

CePd₂Si₂: A REDUCED-MOMENT ANTIKERROMAGNET

R.A. Steeman, E. Frikkee, R.B. Helmholdt
Netherlands Energy Research Foundation ECN,
P.O. Box 1, 1755 ZG Petten, The Netherlands

A.A. Menovsky
Natuurkundig Laboratorium der Universiteit van Amsterdam,
Amsterdam, The Netherlands

J. van den Berg, G.J. Nieuwenhuys, J.A. Mydosh
Kamerlingh Onnes Laboratorium der Rijksuniversiteit Leiden,
Leiden, The Netherlands

(Received 18 November 1987 by P. Wachter)

The compound CePd₂Si₂ has been investigated by neutron scattering, DC-susceptibility, specific-heat and resistivity measurements. CePd₂Si₂ crystallizes in the tetragonal I4/mmm structure. Below 8.5 K antiferromagnetic ordering takes place in a pattern consisting of ferromagnetic (110) planes with the spins perpendicular to the planes and alternating orientation in adjacent planes. The reduction of the Ce-moment from 2.55(5) μ_B for $T \geq 125$ K to .66(6) μ_B at 4.2 K is larger than expected on basis of crystal-field calculations. The extra reduction is ascribed to a partial Kondo screening of the Ce-moments. An additional indication for partial screening comes from specific-heat measurements, which give a slightly enhanced value for the parameter γ (65(2) mJ/mol.K²). Resistivity measurements revealed a large anisotropy between a- and c-axes. In the neutron scattering experiments no critical scattering was observed, although the temperature dependence of the staggered magnetisation (critical exponent $\beta = .37(3)$) indicates a second-order phase transition at 9.2(5) K. We conclude that CePd₂Si₂ is a reduced-moment antiferromagnet with a Kondo temperature $T_K > T_N$.

1. Introduction

Since the discovery of the heavy-fermion behaviour of CeCu₂Si₂ by Steglich et al.¹, many other RT₂Si₂-compounds, with R=Ce or U, and T a 3d-, 4d- or 5d-transition metal have been investigated. In a systematic review Palstra et al.² have pointed out a trend from Pauli paramagnetic behaviour to (strong) local-moment behaviour for an increasing number of d-electrons. If we correlate the number of d-electrons with the inverse of the coupling constant J between the localized Ce moments and the conduction electrons, the trend mentioned above can be explained from a model proposed by Doniach³ and further developed by Lawrence⁴. Doniach compared the energy of a Kondo singlet with that of an RKKY-antiferromagnetic ground state, both as a function of J. For small J the RKKY-state has the lowest energy, while the Kondo-singlet state is favoured for large J. For intermediate J values, the Kondo- and RKKY-interaction are of comparable magnitude, and a complex behaviour may be expected. According to Doniach, the one-dimensional Kondo lattice exhibits a second-order phase transition at $T=0$ and $J=J_c$ between the antiferromagnetic RKKY-state and the Kondo-like state. For $J>J_c$ there is an energy gap (the singlet-triplet

splitting), which will tend to zero for $J>J_c^+$, leading to large spin fluctuations. The second-order character of the transition implies that for $J>J_c^+$ the system will be antiferromagnetic with very small local moments, even though the localized f-electrons are in a state with a well-defined non-zero spin.

A likely candidate for such reduced-moment antiferromagnetic behaviour is CePd₂Si₂. Neutron powder diffraction experiments showed an antiferromagnetic transition at $T=10.5$ K, with an effective Ce-moment of .62 μ_B .⁵ Susceptibility^{6,7}, resistivity⁸ and specific-heat measurements⁹, all performed on polycrystalline samples, revealed the presence of large spin fluctuations, but in some of them¹⁰ the transition to antiferromagnetic order was not observed. Both resonant photoemission¹⁰ and thermopower¹¹ measurements showed that CePd₂Si₂ is probably close to the transition regime between antiferromagnetic and Kondo-lattice systems.

To resolve the discrepancies between some of the previously reported results, we have performed a systematic investigation of CePd₂Si₂ by neutron diffraction, DC-susceptibility, resistivity and specific-heat measurements. Most of our measurements were carried out on single crystals, firstly to reduce the influence of possible impurities or second phases in the

sample, secondly to study the anisotropy in the DC-susceptibility and resistivity.

