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Abstract
The magnetic properties of Sr2IrO4, Na2IrO3, Sr3Ir2O7 and CaIrO3 are discussed, principally
in the light of experimental data in recent literature for Bragg intensities measured in x-ray
diffraction with enhancement at iridium L-absorption edges. The electronic structure factors
we report, which incorporate parity-even and acentric entities, serve the immediate purpose of
making full use of crystal and magnetic symmetry to refine our knowledge of the magnetic
properties of the four iridates from resonant x-ray diffraction data. They also offer a platform
on which to interpret future investigations, using dichroic signals, resonant x-ray diffraction
and neutron diffraction, for example, as well as ab initio calculations of electronic structure.
Unit-cell structure factors, suitable for x-ray Bragg diffraction enhanced by an electric
dipole–electric dipole (E1–E1) event, reveal exactly which iridium multipoles are visible, e.g.,
a magnetic dipole parallel to the crystal c-axis (z-axis) and an electric quadrupole with yz-like
symmetry in the specific case of CaIrO3. Magnetic space-groups are assigned to Sr2IrO4,
Sr3Ir2O7 and CaIrO3, namely, PIcca, PAban and Cm′cm′, respectively, in the
Belov–Neronova–Smirnova notation. The assignment for Sr2IrO4 is possible because of our
new high-resolution neutron diffraction data, gathered on a powder sample. In addition, the
new data are used to show that the ordered magnetic moment of an Ir4+ ion in Sr2IrO4 does
not exceed 0.29(4) µB. Na2IrO3 has two candidate magnetic space-groups that are not
resolved with currently available resonant x-ray data.

(Some figures may appear in colour only in the online journal)

1. Introduction

It is fashionable to study magnetic properties of platinum (5d)
transition-metal oxides that contain iridium (Ir4+, 5d5) using
experimental and theoretical techniques [1–15]. Novelty and
a real possibility that knowledge gained from the studies will
find application in devices and quantum computation drives
the current scientific quest. Materials of interest are insulating,
not withstanding of largely extended 5d-orbitals that favour
a metallic phase (their counterparts in the ruthenates are
metallic or even superconducting), and the paramagnetic
susceptibility either does not follow a Curie–Weiss law or

fitting to such a law gives an unexpected Weiss constant
and effective moment, although this particular puzzle for
Na2IrO3 has an answer [15]. A partially occupied orbital
in the low-spin t5 configuration is a one-electron state,
a situation which accentuates quantum effects that are
non-commonsensical. Total angular momentum is a good
quantum number—the strength of the spin–orbit coupling
increases with atomic number Z for d electrons of a given
column of the Periodic table—meaning that cation spin
and orbital degrees of freedom are inseparables in platinum
compounds. In contrast, orbital degeneracy does not usually
survive in 3d oxides, where eigen-states of the crystal-field
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potential are purely real and orbital angular momentum is
quenched or much reduced making typically no more than a
10% contribution to the magnetic moment.

The experimental technique of x-ray Bragg diffraction
enhanced by an atomic resonance has been used to great effect
in recent studies of magnetic properties of iridates [4, 6, 7,
11, 13]. (The efficacy of neutron diffraction is diminished
by strong Ir absorption.) Tuning the primary x-ray energy to
iridium L-edges (L2 ≈ 12.82 keV and L3 ≈ 11.21 keV) yields
direct information from Bragg intensities on charge, spin and
orbital degrees of freedom in 5d-orbitals, when absorption
proceeds via an electric-dipole transition (E1). A feature
of particular relevance is that, orbital angular momentum
is observed when intensity at one absorption edge is zero,
as is often found to be the case. Stringent conditions on
the magnetic space-group can be derived from published
diffraction data taken together with bulk properties, as we
shall demonstrate with four iridates in this communication.

