced quantum-mechanical
theories. A much studied representative of these systems is
the spin S = 1/2 1D Heisenberg antiferromagnet (1D HAF)
described by the simple isotropic Heisenberg Hamiltonian

H = J
∑

i

Si · Si+1, (1)

where i is the site index in the chain and J is the intrachain
exchange coupling between the spins. The ground state of
the S = 1/2 1D HAF is a Tomonaga-Luttinger liquid (TLL)
and the excitations are free spinons which carry spin 1/2
and can be created only in pairs.1 The excitation spectrum
of the S = 1/2 1D HAF differs from a dispersion predicted
by the classical spin-wave theory and is characterized by
a continuum in the energy-momentum space,2 which was
observed experimentally in several 1D spin systems.3–6 In real
materials a finite interchain interaction, JIC, always exists, and
can lead to long-range order (LRO) below a finite temperature
TN . When JIC is small compared to J , a system is called quasi-
one-dimensional (quasi-1D). In the ordered state at T < TN ,
the excitation spectrum of these systems at low energies is
usually described by a spin-wave theory, as for an ordinary
3D antiferromagnet. At higher energies, however, where the
chains start to decouple, a continuous excitation spectrum
typical for a 1D system was observed.6–11 A crossover regime
from 3D LRO to 1D TLL thus exists in these systems.8

When the crystal symmetry of quasi-1D spin systems is
sufficiently low, a staggered g tensor and/or a Dzyaloshinskii-

Moriya interaction (DMI)12 can be present. The combined ac-
tion of a staggered g tensor and DMI leads to a staggered field
in a finite applied field, opening a gap in the excitation spectrum
of the quasi-1D chain. In the antiferromagnetic (AFM) ordered
state, both may lead to a noncollinear staggering of the ordered
moments.5,13,14 The problem of weakly coupled S = 1/2 HAF
chains in a staggered magnetic field is still not sufficiently
understood.15,16 For instance, if a staggered g tensor and
DMI are present, the staggered field can compete with the
arrangement of spins favored by the interchain interaction.15,16

The magnetic arrangement, resulting from such a competition,
was recently studied by nuclear magnetic resonance (NMR)
in BaCu2Si2O7 where the presence of staggered fields was
argued to cause unusual spin reorientations.17

CuSe2O5 is a novel Cu2+ (S = 1/2) quasi-1D HAF, which
crystallizes in a monoclinic unit cell that belongs to the C2/c

space group (Fig. 1).18 The alternating CuO4 plaquettes form
chains running along the c crystallographic axis. The 1D nature
of this system was argued from the temperature dependence of
the magnetic susceptibility which was satisfactorily described
by the Bonner-Fisher curve19 for S = 1/2 and J/kB =
157 K.20 Band-structure calculations lead to similar J/kB =
165 K and reveal that the intrachain interaction is realized
through a double Cu-O-Se-O-Cu path (upper panel in Fig. 1)
with only one dominant interchain coupling of JIC/kB = 20 K,
shown in the lower panel of Fig. 1 by dashed red (dark) lines.20

Raman scattering measurements indicated that the spin-spin
correlations set in below T ≈ 100 K,21 which coincides with
the maximum in the magnetic susceptibility. Contrary to what
is expected for a quasi-1D HAF, the temperature dependence of
the magnetic specific heat extracted from the Raman scattering
intensity exhibits no maximum, implying the presence of
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FIG. 1. (Color online) Crystal structure of CuSe2O5. The lower
panel shows the dominant interaction paths. The solid line represents
the intrachain interaction J , the red (dark) dashed line represents the
dominant interchain interaction JIC, and the green (light) dashed line
represents the weak interchain interaction JIC,weak � 0.1JIC according
to Ref. 20.

classical spin dynamics originating from the moderate inter-
chain interactions.21 On the other hand, the recent analysis of
the electron spin resonance (ESR) linewidth in the paramag-
netic state suggests that at temperatures T � JIC/kB , CuSe2O5

essentially behaves like a 1D antiferromagnet.22

The low crystal symmetry and the alternating arrangement
of CuO4 plaquettes (Fig. 1) allow for a staggered g tensor and
DMI with a DM vector confined in the a∗c plane.12 The early
ESR study22 indeed confirmed the presence of staggered fields
and suggested an additional symmetric anisotropic interac-
tion. Bulk magnetic-susceptibility-anisotropy measurements
showed significant deviation from the 1D HAF model, which
was successfully explained22 by the extension of S = 1/2 1D
HAF to include staggered fields.14 At TN = 17 K, CuSe2O5

undergoes a phase transition to a LRO magnetic state20,22 with
an as yet unknown magnetic structure. An important question
that arises from these observations is how the coexistence of the
staggered field and the symmetric anisotropic exchange affects
the magnetic LRO in the presence of JIC. We thus decided
to perform a detailed experimental study of the magnetically
ordered state of CuSe2O5 by employing bulk magnetic
measurements, neutron diffraction, muon spin relaxation, and
antiferromagnetic resonance measurements.

II. EXPERIMENTAL DETAILS

The single-crystalline CuSe2O5 samples were synthesized
by a standard chemical vapor transport method, as de-
scribed previously, and characterized by x-ray diffraction.18

The samples had a platelet shape, elongated along the

crystallographic c axis and with the a∗ axis perpendicular to
the platelet.

The dc magnetic measurements were performed with a
Quantum Design SQUID magnetometer in static magnetic
fields ranging from 1 to 50 kOe in the temperature interval
between 2 and 300 K. The measurements were performed with
the magnetic field applied along the crystallographic a∗, b, and
c axes. The mass of the sample was (2.9 ± 0.2) mg. Magnetic
torque measurements were performed on a home-built torque
magnetometer at 4.2 K in magnetic fields up to 8 kOe.