2. Experimental Results

2.1. Crystallographic and Magnetic Structure

For the neutron powder diffraction experiments a sample was prepared from a stoichiometric melt of the three constituents. After powdering, the sample was annealed for two hours at 500°C. The diffractogram was recorded on the powder diffractometer HB5 at the High Flux Reactor at Petten. A wavelength of 2.5791 Å was used in combination with 30° Soller collimators placed between the reactor and monochromator and between sample and detectors. Higher-order beam contamination was eliminated by means of a pyrolytic graphite filter. The data were analyzed with the Rietveld profile refinement technique^{1,2}, using nuclear scattering lengths of 4.84×10^{-12} cm for Ce, 4.15×10^{-12} cm for Si, and 5.91×10^{-12} cm for Pd. The magnetic formfactor for Ce³⁺, used in the refinement of the data collected at 4.2 K, was taken from ref. 13. A few weak impurity lines in the diagrams could be attributed to PdO.

CePd₂Si₂ appears to crystallize in the body-centred tetragonal ThCr₂Si₂ structure (I4/mmm) with Ce at (000), Pd at ($\frac{1}{2} 0 \frac{1}{2}$) and Si at (00z). An overall isotropic Debye-Waller factor was used. The occupation numbers for the Pd and Si sites refine to 1 within twice their standard deviation, indicating that interchange between Pd and Si ions does not occur. The structural parameters at 293 K and 4.2 K are given in table I and a typical fit is shown in Fig. 1.

At 4.2 K three weak additional lines are observed (inset Fig. 1), which can be indexed as the ($\frac{1}{2} \frac{1}{2} l$)-reflections with $l = 1, 2, 3$. The absence of the $l=0$ reflection together with the propagation vector $\vec{q} = (\frac{1}{2} \frac{1}{2} 0)$ give an antiferromagnetic structure as shown in Fig. 2. There are two domain types with ferromagnetic (110) or (110) planes, the spin being perpendicular to these planes. The calculated moment is 0.66(6) μ_B ($R_{\text{mag}} = 36.5\%$). These results are in agreement with earlier work by Grier et al.⁵

It should be noted that the diffraction data do not allow a distinction between a non-collinear $2\vec{q}$ structure and two equally populated collinear domain types. However, the collinear structure is favoured by the RKKY-interaction (see Sec. 3) and is therefore considered to be the most probable one.

We also measured the intensity of the magnetic ($\frac{1}{2} \frac{1}{2} 1$)-reflection as a function of temperature on a single crystal, prepared with a modified tri-arc Czochralski method¹⁴. These

measurements were performed on spectrometer HB1 at a neutron wavelength of 2.655 Å. A pyrolytic graphite filter was used to reduce the second-order beam contamination and 30° Soller collimators were placed between monochromator and sample and between the sample and detector. The variation with temperature of the integrated ($\frac{1}{2} \frac{1}{2} 1$) intensity derived from scans // [001] is characteristic of a second-order phase transition (cf. Fig. 3). Fitting the data to the power law $I = Ae^{2\beta T} + B$ with $\epsilon = (T_N - T)/T_N$ and 4 adjustable parameters yields values $T_N = 9.2(5)$ K and $\beta = 0.37(3)$ for the critical temperature and exponent. The constant background consists mainly of the nuclear (112) reflection of $\lambda/2$ neutrons. Even very close to T_N ($\epsilon = 2 \times 10^{-3}$) there is no indication for critical magnetic scattering at the Bragg position ($\frac{1}{2} \frac{1}{2} 1$) and at the points $\vec{Q} = (\frac{1}{2}, \frac{1}{2}, 0.948)$ and (0.477, 0.477, 1).

2.2. DC-Susceptibility

The DC-susceptibility was measured on a single crystal with a vibrating sample magnetometer operating at 21 Hz with a static field $H = 2$ T along the [100]-, [110]- and [001]-direction of the crystal.