To interpret published data, we exploit an atomic
model of resonant x-ray scattering that is convenient to
make best use of symmetry, symmetry within the scattering
process and symmetry imposed by physical properties of
the crystal (Neumann’s principle) [16–19]. Two of the four
iridates, Sr2IrO4 [4] and Na2IrO3 [6], are the subjects
of previous successful investigations [14, 15]. Here, we
add additional information, particularly about Sr2IrO4 with
magnetic propagation vector (1, 1, 1). Using new data
gathered on a powder sample of Sr2IrO4 by neutron
diffraction, in conjunction with published x-ray data [4], we
can assign a bi-dimensional irreducible representation M4 and
a magnetic space-group PIcca (Ipb′ca), specified in terms of
the Miller and Love notation and Belov–Neronova–Smirnova
and Opechowski–Guccione (in brackets) notations. X-ray
diffraction data for the two remaining iridates in this
communication, Sr3Ir2O7 [11] and CaIrO3 [13], have
not previously been interpreted by us. We show that
extensive published data [11] gathered on magnetically
ordered Sr3Ir2O7 are entirely consistent with one of two
candidate magnetic space-groups, namely, PAban (Cpcca)
with magnetic propagation vector at Y-point of symmetry
(1, 0, 0). In addition to this, we demonstrate conditions
on the iridium wavefunction necessary to match observed
intensities. While for CaIrO3 [13] we establish a magnetic
propagation vector = 0 at the 0–point of symmetry (in
this case, the two notations, Belov–Neronova–Smirnova and
Opechowski–Guccione, coincide). Published observations of
x-ray Bragg diffraction permit us to make an unambiguous
assignment of the magnetic space-group, Cm′cm′ with a
ferromagnetic component parallel to the b-axis and an
antiferromagnetic motif of magnetic dipoles aligned along
the c-axis. For all four materials we construct electronic
structure factors in terms of atomic multipoles that describe
parity-even and, when allowed by an absence of symmetry,
acentric magnetic properties.

Section 2 is a précis of the case for and properties
of atomic multipoles in the interpretation of resonant x-ray
diffraction and absorption (dichroic signals). Thereafter, we
work through magnetic properties of the four mentioned
iridates. Findings are gathered and discussed in section 7.

2. Multipoles

An atomic multipole is a property of the ground-state
of a material, and it encapsulates electron charge, spin
and orbital degrees of freedom [16–19]. Using angular
brackets 〈· · ·〉 to denote the expectation value of the enclosed
operator, 〈OK

Q〉 = 〈O
K
Q〉
′
+ i〈OK

Q〉
′′ is a spherical, atomic

multipole of integer rank K and projection Q (−K ≤
Q ≤ K) with parity signature σπ = ±1. The complex
conjugate obeys 〈OK

Q〉
∗
= (−1)Q〈OK

−Q〉with 〈OK
0 〉 purely real.

Rotations around orthogonal axes by 180◦ yield C2x〈OK
Q〉 =

(−1)K〈OK
−Q〉,C2y〈OK

Q〉 = (−1)K+Q
〈OK
−Q〉, and C2z〈OK

Q〉 =

exp(iπQ)〈OK
Q〉 = (−1)Q〈OK

Q〉.
Parity-even resonant events, such as dipole–dipole

(E1–E1) and quadrupole–quadrupole (E2–E2), are described
with multipoles 〈TK

Q 〉 that have σπ = +1 and a time signature

σθ = (−1)K . Two types of multipole are used for parity-odd
resonant events, including electric dipole–magnetic dipole
(E1–M1) and dipole–quadrupole (E1–E2). Both multipoles
have σπ = −1, of course, with 〈GK

Q〉 time-odd (σθ = −1) and

〈UK
Q〉 time-even (σθ = +1) [16–19].

Physical properties of 〈TK
Q 〉 are discussed by Carra

et al [20] and Lovesey and Balcar [21]. For the moment, it is
enough to quote sum-rules for integrated intensities at L2 and
L3 absorption edges. For magnetic dipole moments (K = 1),

〈T1
〉L2 + 〈T1

〉L3 = −〈L〉d/(10
√

2), (2.1)

where 〈L〉d is orbital angular momentum in the nd-
valence state. Note that Cartesian components and spherical
components of a dipole R are related by Rx = (R−1 −

R+1)/
√

2,Ry = i(R−1 + R+1)/
√

2, and Rz = R0. The
corresponding quadrupole (K = 2) sum-rule is,

〈T2
〉L2 + 〈T2

〉L3 = 〈{L⊗ L}2〉d/60, (2.2)

where the tensor product {L ⊗ L}2 has for its diagonal
component (Q = 0) a value {L ⊗ L}20 = [3L2

z − L(L +
1)]/
√

6, which demonstrates affinity to a standard, parity-even
quadrupole operator.