Neutron diffraction on a single crystal was performed on
the TriCS instrument at SINQ, Switzerland, with neutron
wavelength λ = 2.316 Å. The mass of the crystal was around
10 mg. The single crystal was mounted in a CCR cooling
device at a four-circle cradle. The data sets were collected at 6
and 20 K. Neutron diffraction in magnetic field was measured
on the same crystal oriented with the b axis vertical in the
Oxford vertical cryomagnet.

The muon spin relaxation (μSR) experiments were con-
ducted on the General Purpose Surface-Muon (GPS) instru-
ment at the Swiss Muon Source (SμS), Paul Scherrer Institute
(PSI), Switzerland, in the temperature range between 1.8
and 25 K in zero applied magnetic field. Measurements on
powders (500 mg) were performed in a longitudinal muon
polarization mode—muon spins were polarized almost parallel
(α ∼ 10◦) to the beam (z) direction. Measurements on a single
crystal (10 × 4 × 0.5 mm3) were conducted in a transverse
muon polarization mode—the muon polarization was rotated
from the z direction by α ∼ π/4 toward the y direction. The
asymmetry of detected positrons, emitted after muon decays,
was measured with two sets of detectors: in the backward-
forward (z) direction and in the up-down (y) direction. The
initial asymmetry and the tilt angle α of the initial muon
polarization were calibrated for each experiment at 25 K, i.e.,
well above the ordering temperature TN = 17 K, in the weak
transverse magnetic field of 30 Oe applied in the x direction.
Measurements were performed in veto mode, leading to a
negligible background signal in the case of the powder sample
due to its large mass. The background signal, however, could
not be avoided in the case of the single crystal due to the small
thickness of the sample.

The antiferromagnetic resonance (AFMR) measurements
were performed on single-crystalline samples at T = 5 K.
Measurements in X- (9.7 GHz) and in Q- (35 GHz) band
were performed on a commercial Bruker E580 spectrometer
at the Jožef Stefan Institute in Ljubljana. AFMR measurements
at frequencies from 50 to 450 GHz were performed using a
custom-made transmission-type spectrometer at the National
High Magnetic Field Laboratory (NHMFL) in Tallahassee,
FL.23

III. RESULTS

A. Magnetization measurements

The temperature dependence of dc magnetic susceptibility
(χ = M/H , where M is the sample magnetization) measured
in H = 10 kOe applied along the a∗, b, and c axes is shown
in Fig. 2(a). In the paramagnetic state, the measured data
can be described by the S = 1/2 1D HAF model19 with
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FIG. 2. (Color online) (a) Temperature dependence of magnetic
susceptibility measured in the field H = 10 kOe applied along the
a∗, b, and c axes. Solid lines represent fits to the S = 1/2 1D
HAF model with J = 156 K, while the dashed line also includes
staggered susceptibility (see the text). An error bar resulting from
the uncertainty in the mass of the sample is shown on the side. The
vertical line represents TN = 17 K. Inset: expanded region around
TN showing the disagreement between the experimental data (red
circles) and the model (dashed line) for c||H . (b) Field dependence
of magnetization at T = 4.2 K. Solid lines represent the results of
calculations rescaled to match the observed values (see Sec. III D).

J/kB = 156 K if the g-factor values measured by ESR22

(ga∗ = 2.064, gb = 2.140, and gc = 2.226) are taken into
account [solid lines in Fig. 2(a)]. We stress, however, that
for the c direction a disagreement with the model starts
already below T ≈ Tmax, i.e., far above the transition to the
magnetic LRO state. The presence of the staggered DMI
and the staggered g tensor leads to a finite staggered field
h proportional to the applied field, hi = cs,iH (i = a∗,b,c),14

which results in the anisotropic staggered susceptibility for
T < J/kB , χs,i ∝ c2

s,i .
14 The temperature dependence of the

staggered susceptibility is reflected in the Curie-like term χ ∝
1/T , which strongly varies with the direction of the magnetic
field, as has been, for instance, observed for the 1D S = 1/2
system [PMCu(NO3)2(H2O)2]n (PM = pyrimidine).24 Indeed,
the measured magnetic susceptibility χc can be satisfactorily
described if the staggered susceptibility with coefficient cs,c =
0.17 is added to the 1D HAF model [dashed line in Fig. 2(a)],
in rather good agreement with the previous anisotropy results,
cs = 0.13.22 For the a∗ and b directions, the data are well

described by the 1D HAF model combined with staggered
susceptibility using the previously obtained ca∗ and cb [see
Fig. 2(a)]. Below ≈22 K there is a disagreement between
the data and the model even if the staggered susceptibility is
included [inset in Fig. 2(a)]. This was also observed in previous
anisotropy measurement; however, no satisfactory explanation
for this behavior can be given at the moment.

On cooling below TN , χ measured along the b axis
decreases and saturates at the value of 9 × 10−5 emu/mol
below 4 K, while χa∗ and χc increase slightly. This suggests
an almost collinear spin arrangement with the b axis as the
easy axis, which is in agreement with the magnetization
measurements at 4.2 K, shown in Fig. 2(b), where a spin-flop
(SF) transition is observed for the field HSF ≈ 13 kOe applied
along the b axis. In contrast, the magnetization changes linearly
with field for a∗ and c directions up to the highest applied field
of 50 kOe.

