

MAGNETIC STRUCTURES OF DYSPROSIUM OXYSULFIDE AND DYSPROSIUM OXYSELENIDE

Y. Abbas and J. Rossat-Mignod

Laboratoire de Diffraction Neutronique, DRF, CEN-G, Grenoble, France

and

G. Quezel and C. Vettier

Laboratoire de Magnétisme, C.N.R.S., Grenoble, France

(Received 16 December 1973 by E.F. Bertaut)

The magnetic structures of Dy_2O_2S and Dy_2O_2Se have been determined by neutron diffraction experiments at 1.5 K. For these two antiferromagnetic compounds the magnetic unit cell is orthohexagonal and doubled along the c-axis. The antiferromagnetic direction is parallel to the c-axis; the values of the Dy^{3+} magnetic moment in Dy_2O_2S and Dy_2O_2Se are $7.2 \pm 0.5 \mu_B$ and $9.0 \pm 0.5 \mu_B$, respectively.

THIS WORK is a part of systematic magnetic studies, on powder samples, of rare earth oxysulfides and oxyseLENides.¹⁻⁵ The magnetic structure of Dy_2O_2S has been already determined,¹ but further magnetic⁶ and Mössbauer effect⁷ experiments on single crystals are in disagreement with the moment orientation. To remove this discrepancy we redetermined the magnetic structure of Dy_2O_2S which is presented here together with that of its isomorphous oxyseLENide Dy_2O_2Se .

The dysprosium oxysulfide and oxyseLENide order antiferromagnetically at 5.8 and 8.5 K respectively.⁴ They crystallize in the space group $P\bar{3}m - D_{3d}^3$. Figure 1 gives the atomic positions in the hexagonal unit cell. The lattice and position parameters have been determined from the neutron diffraction patterns obtained at room temperature.

In the nuclear structure factor

$$F_N(\mathbf{h}) = \sum_j b_j e^{2\pi h \cdot r_j}$$

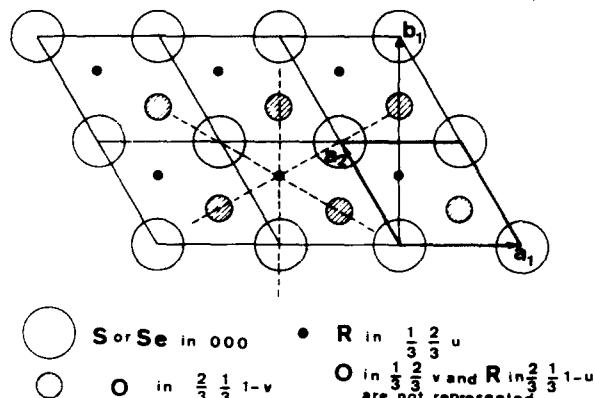


FIG. 1. Projection in the basal plane of the crystallographic structure of the rare earth oxysulfides and oxyseLENides R_2O_2S and R_2O_2Se .

the following scattering lengths b_j were used for the calculation⁸ $b_{Dy} = 1.69$; $b_O = 0.577$; $b_S = 0.28$ and $b_{Se} = 0.78$ in units of 10^{-12} cm/atom . The results are given in Table 1.

For the two compounds Dy_2O_2S and Dy_2O_2Se magnetic neutron diffraction patterns have been

* Guest scientist, from Atomic Energy Authority, Cairo, Egypt.

Table 1.

	$a(\text{\AA})$	$c(\text{\AA})$	u	v
Dy_2O_2S	3.792	6.587	0.272 ± 0.006	0.64 ± 0.005
Dy_2O_2Se	3.855	6.825	0.283 ± 0.004	0.622 ± 0.006

Table 2. Comparison of calculated and observed magnetic intensities of Dy_2O_2S at 1.5 K

hkl	Calculated intensities	Observed intensities
011	198	228
101	284	386
013		
102		377
103	48	52
015	16	386
121		
352		340
031	224	727
105		
123		730
<u>Reliability factor $R = \sum I_{\text{obs}} - I_{\text{cal}} / \sum I_{\text{obs}} = 4.3\%$</u>		