Turning to magneto-electric multipoles, 〈GK
Q〉, we cite

the sum-rule for anapoles (K = 1) [24]. This involves the
expectation value of the electric-dipole, R, in a vector product
with the magnetic moment, µ = (L+ 2S), namely,

〈G1
〉L2 + 〈G1

〉L3 = −〈(R× µ)〉d/(2
√

2). (2.3)

Magnetic charge, 〈G0
0〉, can contribute to an E1–M1 event for

which K = 0–2.
Figure 1 illustrates the geometry of an x-ray Bragg

diffraction experiment. In the Bragg setting, primary and
secondary wavevectors satisfy q − q′ = (h, k, l) where h, k, l
are Miller indices, and θ is the Bragg angle. In line with
current practice, σ labels primary polarization normal to
the plane of scattering and π ′ labels secondary polarization
parallel to the plane.

A unit-cell structure factor, F, suitable for the interpre-
tation of Bragg diffraction patterns created with x-rays or

2
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Figure 1. The diagram illustrates the Cartesian coordinate system
(x, y, z) adopted for Bragg diffraction and the relation to states of
polarization, σ and π , in the primary (unprimed) and secondary
(primed) beams of x-rays. The beam is deflected through and angle
2θ , and q and q′ are primary and secondary wavevectors.

neutrons is constructed from [16],

9K
Q =

∑
d

exp(id · k)〈OK
Q〉d, (2.4)

where the sum is over all (resonant) ions at position d in
the unit cell, and the scattering wavevector k = (h, k, l).
Magnetization, dichroic signals and other bulk properties
allowed by the crystal-class are described by 9K

Q evaluated
with k = 0. On the other hand, elements of the full magnetic
space-group appear in Bragg diffraction, which consequently
provides more information on a crystal than a bulk property.

Universal expressions for F, in all four polarization
channels of resonant x-ray diffraction (σ ′σ, σ ′π, π ′σ, π ′π ),
are presented neatly in terms of quantities AK

Q and BK
Q that

are even and odd functions of Q, namely, AK
Q = (9K

Q +

9K
−Q)/2 and BK

Q = (9
K
Q − 9

K
−Q)/2, with 9K

Q evaluated in
the setting depicted in figure 1 (possibly chosen as the origin
of an azimuthal-angle scan). All unit-cell structure factors for
E1–E1,E1–E2 and E2–E2 events are catalogued by Scagnoli
and Lovesey [17] and corresponding results for E1–M1 by
Lovesey and Scagnoli [18].

3. Sr2IrO4

Space-group I41/acd (#142), tetragonal, centrosymmetric
crystal-class D4h (4/mmm), with origin choice 2, and
body-centring ( 1

2 ,
1
2 ,

1
2 ). Ir ions occupy sites 8(a) 1

2 ,
1
4 ,

1
8 ;

0, 3
4 ,

1
8 ;

1
2 ,

3
4 ,

3
8 ; 0,

1
4 ,

3
8 that are not centres of inversion

symmetry, and the point group is IC4c(4̄).
A magnetic dipole is an axial quantity and unchanged by

inversion, I. Thus IC4c〈T1
Q〉 = C4c〈T1

Q〉 = exp(iπQ/2)〈T1
Q〉 =

〈T1
Q〉 is satisfied by Q = 0 and the dipole is parallel to

the c-axis. This finding disagrees with experimental data,
which are consistent with magnetic dipoles normal to the
c-axis. The appropriate point group is C′2c〈T

K
Q 〉 = θC2c〈TK

Q 〉 =

(−1)K+Q
〈TK

Q 〉 = 〈T
K
Q 〉, where θ denotes the operation of

reversing the direction of time. On the other hand, C′2c〈G
K
Q〉 =

−(−1)Q〈GK
Q〉 = 〈G

K
Q〉, since σθ (= σπ ) = −1. Given Q odd

for all K the anapole (toroidal dipole) with Q = ±1 is

Figure 2. Sr2IrO4; magnetic dipole components in the a–b plane
associated with M3 (left) and M4 (right) irreps.

likewise normal to the c-axis, while magnetic charge, 〈G0
0〉,

is a forbidden acentric magnetic multipole.