B. Neutron diffraction measurements

Neutron diffraction is a powerful tool for determining
the magnetic order. Therefore, we have employed it to
determine the magnetic structure of CuSe2O5 more precisely.
A refinement of the crystal structure at 6 K confirms the
room-temperature structural model published previously18

with the cell parameters: a = 12.30(2) Å, b = 4.89(2) Å,
c = 7.88(1) Å, and β = 112.24(15)◦. Below TN = 17 K, new
reflections of magnetic origin appear. These correspond to the
magnetic propagation vector k = (1,0,0) and are summarized
in Table V given in Appendix A.

To determine the magnetic structure, we start with a repre-
sentation analysis using the BASIREPS program.25 The magnetic
moment in CuSe2O5 originates from the Cu2+ ions at the 4a

Wyckoff site. The two possible irreducible representations,
which connect the Cu sites related by a twofold screw axis, are
given in Table I. The best agreement with the experimental
data is obtained for the irreducible representation �3 with
χ2 = 5.03 and RF 2 = 21.6. The other possible representation
�1 can be discarded due to much poorer agreement with the
experimental data, χ2 = 21.1 and RF 2 = 43.3. The agreement
between the observed and calculated intensities for those two
models is shown in Fig. 3.

The components of the magnetic moment were obtained
from the data refinement using the FULLPROF program.26 The
magnetic moment of the Cu2+ ion at the crystallographic
position (0,0,0) in the crystallographic (abc) coordinate
system is m = (ma,mb,mc) = [0.13(7),0.50(1),0.00(8)]μB .
The value of the magnetic moment |m| = 0.52(2)μB is thus
significantly smaller than the full magnetic moment of 1μB

for S = 1/2. The refined magnetic structure is shown in
Fig. 4. The magnetic moments on a chain at the positions

TABLE I. Irreducible representations �1 and �3 of the little
group for k = (1,0,0) in the space group C2/c.

�1 �3

x, y, z (u,v,w) u,v,w

−x, y, −z + 1/2 (−u,v,w) (u,−v,w)
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FIG. 3. Agreement of calculated and observed intensities of
magnetic reflections for models (a) �1 and (b) �3 (see text).

(0,0,0) and
(
0,0, 1

2

)
possess different b components in the

representation �3, but equal a components, which results in
finite magnetization on each chain. On the other hand, the
magnetic moments at the positions ( 1

2 , 1
2 ,0) and ( 1

2 , 1
2 , 1

2 ) on
the neighboring chain have the same symmetry as the first
two, but are antiferromagnetically coupled to them so the total
magnetic moment in the unit cell is zero.

Finally, we have measured two magnetic reflections in the
magnetic field H = 40 kOe applied along the b axis to test
the magnetic structure above the SF field. The comparison of
the integrated intensities for these reflections in zero field and

b

ac

FIG. 4. (Color online) Proposed zero-field magnetic structure in
the ordered state of CuSe2O5 obtained from neutron diffraction.

TABLE II. Integrated intensities of magnetic reflections in H =
0 and 40 kOe for (101̄) and (1̄01̄) reflections.

h k l (101̄) (1̄01̄)

H = 0 Oe 229 ± 10 117 ± 8
H = 40 kOe 169 ± 12 37 ± 7

H = 40 kOe is given in Table II. Although only two reflections
were measured, information about the orientation of spins
can be extracted. The best agreement between calculated and
observed intensities is found for �1 and m = (ma∗ ,mb,mc) ≈
(0.46,0,0.05)μB . An almost orthogonal orientation of the
spins in this field with respect to zero field is expected, since
the spin-flop transition was observed at HSF ≈ 13 kOe.

C. Muon spin relaxation

For independent proof of the refined magnetic structure,
a complementary local-probe technique was used. μSR is
a highly powerful method for detecting magnetism on a
microscopic level.27 The almost 100% spin-polarized muons
that stop in a sample probe the local magnetic field Bμ,
which leads to coherent oscillations of the muon polarization
for a static field and a monotonic decay of polarization
for fast fluctuations of the field. In the case of a single
quasistatic magnetic field, the muon polarization along the
initial polarization will change in powder samples as27

P z
pwd(t,Bμ,λL,λT ) = 1

3e−λLt + 2
3e−λT tcos(γμBμt), (2)

where longitudinal muon relaxation λL and transverse relax-
ation λT are taken into account (γμ = 85.16 kHz/G is the muon
gyromagnetic ratio). The former arises from finite dynamics
of the internal field whereas the latter additionally includes a
distribution of local fields. The nonoscillating “ 1

3 ”-tail signal
corresponds to muons being initially polarized along the
internal field and is thus a fingerprint of the magnetic order,
alongside the oscillating signal.

The magnetic ordering in CuSe2O5 is witnessed by a
clear change of the polarization curve at 17 K. Below this
temperature, oscillations of the polarization appear [Fig. 5(a)].
The real part of a Fourier transform of the data below
17 K, which directly gives the field distribution at the muon
sites, reveals four distinct components [inset in Fig. 5(b)].
We therefore fit the experimental polarization of the powder
sample below TN with the four-component function

P z =
4∑

i=1

fiP
z
pwd(t,Bμi,λL,λT i), (3)

where fi denotes the fraction of the ith component. The
fitting of the 1.8 K dataset [Fig. 5(b)] yields internal
magnetic fields Bμ1 = 185(3) G, Bμ2 = 297(5) G, Bμ3 =
337(3) G, and Bμ4 = 533(3) G; transverse relaxation rates
λT 1 = 0.20(2) μs−1, λT 2 = 1.0(5) μs−1, λT 3 = 0.26(2) μs−1,
and λT 4 = 0.14(2) μs−1; the longitudinal relaxation rate
λL = 0.01 μs−1; and fractions f1 = 0.14(2), f2 = 0.14(2),
f3 = 0.11(2), and f4 = 0.61(2). The polarization at longer
times is almost time-independent and approaches the 1

3 value.
This demonstrates that the sample is 100% ordered and that
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FIG. 5. (Color online) (a) Time dependence of muon polarization
along the beam direction for longitudinal muon polarization in the
CuSe2O5 powder sample at several selected temperatures close to
the ordering temperature TN = 17 K. (b) Fit of the measured low-
temperature polarization (circles) to the four-component model (solid
line) given by Eq. (3). Inset: real part of the Fourier transform of the
1.8 K dataset.

the spin dynamics in the ground state is marginal on the muon
time scale.