The experimental results for $\chi_{[100]}$ and $\chi_{[110]}$ clearly show the antiferromagnetic transition at 8.5(5) K (see the inset of Fig. 4), but the preferred spin orientation is not obvious. The typical χ_{\perp} -behaviour observed for $H \parallel [110]$ is in contrast with the expected combination of χ_{\parallel} and χ_{\perp} from the domains with spins along [110] and [110], respectively. One may conclude that the field of 2T is large enough to flip the spins in the former domain type to the [110] direction. When the field is oriented along [100], spin flip will not occur because the [110]- and [110] directions remain equivalent, and a superposition of χ_{\parallel} and χ_{\perp} -behaviour is observed.

At temperatures above 125 K CePd₂Si₂ exhibits a Curie-Weiss behaviour with $\Theta_{\text{CW}} = -55(2)$ K along the a-axis and -16(2) K along the c-axis, and an effective moment of 2.55(5) μ_B per formula unit.² The Néel temperature of 8.5(5) K is about 20% lower than the values deduced earlier^{5,11} from susceptibility measurements on polycrystalline samples.

2.3. Resistivity

Resistivity measurements were performed on bar-shaped samples of 1x1x3 mm³ dimension along the a- and c-axis, using a four-point probe method. The voltage- and current leads were attached to the samples with silver paint DAG1415. The relative accuracy is about 0.1%, the absolute values are correct within 10% due

Table 1. Results of the neutron powder diffraction data refinements. The standard deviations based on statistics are given in parentheses.

$$R_n = 100 \sqrt{\sum (I_n^{\text{obs}} - \frac{1}{c} I_n^{\text{calc}})^2 / \sum I_n^{\text{obs}}}$$

T(K)	a(Å)	c(Å)	z	B(Å ⁻²)	R _n (%)
293	4.2388(1)	9.8889(4)	.3790(1)	.50(5)	2.5
4.2	4.2214(2)	9.8960(6)	.3806(2)	.16(6)	3.9

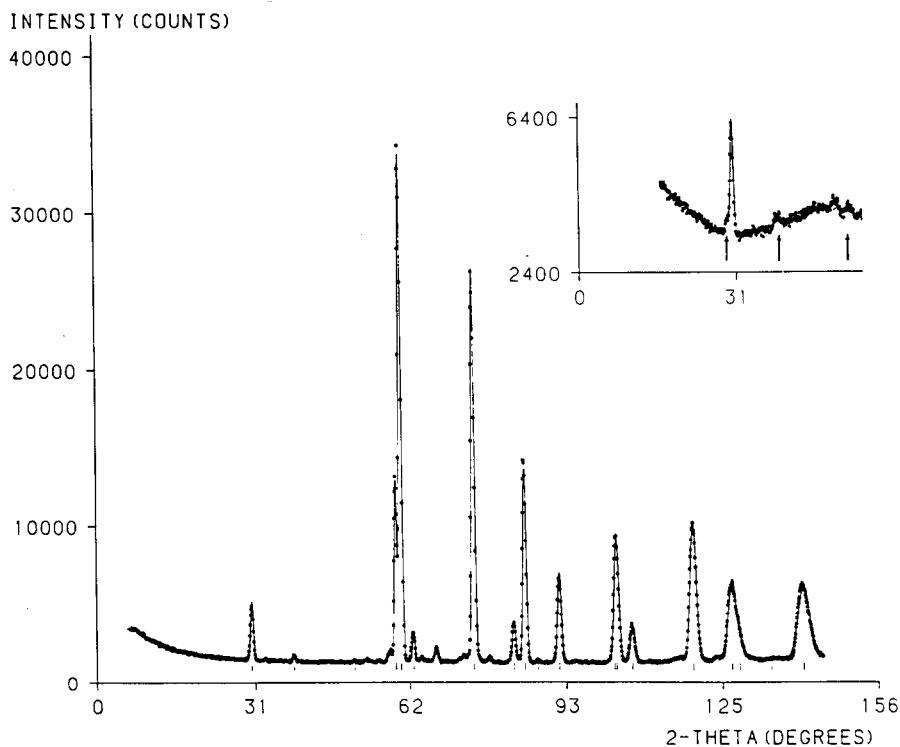


Fig. 1. Neutron diffraction pattern for CePd₂Si₂ obtained at 293 K. The full line represents the fit to the data. The positions of the nuclear reflections are indicated at the bottom of the diagram. In the inset three additional weak magnetic reflections at 4.2 K are indicated by arrows. The magnetic ($\frac{1}{2} \pm 1$) reflection is overlapped by the stronger nuclear (002) reflection.