3.1. Resonant x-ray Bragg diffraction

Resonant x-ray Bragg diffraction data for the K2NiF4-type
single-layer perovskite at space-group forbidden reflections
are reported by Kim et al [4]. In the absence of an applied
magnetic field, intensity is observed at (h, k, l) with integer
Miller indices, h + k + l odd and space-group forbidden;
specifically, (0, 1, 4n+2), (1, 0, 4n) and (0, 0, 2n+1). (Direct
resonant inelastic x-ray scattering with full momentum
dependence is the subject of [22, 23].)

A body-centring anti-translation θ( 1
2 ,

1
2 ,

1
2 ) is necessary

with magnetic propagation vector (1, 1, 1) [14]. Using
group-theoretical methods implemented into ISOTROPY [30]
and ISODISTORT [31] software, different magnetic dipole
configurations transforming as basis functions of irreducible
representations (irreps) associated with this propagation
vector have been systematically studied. Two bi-dimensional
irreps M3 and M4 with equal components of the corre-
sponding order parameters resulting in the PIbca (Ipbca) and
PIcca (Ipb′ca) magnetic space-groups are consistent with the
observed reflection conditions and they are not distinguished
in resonant Bragg diffraction. The allowed magnetic dipole
components in the a–b plane for these two cases are shown
in figure 2. In consequence, motifs of magnetic dipoles in
this plane are +, +, −, − (a-component) and +, −, +,
− (b-component) for M3, and +, −, +, − (a-component) and
+, +, −, − (b-component) for M4.

Using σπ = +1, corresponding electronic structure
factors are,

M3;9
K
Q = 2(−1)h exp(iπk/2)

×[exp(iϕ)+ (−1)Q(−1)h+l exp(−iϕ)]

× [〈TK
Q 〉 + (−1)K(−1)h+k

〈TK
−Q〉], (3.1)

3
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Figure 3. Sr2IrO4; Rietveld refinement of the neutron diffraction
data measured at 1.6 K. Inset shows two patterns collected at
different temperatures near the position where the strongest (1, 0, 2)
magnetic reflection is observed.

and,

M4;9
K
Q = 2(−1)h exp(iπk/2)

×[exp(iϕ)+ (−1)Q(−1)h+l exp(−iϕ)]

× [〈TK
Q 〉 + (−1)K+Q(−1)h+k

〈TK
−Q〉], (3.2)

where ϕ = π l/4. There are two cases: (a) charge reflections
with h+k+l even and multipoles 〈TK

〉with K even unchanged
by IC4c, and (b) magnetic reflections with h + k + l odd
and multipoles 〈TK

〉 with K odd unchanged by C′2c, which
requires Q odd. The latter condition on Q tells us that M3
and M4 represent diffraction from orthogonal components of
〈T1
〉. For (3.1) and (3.2) differ in a factor (−1)Q between 〈TK

Q 〉

and 〈TK
−Q〉, and nothing more, and 〈T1

1 〉 + 〈T
1
−1〉 = −i

√
2〈T1

b 〉

while 〈T1
1 〉 − 〈T

1
−1〉 = −

√
2〈T1

a 〉. In the absence of prior
knowledge about 〈T1

a 〉 and 〈T1
b 〉 resonant x-ray diffraction

does not distinguish M3 from M4.
Unit-cell structure factors for diffraction enhanced by

an E1–E1 event found in Chapon and Lovesey [14] are
derived from (3.2). Structure factors for M3 are obtained by an
exchange 〈T1

a 〉 ⇔ 〈T
1
b 〉 in the reported M4 structure factors.

3.2. Neutron powder diffraction

Since our analysis of resonant x-ray diffraction data in
combination with symmetry arguments did not resolve the
two magnetic motifs shown in figure 2, we performed a
suitable neutron diffraction experiment. The measurements
were done on 1 g powder sample using a time-of-flight
diffractometer, WISH, located at the ISIS facility, Rutherford
Appleton Laboratory (UK). In spite of the large absorption
cross section of Ir, our data in figure 3 are of high quality with
very low background, achieved by appropriate shielding and
use of a home-made Al-foil sample can.

A room temperature diffraction pattern was satisfactorily
refined in the I41/acd (#142) space-group proposed by

Crawford et al [32]. Below the transition temperature∼240 K,
an extremely weak but statistically significant additional
reflection was detected at the position consistent with the (1,
1, 1) propagation vector (figure 3 inset). Observation of this
magnetic signal in combination with a quantitative Rietveld
refinement (figure 3) allowed us to unambiguously confirm
PIcca (Ipb′ca) as the appropriate magnetic space-group,
with an M4 motif of magnetic dipoles depicted on the
right in figure 2. The magnetic form-factor parameters for
Ir4+ ions used in the refinement were taken from the
recent pseudo-relativistic Hartree–Fock calculations made by
Kobayashi et al [33], together with independent relativistic
calculations by Desclaux [34].