The observation of four distinct internal magnetic fields
reveals that muons stop at four different crystallographic sites,
because the magnetic order does not reduce the symmetry
of the crystallographic unit cell. The temperature dependence
of the four internal fields and the transverse relaxation rates
are shown in Fig. 6. Since the fields are proportional to
the ordered magnetic moment, their temperature dependence
directly yields the temperature evolution of the magnetic order
parameter in CuSe2O5. The relaxation rates, on the other hand,
evidence an increasing spin relaxation rate when approaching
the ordering temperature TN , which can be explained by either
an increased magnon density or by an increased width of
local-field distribution28 with increasing temperature.

Measurements on the single crystal further allow us to set
the actual direction of the internal fields at all four stopping
sites. We performed these measurements at 1.8 K for two
different orientations of the crystal: (a) with the a∗ and
b crystallographic axes oriented in the z and y directions,
respectively, and (b) with the crystal rotated by π/2 along the z

direction so that the c crystallographic axis was pointing along
the y direction. Due to the symmetry of the magnetic space
group, for each muon stopping site i four different directions

FIG. 6. (Color online) Temperature dependence of (a) internal
fields and (b) transverse muon relaxation rate for four crystallograph-
ically nonequivalent muon stopping sites in the CuSe2O5 powder
sample.

of the magnetic field are allowed: (θ1
i , ϕ1

i ), (θ2
i , ϕ2

i ), (θ3
i , ϕ3

i ),
and (θ4

i , ϕ4
i ). These are symmetry-related and are embedded

into polarization functions P
y,z
sc (t,Bμi,θi,ϕi,λLi,λT i,α) (see

Appendix B). For the second orientation, the ϕ
j

i parameters
are increased by π/2 with respect to the first orientation while
the θ

j

i parameters remain the same. We fitted simultaneously
the powder data to Eq. (3) [see Fig. 5(b)] and the three
single-crystal datasets recorded for the two crystallographic
orientations [see Figs. 7(a) and 7(b)] to the equations

P z
a∗ = (1 − Pbgd)

4∑
i=1

fiP
z
sc(t,Bμi,θi,ϕi,λL,λT i,α)

+Pbgde
− (�t)2

2 , (4a)

P
y

b = (1 − Pbgd)
4∑

i=1

fiP
y
sc(t,Bμi,θi,ϕi,λL,λT i,α)

+Pbgde
− (�t)2

2 , (4b)

P y
c = (1 − Pbgd)

4∑
i=1

fiP
y
sc(t,Bμi,θi,ϕi + π/2,λL,λT i,α)

+Pbgde
− (�t)2

2 , (4c)

where the two single-crystal polarization functions P
y,z
sc are

given by Eq. (B8) with an additional background signal
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FIG. 7. (Color online) Simultaneous fit (solid lines) of muon
polarization data (symbols) to Eqs. (4) along three crystallographic
axes of the single-crystal CuSe2O5 sample, measured in transverse
muon polarization mode (a) along and (b) perpendicular to the beam
direction.

Pbgde
− (�t)2

2 . The above-reported powder muon relaxation rates
and fractions fi do not change when adding the single-
crystal datasets, while the background signal in these datasets
amounts to 26% (� = 0.29 μs−1). Such a high background
is not surprising for thin single crystals. The local magnetic
fields at the four muon stopping sites are summarized in
Table III.

Having determined the magnetic fields at the four muon
stopping sites, we next critically verify the magnetic order
determined in the neutron diffraction experiment (Fig. 4).
To be able to perform this assessment, the knowledge

TABLE III. The local magnetic field Bμi , the polar angle θi ,
and the azimuthal angle ϕi (the former is given with respect to the
a∗ crystallographic axis and the latter with respect to the c axis) at
four muon stopping sites i at 1.8 K. The corresponding components
of the magnetic-field vectors Bμi in the a∗bc orthogonal system are
also given.

i Bμi (G) θi ϕi Bμi (G)

1 185 1.22 1.97 (62, −159, 67)
2 297 2.24 2.63 (−185, 112, 203)
3 337 2.25 2.25 (−211, 211, 156)
4 533 1.71 5.08 (−77, −494, −187)

TABLE IV. The muon stopping sites P i found at 8f Wyckoff
positions, the corresponding dipolar magnetic fields Bi , the distance
rP i -Rj

to the closest electrostatic-potential minimum Rj , and rP i -O

to the closest oxygen site. All the fields are within34 σ/Bμi = 5% of
the experimentally determined values Bμi and are given in the a∗bc

orthogonal system.

i P i Bi (G) rP i -Rj
(Å) rP i -O (Å)

1 (0.19, 0.01, 0.23) (58, −164, 71) 0.21 1.39
2 (0.33, 0.40, 0.06) (−191, 120, 211) 1.82 0.97
3 (0.32, 0.44, 0.02) (−214, 203, 146) 1.75 1.05
4 (0.35, 0.49, 0.32) (−67, −512, −170) 0.36 1.08

of the muon stopping sites is needed. Muons possessing
positive charge are likely to stop at electrostatic-potential
minima of the crystal structure, which has been shown before
at several instances.29–32 To find the electrostatic-potential
minima of the CuSe2O5 crystal structure, we performed
density-functional-theory (DFT) calculation, using the PWSCF

program of the QUANTUM ESPRESSO software package.33 A
self-consistent electron density distribution was calculated,
which yielded a spatial profile of the electrostatic poten-
tial. A global electrostatic-potential minimum was found at
R1 = (0.17,0.01,0.22) (Wyckoff position 8f ) and three local
minima at R2 = (0.29,0.25,0.400) (8f ), R3 = (0,0.5,0) (4b),
and R4 = (0,0.11,0.25) (4e).