Table 3. Comparison of calculated and observed magnetic intensities of Dy_2O_2Se at 1.5 K

hkl	Calculated intensities	Observed intensities
011	629	708
101	1006	1376
013		
369		1359
103	80	127
015	48	1149
121		
1101		1186
105	413	2537
131		
792		
123		2535
033	84	obscured by A1(200)
117	57	1198
125		
211		
860		1105
107	20	1738
035		
570		
213	1148	1755

Reliability factor (defined as in Table 2) $R = 3.4\%$

recorded at $T = 1.5$ K. As the absorption cross-section of dysprosium is very large we have diluted the compounds with aluminium powder in order to obtain reasonable intensities. The neutron diffraction diagrams of Dy_2O_2Se obtained at room temperature and $T = 1.5$ K are reported on Fig. 2. In the case of Dy_2O_2S magnetic peaks are observed at analogous positions but with different intensities. The magnetic unit cell is therefore the same for the two compounds: the magnetic reflections can be indexed in an orthohexagonal cell doubled along the c axis ($a, b = a\sqrt{3}/2, 2c$), i.e. the propagation vector is $\mathbf{k} = (0 0 \frac{1}{2})$.

In the orthohexagonal description ($l = (2n + 1)/2$), the magnetic structure factor can be written as:

$$F_M = 2\eta f(m_1 e^{2\pi i(k/3 + lu)} - m_2 e^{-2\pi i(k/3 + lu)})$$

where

$$\eta = \frac{e\gamma^2}{mc^2} = 0.27 \cdot 10^{-12} \text{ cm } \mu\text{B}^{-1}$$

f is the form factor.⁹

m_1 and m_2 are the magnetic moments (in μ_B) of the Dy^{3+} ion at the coordinates u and $1 - u$ in the crystallographic cell. For the two compounds the comparison between the observed and calculated intensities (Tables 2 and 3) indicates that m_1 and m_2 are coupled ferromagnetically i.e. $m_1 = m_2$ and that antiferromagnetic direction is parallel to the c -axis.

For Dy_2O_2S and Dy_2O_2Se the magnetic moment values of the Dy^{3+} ion at 1.5 K are $7.2 \pm 0.5 \mu_B$ and $9.0 \pm 0.5 \mu_B$, and the reliability factors are 4.3% and 3.4% respectively.

The magnetic structure of Dy_2O_2S and Dy_2O_2Se is represented on Fig. 3.

For Dy_2O_2S the moment direction and value are to be compared with the crystal field determination and Mössbauer effect results. Optical experiments and crystal field calculations¹⁰ indicate that the first excited doublet lies at about 30 K above the ground

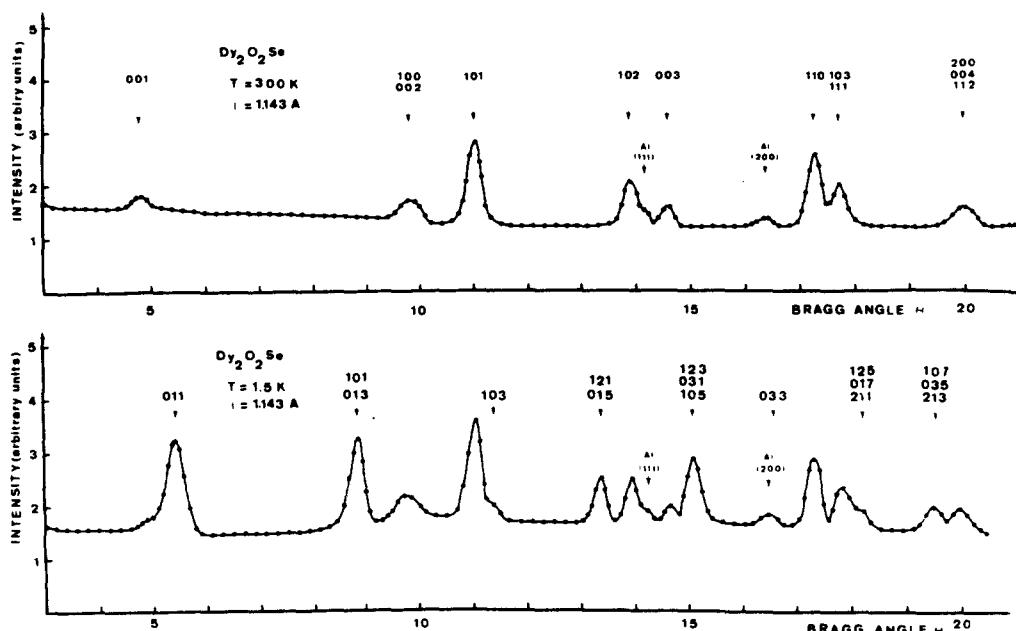


FIG. 2. Neutron diffraction patterns of Dy_2O_2Se at 300 K and 1.5 K. The magnetic peaks are indexed in an ortho-hexagonal unit cell doubled along the c-axis.

