

The magnetic structure of CePd_2Ge_2 and $\text{Ce}_2\text{Pd}_3\text{Ge}_5$

R. Feyerherm^{a,*}, B. Becker^b, M.F. Collins^a, J. Mydosh^b, G.J. Nieuwenhuys^b,
S. Ramakrishnan^{b,1}

^aDepartment of Physics and Astronomy, McMaster University, Hamilton, ON, Canada L8S 4M1

^bKOL, Leiden University, 2300 RA Leiden, The Netherlands

Abstract

The magnetic structures of CePd_2Ge_2 and $\text{Ce}_2\text{Pd}_3\text{Ge}_5$ are determined by neutron powder diffraction. Both compounds show antiferromagnetic stacking of ferromagnetic planes of Ce moments, with moment values of $0.85\mu_B$ (parallel to the stacking vector \mathbf{k}) and $1.25\mu_B$ (perpendicular to \mathbf{k}), respectively. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: CePd_2Ge_2 ; $\text{Ce}_2\text{Pd}_3\text{Ge}_5$; Antiferromagnetic ordering; Kondo lattice

The behavior of the series CeT_2M_2 (T = transition metal, M = Si, Ge) is governed by the competition of magnetic exchange and the Kondo interaction [1]. This series can be mapped onto the Kondo-lattice phase diagram, assuming f-d hybridization to be the dominant parameter [2]. Only a few studies have been carried out on the structurally related series $\text{Ce}_2\text{T}_3\text{M}_5$. Recently, a new compound, $\text{Ce}_2\text{Pd}_3\text{Ge}_5$, has been shown to exhibit an antiferromagnetic (AFM) transition at $T_N = 3.8\text{ K}$ [3]. Studies of the related compound CePd_2Ge_2 ($T_N = 5.1\text{ K}$) have been reported previously [4]. Here, we report the ordered magnetic

structures of both these compounds as determined by neutron powder diffraction.

A polycrystalline $\text{Ce}_2\text{Pd}_3\text{Ge}_5$ sample has been prepared and characterized as described previously [3] and CePd_2Ge_2 was prepared by a similar procedure. The neutron diffraction studies have been carried out at the Chalk River Laboratories, Canada. Analysis of the data was carried out using GSAS [5]. CePd_2Ge_2 crystallizes in the tetragonal ThCr_2Si_2 -type structure, space group $\text{I}4/\text{mmm}$, with $a = 4.316(1)\text{\AA}$ and $c = 10.041(1)\text{\AA}$ at $T = 1.8\text{ K}$. $\text{Ce}_2\text{Pd}_3\text{Ge}_5$ crystallizes in the orthorhombic $\text{U}_2\text{Co}_3\text{Si}_5$ -type structure, space group Ibam . At $T = 40\text{ K}$, we find the lattice constants $a = 10.145(1)\text{\AA}$, $b = 12.080(1)\text{\AA}$, $c = 6.1460(5)\text{\AA}$. The atom coordinates are close to those reported for the prototype compound.

Fig. 1 shows the difference of the diffraction patterns measured at $T = 1.8\text{ K} < T_N$ and $T = 5.6\text{ K} > T_N$ for both compounds. On the basis of

*Corresponding author. Tel.: +1 905 5259140, ext. 27402 or 24558; fax: +1 905 5461252; e-mail: ralf@nukie.physics.mcmaster.ca.

¹Present address: Tata Institute of Fundamental Research, Mumbai 400 005, India.

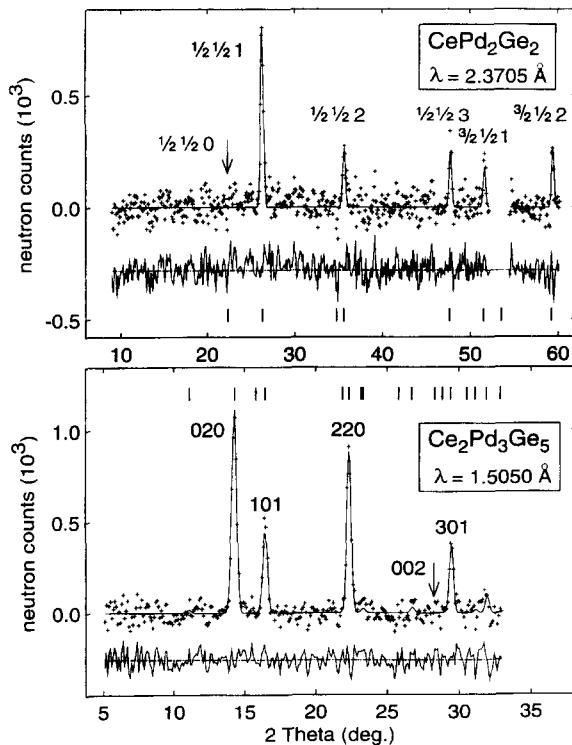


Fig. 1. Difference of the diffraction patterns measured at $T = 1.8 \text{ K} < T_N$ and $T = 5.6 \text{ K} > T_N$; top: for CePd₂Ge₂, bottom: for Ce₂Pd₃Ge₅. Some Bragg reflections are indexed on the basis of the crystallographic unit cells.