We further calculated the dipolar magnetic field
at these sites by taking into account all spins within a sphere
large enough to assure convergence of these calculations.
Since CuSe2O5 is an insulator and all the potential minima
are located outside the exchange paths, the dipolar contribution
to the magnetic field at these sites is expected to be far
dominant. The dipolar fields at all these sites (except R3)
are in the range between 189 and 654 G, thus seemingly well
suiting the experimental fields Bμ1−4 = 185–533 G. However,
the direction of the calculated Bcalc and the experimentally
determined fields Bμi are very different, thus yielding large
relative deviations σ

Bμi
> 1,34 except for site R1, where the

calculated field is the closest to the measured field ( σ
Bμ1

=
0.46).

Therefore, the muons do not seem to stop at the
electrostatic-potential minima of the unperturbed CuSe2O5

structure. To determine the possible muon stopping sites, we
calculated the dipolar magnetic field on a 100 × 100 × 100
mesh of the unit cell and searched for positions where the
calculated fields match the experimental fields Bμ1−4. These
positions are summarized in Table IV, where the distances to
the closest electrostatic-potential minima and to the closest
oxygen site are also shown.

The position P1 corresponding to the smallest experimen-
tally determined local field Bμ1 is found only 0.21 Å away from
the global electrostatic-potential minimum at R1. A slight local
modification of the electrostatic potential by the positively
charged muon and/or a slightly different magnetic moment
m are likely reason for the small mismatch between P1 and
R1. The other three sites are found farther away from the
minima. However, they are all positioned 1.03(5) Å away
from oxygen. The muon is well-known for its affinity of
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“bonding” to the oxygen ion with the corresponding bond
length of about 1.0 Å,35 which is in nice agreement with our
determination of the muon stopping sites. We stress that the
site with the largest internal field P4 is also found 0.36 Å away
from the global electrostatic-potential minimum. This can
explain its dominant occupation f4 = 61%. The accordance of
the observed distances between the muon stopping sites and
oxygen sites and the reported muon-oxygen “bond” length
suggest that the muon perturbs the electrostatic potential of
CuSe2O5. However, it preferentially remains relatively close to
the global electrostatic-potential minimum of the unperturbed
structure. The convincing agreement of the measured and the
calculated magnetic fields at the determined muon stopping
sites strongly confirms the magnetic structure determined by
the neutron scattering experiment.

D. Antiferromagnetic resonance

Next, we decided to perform AFMR measurements, which
can provide additional information on the spin Hamiltonian
responsible for the onset of the above-determined magnetic
order. In the AFMR theory, the magnetic order and the
low-energy excitations of a spin system are described within
a molecular-field approximation. The resonant frequencies of
the sublattice magnetizations induced by a microwave field
in the finite applied magnetic field are associated with the
exchange and anisotropy molecular fields felt by the sublattice
magnetizations.36 Studying the AFMR is thus an alternative
way of obtaining information about the long-range order, su-
perexchange, and magnetic anisotropy of a sample, with a high
precision characteristic of magnetic-resonance experiments.
Below TN the paramagnetic ESR signal quickly disappears in
CuSe2O5 and is replaced by a shifted temperature-dependent
resonance (Fig. 8), suggesting that this resonance belongs to
AFMR modes. The field dependence of the resonant frequency
for the a∗, b, and c directions measured at T = 5 K is shown in
Fig. 9. Finally, we have also measured angular dependencies
of the resonance field Hres at T = 5 K and ν = 240 GHz in

FIG. 8. (Color online) The temperature dependence of the antifer-
romagnetic resonance line shape measured at frequency ν = 9.7 GHz
for field applied along the b axis. Paramagnetic spectra at T > TN

are also shown for comparison.

FIG. 9. (Color online) The field dependence of the AFMR
frequency measured at T = 5 K. Solid and dashed lines show the
results of calculations for parameters J = 157 K, JIC = 0.1 J, D∗

a =
−0.044, Dc = 0.0255, δa∗ = 0.000 46, δb = 0, and δc = −0.001 of
the Hamiltonian (6).

the a∗b and the a∗c plane, and at ν = 35 and 9.7 GHz in the
a∗b plane. The results are summarized in Fig. 10. At 240 GHz
the anisotropy is much larger in the a∗c plane than in the a∗b
plane. For X- and Q-band measurements, the AFMR modes
are observed only for the b direction due to the experimental
limitations.

