Journal of Magnetism and Magnetic Materials 13 (1979) 121-124

© North-Holland Publishing Company

MAGNETIC STRUCTURES OF CoNb, O
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We have carried out neutron diffraction and susceptibility measurements on a CoNb, Oy single crystal. Below 2.96 K,

we found a screw structure with the y axis as screw axis and a screw angle of 133°. This angle increases with decreasing tem-
perature to a constant angle of 180° at and below 1.97 K. The magnetic structure below 1.97 K is a non-collinear antiferro-
magnetic structure of the type 88, with a doubled y axis and belongs to the magnetic space group Pp212121 (=P352;22).

1. Introduction

The compound CoNb, Oy crystallizes in the colum-
bite structure [1] with the space group Pbcn. Early
neutron diffraction experiments [2] on a powder
sample at 2.0 K showed magnetic reflections which
could be indexed in a magnetic unit with a doubled ¢
axis. A collinear two-sublattice arrangement of the
moments with directions along the crystallographic ¢
axis was proposed. Magnetization measurements at
1.4 K [3] on a single crystal gave evidence for a four-
sublattice model. In agreement with the neutron dif-
fraction results, no ¥ component of the magnetic
structure could be detected. The Néel point was found
to be at 2.95 [3].

2. Results and discussion

To look for a magnetic phase transition we carried
out susceptibility measurements and further neutron
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diffraction work on single crystals and powder sam-
ples, but now in the whole temperature range between
1.5—4.5 K. Fig. 1 shows the results of the susceptibil-
ity measurements. Decreasing the temperature there is
a change at (2.95 + 0.02) K from the paramagnetic
phase to an ordered spin structure. The unusual behav-
iour of x, suggests that changes in the spin structure
take place between 2.95—1.97 K. Below 1.97 K a
fixed antiferromagnetic structure is stable in zero
field. One can see that the groundstate of the spin
directions must be perpendicular to the y axis,
because the absolute value of x;, does not change
below 4 K.

For the neutron diffraction measurements, we used
a single crystal of 10 mm? volume grown from a
Na, B4 0, /Nb, O5 mixture as flux [4]. The exact tem-
peratures of the transitions were found to be (1.97 +
0.01) K and (2.96 + 0.01) K. The result at 1.65 K, ob-
served on 20 magnetic reflections, is identical to a
powder measurement performed at 1.8 K, Table 1



122 W. Scharf et al. | Magnetic structures of CoNb,0g

T T T T T r Table 1
X ﬁn—:fw_ioe] Intensities of the magnetic reflections of CoNbOg at 1.65 K
CoNb, Og Iq)c for a canting angle of 59°
ol %, at 5 kHz i
Reflection Tops Tcarc
C axis

— 0 1/20 100 97.4
5t - 0-1/20 96.3 97.4
1 126 65.4 66.2
-1 120 64.6 66.2
L aaxs | 2 1/20 39.3 37.5
-2 1/20 38.2 375
0 1721 4.8 53
0-1/21 4.4 53
3% - 3 1/20 23.9 233
-3 1720 23.3 233

0 320 0 0

0-3/20 0 0
2= 7] 4 1/20 15.0 15.2
0 3/21 17.0 16.9
0-3/21 16.4 16.9
, { 5 1/20 114 10.0
r_ 5-1/20 8.7 10.0
b axis 0 5/20 10.3 11.6
/ 1 5/20 10.2 11.2
% T T 30 35 w0 %5 -1 5/20 9.4 11.2
TIK] 2 5/20 8.0 9.9
-2 5/20 6.0 9.9

Fig. 1. Zero-field ac susceptibility of CoNbyOg along the cry

tallographic a-, b- and c-axis. R = T lcate — Tobs!/Elops = 0.042

Fig. 2. Antiferromagnetic structure of CoNb,Og below 1.97 K.
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Table 2

Positions and directions of the magnetic moments in
CoNb,Og at 1.65 K (g, b, ¢ = lattice constants of the chemi-
cal unit)

Direction cosines with
respect to the x, y, z-

Atom Co-positions

xla y/b zfe directions
x y z
1 0 0.1818 0.25 +0.515 0 +0.857
2 0 0.8182 0.75 -0.515 0 -0.857
1’ 0 1.1818 0.25 -0.515 0 -0.857
2’ 0 1.8182 0.75 +0.515 0 +0.857
3 0.5 0.3162 0.75 +0.515 0 -0.857
4 0.5 0.6818 0.25 +0.515 0 -0.857
3 0.5 1.3162 0.75 -0.515 0 +0.857
4’ 0.5 1.6818 0.25 -0.515 0 +0.857

gives the intensities, Fig. 2 and table 2 show the mag-
netic structure below 1.97 K.