the tetragonal unit cell, the observed magnetic Bragg reflections $(h \bar{k} l)$ in CePd₂Ge₂ can be indexed with half-integers h and k and integer l , indicating a doubling of the unit cell in the basal plane. The resulting magnetic structure (see Fig. 2) is characterized by an AFM stacking of (1 1 0) ferromagnetic (FM) planes. The absence of the $(\frac{1}{2} \frac{1}{2} 0)$ reflection shows that the magnetic moments are oriented perpendicular to these planes. We find the ordered moment $\mu = 0.85(5) \mu_B$ at $T = 1.8 \text{ K}$. The same structure has been observed in CePd₂Si₂ ($\mu = 0.62 \mu_B$) [6].

The observed magnetic reflections in Ce₂Pd₃Ge₅ can be indexed with integers h, k, l , indicating that the magnetic and the crystallographic unit cells are identical. The magnetic Bragg pattern is consistent only with an AFM stacking of (0 1 0) FM planes (see Fig. 2). The absence of the (0 0 2) reflection

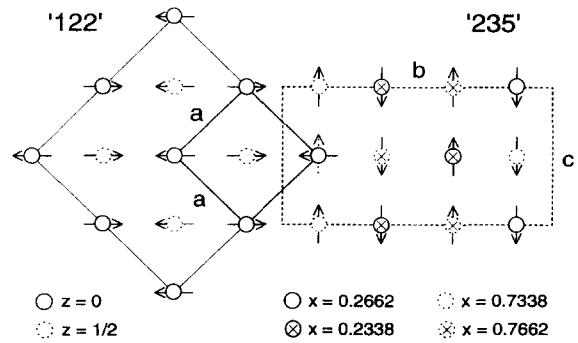


Fig. 2. The magnetic structures of CePd₂Ge₂ ('122') and Ce₂Pd₃Ge₅ ('235'), projected onto the basal plane of the '122' and the bc -plane of the '235' structure, respectively.

shows that the magnetic moments are oriented parallel to these planes. The ordered moment is $\mu = 1.25(5) \mu_B$ at $T = 1.8 \text{ K}$. The very similar arrangement of Ce atoms in both germanides as well as the relationship of the magnetic structures is visualized in Fig. 2. Notably, the stacking of the magnetic moments is equivalent, but their orientation differs by 90°.

Usually, the orientation of the magnetic moments in the ordered state is determined by the easy direction produced by the crystal electric field (CEF). In the case of CePd₂Si₂ and CePd₂Ge₂, however, the reported CEF level schemes correspond to a magnetically easy c -axis [4,7]. The actual orientation of the moments perpendicular to this direction has been discussed in terms of a hybridization-induced anisotropic exchange mechanism, which favors for Ce³⁺ ions the formation of FM coupled planes with the moments perpendicular to these planes [6]. Therefore, the small values of the ordered moments appear not to be due to Kondo screening but to the interplay of the CEF and the anisotropic exchange interaction. In Ce₂Pd₃Ge₅ – as a result of the smaller number of T ions per Ce and an correspondingly reduced hybridization – the ordered moment is of ordinary size. In this case, the moment orientation appears to be solely determined by the CEF.

We gratefully acknowledge experimental support by I.P. Swainson and R.L. Donaberger. This work is partly supported by the Nederlandse Stichting

FOM and by NSERC Canada. One of us (R.F.) is supported by the Deutsche Forschungsgemeinschaft.

References

- [1] G.J. Nieuwenhuys, in: K.H.J. Buschow (Ed.), *Handbook of Magnetic Materials*, vol. 9, Elsevier, Amsterdam, 1995, p. 1.
- [2] T. Endstra et al., *Phys. Rev. B* 48 (1993) 9595.
- [3] B. Becker et al., *Physica B* 230–232 (1997) 253.
- [4] M.J. Besnus et al., *J. Magn. Magn. Mater.* 104–107 (1992) 1387.
- [5] A.C. Larson, R.B. van Dreele, Los Alamos Nat. Lab. Rep. LA-UCR-86-748, 1986.
- [6] B.H. Grier et al., *Phys. Rev. B* 29 (1984) 2664.
- [7] R.A. Steeman et al., *J. Appl. Phys.* 67 (1990) 5203.