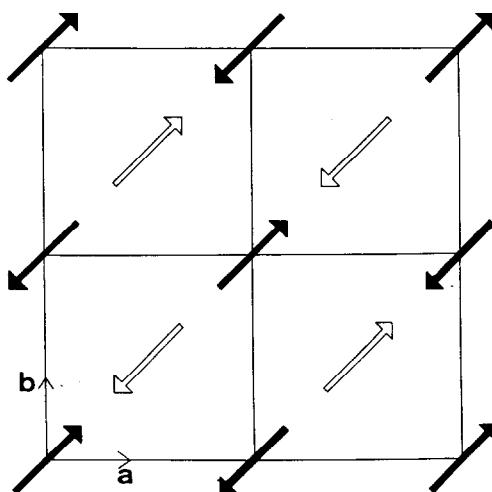


Fig. 2. Spin configuration in one of the domain types in CePd₂Si₂, deduced from the neutron diffraction experiments at 4.2 K.

to uncertainties in the dimensions of the sample. We observed a large anisotropy between the *a*- and *c*-axes (Fig. 5). The antiferromagnetic transition at 8.5(5) K is clearly seen; $d\rho/dT$ is negative for temperatures just above T_N in spite of the absence of critical scattering in the neutron experiments. Note also the broad maximum at 100 K, due to crystal fields. These results are qualitatively in agreement with measurements on polycrystalline samples by Murgai et al.⁶

2.4. Specific Heat

Specific-heat measurements were carried out on a single crystal, using the pulsed heating method. The entropy change due to the magnetic transition at 8.5(5) K was calculated to be .28 R, which is about 40% of Rln2. The linear coefficient γ , as deduced from the C/T versus T^2 plot (Fig. 6) is 65(2) mJ/mol.K², while the Debye temperature is estimated as 244(5) K. The present value of γ is about 50% smaller than the one reported by Dhar et al.⁷ for a polycrystalline sample.

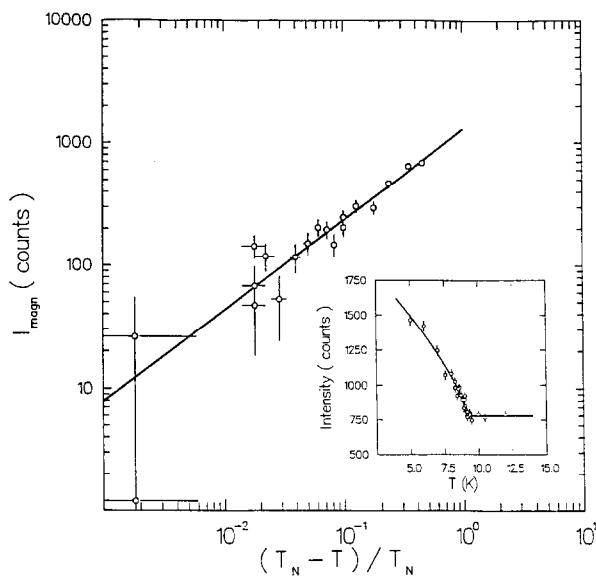


Fig. 3. Temperature dependence of the integrated intensity of the magnetic $(\frac{1}{2}, \frac{1}{2}, 1)$ reflection near the ordering temperature T_N . The full line represents a power-law fit to the data as described in the text. The inset shows the measured integrated intensities as a function of temperature.

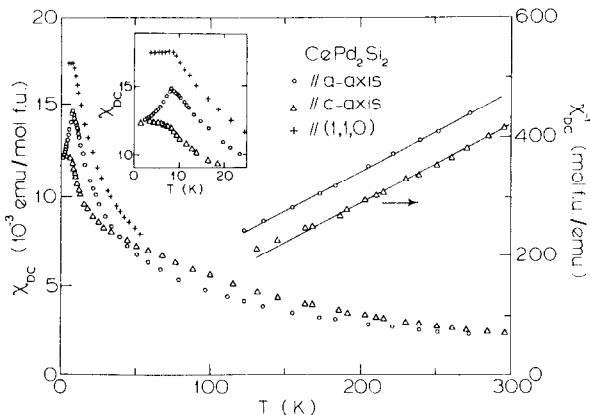


Fig. 4. Temperature dependence of the DC-susceptibility and inverse susceptibility of single crystalline CePd₂Si₂ along several directions.