E. Torque magnetometry

The torque magnetometry can be a useful tool for detecting
spin reorientations even in magnetic fields which are substan-
tially smaller than the critical field of reorientation.37 This is
because the measured magnetic torque � = V M × H (V is
the sample volume) is sensitive to the direction of the induced
magnetization in the sample which changes when the field
approaches the critical field if the direction of the field does
not coincide with the easy axis (if it does, then a spin flop is
observed at the critical field HSF). In the case of a uniaxial
antiferromagnet in a field H � HSF, the angular dependence
of the measured component of torque �z for field H rotating
in the xy plane is given by

�z = m

2Mmol
H 2�χxy sin(2φ − 2φ0), (5)

where m is the mass, Mmol is the molar mass, �χxy = χx − χy ,
φ is the goniometer angle, and φ0 is the angle the x axis makes
with the goniometer zero angle. The torque measured at T =
4.2 K in the a∗b plane in different magnetic fields is shown in
Fig. 11. We have also plotted the expected angular dependence
(dashed blue lines), Eq. (5), where x = a∗, y = b, φ0 = 132◦,
and the values of χa∗ and χb are taken from the magnetic
susceptibility results at T = 4.2 K shown in Fig. 2(a). Apart
from the small observed hysteresis, the expected behavior,
Eq. (5), is observed in low fields. However, for H � 5 kOe
the deviation from (5) is observed which becomes more and
more pronounced with increasing field. This type of behavior
was not observed in the a∗c plane, where even the torque in
the highest applied field of H = 8 kOe obeys Eq. (5).
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FIG. 10. (Color online) The angular dependence of the AFMR
resonance modes in the a∗c and the a∗b planes measured at different
frequencies. The solid and dashed lines represent a fit to the model
described in the text using parameters J = 157 K, JIC = 0.1 J, D∗

a =
−0.044, Dc = 0.0255, δa∗ = 0.000 46, δb = 0, and δc = −0.001 in
Hamiltonian (6).

F. Modeling

To describe the above presented experimental results, we
start with the spin Hamiltonian

H =
∑

all chains

H1D + HIC, (6)

where the single-chain Hamiltonian H1D and the interchain-
interaction Hamiltonian HIC are given by22

H1D = J
∑

i

Si · Si+1 +
∑

i

(−1)i D · (Si × Si+1)

+
∑

i

Si · δ̂J · Si+1 − μB

∑
i

Si · ĝi · H, (7a)

HIC = JIC

∑
〈i,j〉

Si · Sj . (7b)

The sum in Eq. (7a) runs over spins on one chain, while
the sum in Eq. (7b) runs over spins i and j which reside
on neighboring chains. D is the DM vector which, due to
the crystal symmetry of CuSe2O5, is restricted to12 D =

FIG. 11. (Color online) Torque measured at T = 4.2 K in the
a∗b plane. The dashed blue line is obtained from Eq. (5) for χa∗

and χb taken from susceptibility measurements, Fig. 2(a). The solid
red line is the result of calculations taking into account the same
parameters as in Figs. 9 and 10. The values obtained by calculations
are rescaled to match the observed torque amplitude in the same way
as magnetization in Fig. 2(b).

(Da∗ ,0,Dc). The DM vector is staggered, which is taken into
account by (−1)i in the DM term. The tensor δ̂ represents the
symmetric anisotropic exchange and is assumed to be diagonal
in the a∗bc coordinate system,

δ̂ =
⎡
⎣

δa∗ 0 0
0 δb 0
0 0 δc

⎤
⎦. (8)

The g tensor in CuSe2O5 is staggered, ĝi = ĝu + (−1)i ĝs ,
where ĝu is the uniform and ĝs the staggered component.22

To model the experimentally observed AFMR modes,
we first transform the Hamiltonian [Eq. (7)] into magnetic
free energy F per Cu site by applying the molecular field
approximation.38 Neutron diffraction suggests four magnetic
sublattices, so we write our F as (see Fig. 12)

F = 2
2∑

i=1

(J ′ M2i−1 · M2i + J ′
IC Mi · Mi+2

+ D′ · M2i−1 × M2i + M2i−1 · δ̂J ′ · M2i)

−
4∑

i=1

Mi · [ĝu − (−1)i ĝs]/g0 · H, (9)
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J

JIC
1

2

3

4

FIG. 12. (Color online) Basic cell describing the interac-
tions present in CuSe2O5. Numbers indicate the four magnetic
sublattices.

where the factor 2 emerges from the boundary conditions.
Equation (9) represents the simplest expression in which each
spin has two intrachain neighbors and two interchain neighbors
(see Fig. 12), which seems to be a good approximation for
CuSe2O5, as mentioned above. In Eq. (9), the staggered
DM interaction and the staggered g tensor are taken into
account. The sublattice magnetizations are given by Mi =
−NgμB 〈Si〉, where N is the number of Cu2+ ions on the
ith sublattice, g0 = 2.0023 is the free-electron g factor, and
〈· · ·〉 indicates the thermal averaging. The relations between
molecular-field constants and the interaction constants of the
Hamiltonian (6) are defined by

J ′ = J

N (gμB)2
, (10a)

J ′
IC = JIC

N (gμB)2
, (10b)

D′ = 1

N (gμB)2
D. (10c)

The ground state of the system described by the expression
(9) is obtained by numerical minimization of the free energy.
Using the parameters suggested previously from the ESR
analysis in the paramagnetic phase, J = 157 K, JIC = 0.1J ,
|D∗

a | = 0.044, |Dc| = 0.0255, δa∗ = δb = 0, |δc| = 0.04,22

and taking μeff = 0.5μB from the neutron scattering data, we
correctly predict the magnetic structure if δc is negative. The
effective field acting on the ith sublattice magnetization is
calculated from Beff,i = −∂F/∂Mi . The AFMR modes are
then obtained from the equation of motion for Mi precessing
around Beff,i .39 The four-sublattice model predicts four AFMR
modes, where only the lowest in energy is experimentally
observed. We note that our previous EPR linewidth analysis22

could not determine the sign of the anisotropy parameter.
However, these parameters fail to predict the precise value
of the SF field and some details of the AFMR modes.