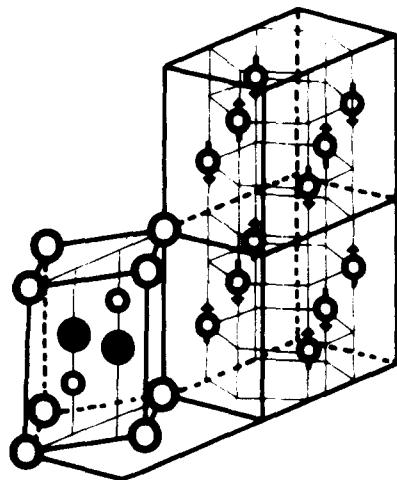


FIG. 3. The magnetic structure of Dy_2O_2S and Dy_2O_2Se .

state and thus the magnetic moment anisotropy in the antiferromagnetic state, depends only on the wave function of the ground state doublet. The nature of the irreducible representation associated with this doublet impose an Ising behaviour with the magnetic

moment along the c-axis; the moment value at $T = 0$ K deduced from the calculated wave function is $8.2 \mu_B$. Mössbauer experiments indicate also that the magnetic moments are along the c-axis with a value of $(8.2 \pm 0.4) \mu_B$.⁷

We can see that all these results are in good agreement concerning the moment direction. However the moment deduced from neutron diffraction data is smaller than the value given by crystal field calculations and Mössbauer experiments. This slight discrepancy can perhaps be related to the high neutron absorption cross-section of dysprosium.

In the oxyselenide, the wave function of Dy^{3+} ground state is probably of the same nature as in the oxysulfide but with a higher $15/2$ component, because of the higher magnetic moment value.

Also the magnetic anisotropy of Dy_2O_2Se should be greater than that of Dy_2O_2S which is actually observed by susceptibility measurements.⁴

REFERENCES

1. BALLESTRACCI R., BERTAUT E.F. and QUEZEL G., *J. Phys. Chem. Solids* **29**, 1001 (1968).
2. QUEZEL G., BALLESTRACCI R. and ROSSAT-MIGNOD J., *J. Phys. Chem. Solids* **31**, 669 (1970).
3. BALLESTRACCI R. and ROSSAT-MIGNOD J., *Solid State Commun.* **7**, 1011 (1969).
4. QUEZEL G., ROSSAT-MIGNOD J. and YU LANG HO., *Solid State Commun.* **10**, 735 (1972).
5. ABBAS Y., ROSSAT-MIGNOD J. and QUEZEL G., *Solid State Commun.* **12**, 985 (1973).
6. QUEZEL G., ROSSAT-MIGNOD J. and ABBAS Y., (to be published).
7. BELAKHOVSKY M., *J. Phys. Suppl.* **32**, C1-915 (1972).
8. Coherent Neutron Scattering Amplitudes, Massachusetts Institute of Technology, February (1971).
9. BLUME M., FREEMAN A.J. and WATSON R.E., *J. Chem. Phys.* **37**, 1245 (1962).
10. ROSSAT-MIGNOD J., SOUILLAT J.C. and QUEZEL G., Submitted to *Phys. Status Solidi*.

Nous avons déterminé les structures magnétiques des composés antiferromagnétiques Dy_2O_2S et Dy_2O_2Se grâce à des expériences de diffraction neutronique effectuées à 1.5 K. Dans ces deux composés la maille magnétique est orthohexagonale doublée selon l'axe c, et les moments magnétiques sont parallèles à l'axe c. Le moment magnétique de l'ion Dy^{3+} vaut $7.2 \pm 0.5 \mu_B$ dans Dy_2O_2S et $9.0 \pm 0.5 \mu_B$ dans Dy_2O_2Se .