3. Discussion

The neutron diffraction experiments on CePd₂Si₂ at 4.2 K reveal a large reduction of the local Ce moment to $0.66 \mu_B$ in the anti-ferromagnetically ordered state. By comparing this value with those found in similar systems, ranging from 1.2 to $1.5 \mu_B/\text{atom}$ ¹⁵ and with the results of crystal-field calculations for CeCu₂Si₂ ($1.2 \mu_B/\text{Ce-atom}$)¹⁵, we conclude that

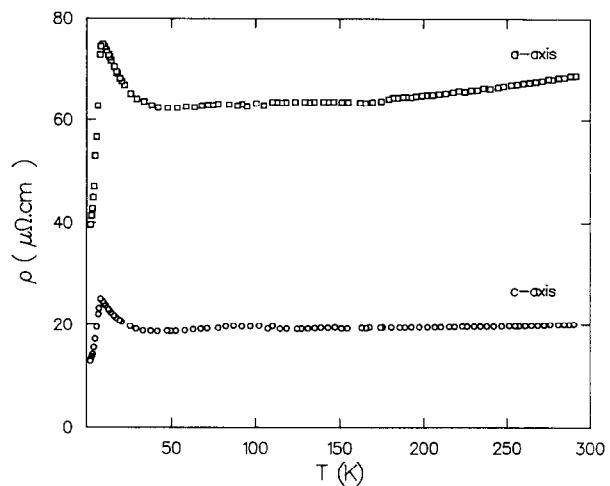


Fig. 5. Temperature dependence of the resistivity of CePd₂Si₂ measured along the a- and c-axis.

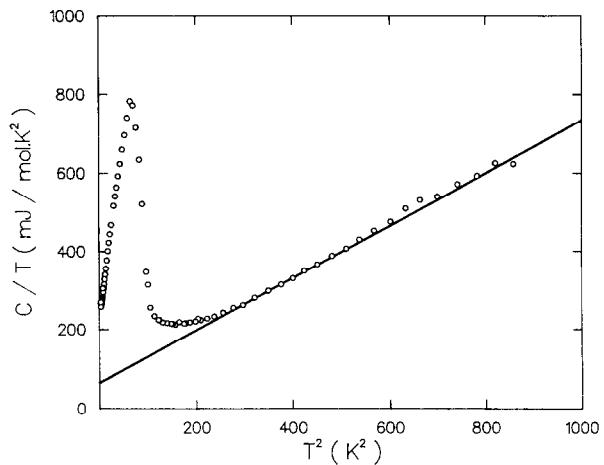


Fig. 6. Specific heat of CePd₂Si₂ plotted as C/T vs. T^2 yielding γ .

this reduction cannot be explained from crystal-field effects alone. We therefore suggest that CePd₂Si₂ is within the transition regime between antiferromagnetism and the Kondo-lattice phase as explained in the introduction. In that case the Kondo spin fluctuations are responsible for the extra moment reduction.

The low value of the effective Ce-moment might be the reason why no critical scattering was observed, in spite of the second-order phase transition at T_N with the accompanying spin fluctuations. The critical exponent $\beta = .37(3)$ is in accordance with renormalisation-group predictions for 3D model systems, and definitely rules out a mean-field behaviour as proposed by Grier et al.⁵

Additional evidence for the presence of spin fluctuations and crystal-field effects is the double-bump structure observed in the resistivity. The same kind of behaviour is found in

CeCu₂Si₂, where spin fluctuations and crystal-field effects are of equal importance.¹⁷ This phenomenon is known as the so-called "Kondo sideband resonances".¹⁸ In CePd₂Si₂, however, this behaviour is cut off by the antiferromagnetic transition at 8.5 K.

The specific-heat measurements also show the onset of Kondo screening through the slight enhancement of the value for γ (65 mJ/mol.K²). The entropy change is small with respect to Rln2, which indicates that the groundstate, Γ , of Ce is strongly perturbed, which may again be due to hybridisation and Kondo spin fluctuations.