We have managed to describe both the field as well as the
angular dependence of the AFMR data by tuning only the
symmetric anisotropic exchange parameters: δa∗ = 0.000 46,
δb = 0, and δc = −0.001. The good agreement with the
experimental results is demonstrated in Figs. 9 and 10. We note
that our calculations predict two modes (solid and dashed lines
in Fig. 9), while only one mode was observed in measurements.
The reason is that the second mode is very flat and hence
extremely difficult to detect.

Moreover, the same set of parameters describes also the
magnetization measurement, as can be seen in Fig. 2(b). The

values of magnetization obtained by calculation were rescaled
to match the measured values. The spin-flop transition is
observed for the b direction at the field of HSF ≈ 12.5 kOe,
in perfect agreement with the experiment. The sublattice
magnetizations in the (abc) coordinate system obtained for
these parameters are M1,2 = (−0.0069,±0.4998,−0.0136)
and M3,4 = (0.0069,∓0.4998,0.0136), which corroborates
with b being the easy axis, as well as a finite magnetization of
a single chain. Furthermore, our model also correctly predicts
the magnetic order above the spin-flop transition. At H =
40 kOe our calculations yield |ma∗ | = 0.46 and |mc| = 0.19,
in good agreement with the neutron experiment.

Finally, we also calculated the angular dependence of
the torque in the a∗b plane. The results are shown with
full red lines in Fig. 11. The amplitude of the measured
torque depends on the mass of the sample, so calculated
torque was rescaled to match the observed torque amplitude
in the same way as magnetization. The agreement is excellent.
Since the modeling with the experimental �χ does not work,
the complementary free-energy approach clearly demonstrates
that the spins progressively rotate away from the b axis in the
a∗c plane with rotation of the applied field.

IV. DISCUSSION

Magnetic structure, AFMR, magnetization, and angular
dependence of the magnetic torque were correctly reproduced
using the Hamiltonian proposed in the previous ESR study
of the PM state.22 The present experiments allow for some
further improvement. First, in the previous ESR study it
was impossible to determine the sign of δc. The free-energy
analysis presented here showed that in order to reproduce the
correct ground state in agreement with the neutron diffraction
and μSR measurements, it is necessary to have δc < 0.
Furthermore, we were able to obtain precise values of the
symmetric anisotropic exchange, which in the previous study
were the least defined. The new values δa∗ = 0.000 46, δb = 0,
and δc = −0.001 are significantly smaller than the previously
proposed δa∗ = δb = 0, δc = −0.04. The most likely reason
for the discrepancy is that in the previous ESR study, this
parameter was derived based on the assumption that the
observed linear temperature increase of the ESR linewidth
results solely from the 1D spin-spin correlations below T �
100 K,21 as suggested by theory for 1D HAF.40,41 In fact, part
of the observed linear behavior might as well arise from the
spin-phonon line broadening, which was observed at higher
temperatures.

The magnitude of the ordered Cu2+ magnetic moment
obtained from the present measurements is μeff ≈ 0.5μB . The
moment is thus significantly reduced with respect to 1μB . The
measured value is in good agreement with the predictions
of the coupled quantum spin-chain approach, which gives
μeff = 0.46μB for JIC = 0.1 J.42 The present results, similar
to previous ESR analysis, thus point to strong quantum
spin fluctuations as anticipated in the quasi-1D systems.
This conclusion opposes the conclusions drawn from Raman
scattering, which indicate more classical 3D spin dynamics.21

Our susceptibility measurements along the three crystal
directions allowed us to determine the anisotropic staggered
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field coefficient in CuSe2O5, which is a result of both the
staggered g tensor and DMI. The derived staggered field
coefficient cc = 0.15(2) is comparable to those found in re-
lated Cu-based 1D compounds [PMCu(NO3)2(H2O)2]n (cc′′ ≈
0.25, cb ≈ 0.16) (Ref. 24) and Cu benzoate (cc = 0.20).13

The staggered g tensor and the observed DMI in CuSe2O5

place this system in a subclass of quasi-1D spin systems
where a staggered field can be induced by a magnetic field.
The frequency span accessible in the present experiments,
however, seems not sufficient to directly probe the low-
energy excitations characteristic of decoupled TLL chains. In
addition, strong staggered fields may drive CuSe2O5 farther
away from the TTL state, which explains why only spin
waves were observed as low-energy excitations. The crystal
symmetry and the ordered state found in CuSe2O5 are such that
the competitive case should be realized when a finite magnetic
field is applied below TN . The staggered field coefficient found
in CuSe2O5 amounts to cc ≈ 0.15(2), while the interchain
interaction amounts to JIC/kB ≈ 20 K, which means that a
very high external magnetic field H ∼ 1000 kOe should be
employed for CuSe2O5 to induce the competition between the
staggered field h = cH and the staggered field originating
from LRO structure. The observed spin-flop transition at
HSF ≈ 13 kOe applied along the easy axis direction thus
presents a classical spin-flop transition, which originates
from the competition of underlying anisotropies and is not
driven by the staggered field, such as the spin reorientation
transitions observed in BaCu2Si2O7.43 We note that the
latter is characterized by a similar staggered field coefficient
but with much smaller interchain interaction, on the other
hand.17

The observed decrease of susceptibility [inset of Fig. 2(a)]
and susceptibility anisotropy22 below 22 K which cannot be
explained in the 1D HAF model even when including staggered
fields deserves a comment, albeit of a speculative nature. It is
possible that this is connected to the crossover from 1D to
3D behavior of a 1D HAF in a staggered field. Recent NMR
results on BaCu2Si2O7 were satisfactorily explained using a
Ginzburg-Landau free-energy expansion in the vicinity of TN

where this crossover was revealed.17 Further investigations of
the magnetic response of CuSe2O5 in the vicinity of TN by
using other local probes, such as nuclear magnetic resonance,
should prove very informative in this respect.