One can see that we have a doubled y-axis because
we find pairs (1-2',2—1', 3—4, 3'—4") of parallel
coupled magnetic moments which are all coupled
together antiferromagnetically within the y —z planes.
The magnetic moments are canted in the x —z plane
with a canting angle of £59° + 2° from the x-axis;
there is no y component. The effective magnetic mo-
ment is found to be u = (3.05 £ 0.03) ug. This magne-
tic structure should be called 8,8, [S] with the mag-
netic space group Py2;2;2; (=P,52,2'2).

Increasing the temperature into the region between
1.97 K and 2.96 K, we find a splitting of all magnetic
reflections into two satellite reflections along the b*-
axis of the reciprocal lattice. Fig. 3, for example,
shows 0kO scans near the 0 1/2 O-reflection in the
temperature range between 4.2—1.7 K. One can see
the splitting of the 0 1/2 O-reflection into two satel-
lites above 1.97 K. With increasing temperature the
distance between the satellites becomes larger, and at
2.2 K we can call these reflections 0 2/5 0 and 3 3/5 0.
This implies a magnetic structure with a screw angle of
72° or 144° between two neighbouring chemical units
along the y-axis. Intensity calculations rule out the
case of an angle of 72°. Fig. 4 shows the temperature
dependence of this screw angle from 137° +4° at T'=
2.96 K up to 180° at and below 1.97 K. This last
angle implies a doubling of the y axis in this phase as
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Fig. 3. 0k0-scan of CoNb,Og as function of the temperature.
shown in fig. 2.

The low temperature phase §,3, of CoNb, Og is
very similar to the magnetic structure of FeNb,Og [5]
and is well understood [6]. This result is also in good
4 ([rad]
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Fig. 4. Screw angle along the y-axis of CoNb,Og as function
of the temperature.
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agreement with the magnetic structure of four sublat-
tices inferred from field-induced phase transitions at
1.4 K [3]. The strongest interaction is I,;, between
the atoms 2 and 1’ (see [6], fig. 7). This 90°—~Co—0—
Co superexchange interaction is a ferromagnetic po—
dy-bonding [7], which is responsible for the Néel
point of this compound. But the interaction I,
between the atoms 1 and 2 is weaker and antiferro-
magnetic coming from superexchange- and dipole—
dipole-interactions. The moments are arranged collin-
early within y — z planes, and following the symmetry
non collinearly between neighbouring y—z planes.

The direction of the moments nearly corresponds to
the direction built up by the three ions O, —-Co—0,
in the x — z plane. This was also found for the mo-
ments in the magnetic structures of the wolframites
MeWO, (Me = Mn, Fe, Co, Ni), of the columbites
Mn(Nb, Ta), 04 and of the trirutile FeTa,O¢ [6]. The
directions of the moments of +59° to the g-axis in
CoNb, Og result from the single-ion anisotropy of the
Co?* ion. This anisotropy must be similar to that in
the compound CoWQy,, because there are nearly the
same distorted oxygen octahedra around the Co?*
ion. In the case of CoWQy, the direction of the mo-
ments was found by neutron diffraction to be at

46° £ 2° [6]; the easy axis was determined by magne-
tization and susceptibility measurements to be 50° *
5° [8] and 45° [9] to the x-axis, both in good agree-
ment with our result. The magnetic moment u =

(3.05 £ 0.03) ug seems to be nearly a spin only value,
whereas in CoWO,4 u = (3.6 £ 0.05) ug was found [6].
The screw structure of the incommensurable phase
will be reported elsewhere in more detail.
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