The antiferromagnetic ordering pattern for CePd₂Si₂ as obtained from neutron scattering and confirmed by DC-susceptibility measurements, can be explained from the anisotropy of the RKKY-interaction, which favours the formation of antiferromagnetically coupled ferromagnetic planes with spins perpendicular to the planes¹⁹. This planar anisotropy is also responsible for the difference in the extrapolated χ (T=0) values for the field directions parallel to the [001]- and [110]-direction, respectively. The preferred directions of the spins, parallel to [110] or [110], might be due to the crystal fields in CePd₂Si₂. It appears from a simple calculation that in a tetragonal field the Γ , groundstate is affected by other states (in an internal or external magnetic field) and

that the maximum magnetic moment is either along the [001] or along the [110] direction, depending on the sign of the second-order terms of the crystal-field Hamiltonian. Note that in many similar Ce-compounds the moments are directed along [001] in the ordered state.

We conclude that at least three effects are important in CePd₂Si₂: the crystal-field effects, the Kondo spin fluctuations and the RKKY-interaction. For T \geq 125 K CePd₂Si₂ exhibits a Curie-Weiss behaviour with effective Ce-moments of 2.55 μ_B /atom. At intermediate temperatures (8.5 K \leq T \leq 125 K) the Kondo spin fluctuations are dominating, leading to an extra reduction of the magnetic moment. This reduced moment is "frozen in" below T_N=8.5 K, where the RKKY-interaction takes over the leading role, which results in an antiferromagnetically ordered state with very small effective moments.

Acknowledgement - We kindly acknowledge the assistance of C.E. Snel and H.J. Tan, who prepared the powdered sample for neutron diffraction, W.A.H.M. Vlak for his aid with computing and T.T.M. Palstra for giving his permission to use the unpublished DC-susceptibility results. The work in Leiden and Amsterdam was partially supported by the Nederlandse Stichting voor Fundamenteel Onderzoek der Materie (FOM).

References

1. F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz and J. Schäfer, Phys. Rev. Lett., 43, 1892 (1979).
2. T.T.M. Palstra, A.A. Menovsky, G.J. Nieuwenhuys and J.A. Mydosh, J. Magn. Magn. Mat., 54-57, 435 (1986).
3. S. Doniach, Physica, 91B, 231 (1977).
4. J. Lawrence, Phys. Rev. B, 20, 3770 (1979).
5. B.H. Grier, J.M. Lawrence, V. Murgai, R.D. Parks, Phys. Rev. B, 29, 2664 (1984).
6. V. Murgai, S. Raaen, L.C. Gupta and R.D. Parks, in: Valence Instabilities, eds. P. Wachter and H. Boppert (North-Holland, Amsterdam, 1982), 537.
7. M. Jshikawa, H.F. Braun and J.L. Jorda, Phys. Rev. B, 27, 3092 (1983).
8. K. Hiebl, C. Horvath and P. Rogl, J. Less-Comm. Met., 117, 375 (1986).
9. S.K. Dhar and E.V. Sampathkumaran, Phys. Lett. A, 121, 454 (1987).
10. R.D. Parks, B. Reihl, N. Mårtensson and F. Steglich, Phys. Rev. B, 27, 6052 (1983).
11. A. Amato and J. Sierro, J. Magn. Magn. Mat., 478-48, 526 (1985).
12. H.M. Rietveld, J. Appl. Cryst., 2, 65 (1969).
13. M. Blume, A.J. Freeman and R.E. Watson, J. Chem. Phys., 37, 1245 (1962).
14. A.A. Menovsky, C.E. Snel, T.J. Gortenmulder, H.J. Tan and T.T.M. Palstra, J. Cryst. Growth, 74, 231 (1986).
15. S. Horn, E. Holland-Moritz, M. Loewenhaupt, F. Steglich, H. Scheuer, A. Benoit and J. Flouquet, Phys. Rev. B, 23, 3171 (1981).
16. S. Quezel, J. Rossat-Mignod, B. Chevalier, P. Lejay and J. Etourneau, Sol. State Comm. 49, 685 (1984).
17. W. Franz, A. Griessel, F. Steglich and D. Wohlleben, Z. Physik B, 31, 7 (1978).
18. B. Cornut and B. Coqblin, Phys. Rev. B, 5, 4541 (1972).
19. R. Siemann and B. Cooper, Phys. Rev. Lett. 44, 1015 (1980).