V. CONCLUSION

The magnetic ground state and the low-energy excitations
in quasi-1D HAF CuSe2O5 were studied experimentally by
neutron diffraction, static magnetic measurements, μSR, and
AFMR. All experimental results were coherently explained
with the same Hamiltonian as derived previous from the
analysis of the EPR linewidth within the theory for 1D
HAF.22 The antiferromagnetically ordered ground state below
TN = 17 K is characterized by the reduced Cu2+ (S =
1/2) magnetic moment 0.52(2)μB , which is in line with
the expected strong quantum fluctuations emerging from
the underlying one-dimensionality of the system. Staggered
magnetic fields arising from the staggered g tensor and DMI
govern the ground-state and low-energy magnetic properties

of the system; however, within experimentally accessible
magnetic field they are too small to prevail over the interchain
interaction and thus induce the TLL physics. Nevertheless,
future studies of this system in the vicinity of the phase
transition could provide intriguing new insight about the
influence of the staggered fields on a dimensional crossover,
expected in quasi-1D systems with long-range order.
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APPENDIX A: COMPARISON OF CALCULATED AND
OBSERVED INTENSITIES IN NEUTRON DIFFRACTION

FOR �1 AND �3 MODELS OF MAGNETIC STRUCTURE IN
CuSe2O5

In Fig. 3 the agreement of the two possible models, �1 and
�3 (see Table I), with the observed intensities, is shown. In
Table V we list the magnetic intensities measured at 6 K and
compare them to the calculated intensities for the �1 and �3

model.

TABLE V. Observed and calculated magnetic intensities Iobs and
Icalc, respectively, of CuSe2O5 single crystal at 6 K corresponding to
the models �1 and �3 discussed in the text.

h k l Iobs Icalc (�1) Icalc (�3)

1 0 0 2.00 3.17 1.66
−1 0 1 172.42 162.88 156.87

1 0 1 140.45 115.9 146.33
0 −1 0 13.48 0 9.52

−3 0 1 108.31 22.27 133.15
−1 0 2 9.01 2.56 7.77

2 −1 0 11.88 1.05 5.44
2 −1 1 63.93 88.95 68.97
3 0 1 73.92 38.41 109.25

−1 0 3 145.91 123.63 96.95
−3 0 3 100.76 98.27 94.64
−5 0 1 53.88 2.5 91.67

1 2 1 17.85 96.27 14.19
−5 0 3 64.05 45.59 75.13
−1 0 5 64.12 49.88 39.46

2 1 −1 52.95 116.69 54.53
0 −3 0 5.00 0 3.10
2 1 0 2.97 1.05 5.44
1 2 0 4.24 0.08 5.70
0 −1 2 10.92 1.36 7.23
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APPENDIX B: MUON POLARIZATION IN THE CuSe2O5

SINGLE CRYSTAL

We set the orthogonal coordinate system so that its x, y, and
z axes correspond to the right, up, and backward direction with
respect to the muon-beam direction, respectively. In general,
the initial muon polarization is tilted by an angle α from the
z axis in the yz plane, P0 = (0, sinα, cosα), and the local
field is characterized by the polar angle θ and the azimuthal
angle ϕ, Bμ = Bμ(sinθ cosφ,sinθ sinφ,cosθ ). The parallel and
the perpendicular component of the muon polarization with
respect to the field are then derived from the equation of motion
dP(t)/dt = γμP(t) × Bμ,

P‖ = (P0 · Bμ)
Bμ

Bμ

, (B1)

P⊥(t) = P⊥
1 cos(γμBμt) + P⊥

2 sin(γμBμt), (B2)

respectively, where the two orthogonal perpendicular vectors
are

P⊥
1 = P0 − P‖, (B3)

P⊥
2 = P⊥

1 × Bμ

Bμ

. (B4)

If the longitudinal muon relaxation rate λL and the transverse
relaxation rate λT are taken into account, the total muon
polarization at a given time will be given by

P(t) = P‖e−λLt + P⊥(t)e−λT t . (B5)

The muon polarization measured by the backward-forward
and the up-down sets of detectors is then changing with time
as

P z(t,Bμ,θ,ϕ,λL,λT ,α) = P(t) · (0,0,1), (B6)

P y(t,Bμ,θ,ϕ,λL,λT ,α) = P(t) · (0,1,0), (B7)

respectively.
In the CuSe2O5 single crystal, each muon stopping site i

gives four different orientations of the given magnetic field,
because of the symmetry of the magnetic little group (only the
inversion symmetry leaves the field unchanged). Therefore,
the polarizations are given by

P y,z
sc (t,Bμi,θi,ϕi,λLi,λT i,α)

= 1

4

4∑
j=1

P y,z
(
t,Bμi,θ

j

i ,ϕ
j

i ,λLi,λT i,α
)
. (B8)

The four polar and azimuthal angles for each site are
symmetry-related. For the first orientation of the crystal with
the a∗ crystallographic axis along the z direction and the b axis
along the y direction, these relations are

θ1
i = θi, ϕ1

i = ϕi, θ2
i = θi, ϕ2

i = −ϕi, θ3
i = π − θi,

ϕ3
i = π + ϕi, θ4

i = π − θi, ϕ4
i = −π − ϕi. (B9)

In the second orientation, the crystal is rotated by π/2 around
the z axis, which leaves θ

j

i unchanged and changed ϕ
j

i →
ϕ

j

i + π/2.
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