As discussed in section 3.1, magnetic symmetry
PIcca (Ipb′ca) implies the presence of two orthogonal motifs,
+, −, +, − along the a-axis and +, +, −, − along the b-axis.
The refinement procedure on data collected with a sample
temperature of 1.6 K yields the statistically significant value
0.24(4) µB only for the magnetic moment along the a-axis.
The presence of a second mode, along the b-axis, does not
directly follow from neutron diffraction data but an admixture
of this component is expected based on magnetic symmetry,
which allows a bilinear coupling between the associated
order parameters via antisymmetric Dzyaloshinskii–Moriya
exchange. Moreover, the experimental observation of the
(0, 0, 2n+1) reflections in resonant x-ray scattering, discussed
in the previous section, testifies to the presence of a motif +,
+, −, −. Our neutron diffraction data gives the upper limit
for this component to be 0.17 µB, which means that the total
ordered moment of the Ir4+ ions in Sr2IrO4 does not exceeds
the value 0.29(4) µB.

4. Na2IrO3

Space-group C2/m (#12, unique axis b), monoclinic and
a centrosymmetric crystal-class C2h (2/m) with C-centring
( 1

2 ,
1
2 , 0). Ir ions occupy sites 4(g) that possess a diad axis of

rotation symmetry parallel to the b-axis, C2b, and ions are at
sites 0, y, 0; 0,−y, 0. Choi et al [8] and Ye et al [10] agree
that the general coordinate y = 0.333.

A point group C2b confines dipoles to lay along
the b-axis. However, Lovesey and Dobrynin [15] have
demonstrated, beyond reasonable doubt, that magnetic dipoles
are normal to the b-axis, and the appropriate point group
is C′2b ≡ θC2b. In this case, all 〈TK

Q 〉 are purely real, with

〈T1
b 〉 = 0. In addition, magnetic charge is forbidden while the

anapole is normal to the b-axis.

4.1. Resonant x-ray Bragg diffraction

Resonant x-ray Bragg diffraction data for the honeycomb-
lattice layered perovskite have been reported by Liu et al [6]
and reflections indexed on the space-group C2/c. This
space-group is revised to C2/m by Choi et al [8], for which
magnetic reflections (h, k, l) have Miller indices h, k integer
and l half-integer. Reflections h + k odd observed by Liu
et al [6] are space-group forbidden.

4
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Figure 4. Na2IrO3; magnetic dipole components normal to the
b-axis associated with M+2 (top) and M−2 (bottom) irreps.

With space-group C2/m and magnetic propagation
vector (0, 1, 1

2 ), there are two possible irreps M+2 and M−2
transforming magnetic dipoles in the a–c plane with the
corresponding magnetic space-groups Cc2/c (C2c2/m′) and
Cc2/m (C2c2/m). Each irrep has two sets of basis functions
(magnetic modes), meaning that the direction of magnetic
dipoles within the a–c plane is not fixed by symmetry and can
be arbitrary (figure 4). Since there are no symmetry reasons,
the magnetic dipoles are very unlikely to be exactly along the
a-axis. Lovesey and Dobrynin [15] point out that data reported
by Liu et al [6] are unequivocal evidence for 〈T1

c 〉 different
from zero. The pattern of magnetic dipoles labelled zig-zag
by Choi et al and Ye et al corresponds to M−2 .

In M+2 environments at sites 0, y, 0 and 0,−y, 0 are
related by inversion, I, and thus the motif of magnetic dipoles
is +, +. The structure factor for electronic properties of
iridium ions is readily found to be,

M+2 ;9
K
Q = [1+ σθ (−1)h+k

][exp(iϕ)

+ σπ exp(−iϕ)]〈OK
Q〉, (4.1)

where 〈OK
Q〉 is the multipole for site 0, y, 0, and ϕ = 2πky.

The signature σθ arises from an anti-translation element
in the magnetic motif, and its presence in 9K

Q is justified

by the observation of diffraction at (0,−1, 11
2 ), and related

reflections, absent if σθ = +1. The point group determines
the relation between 9K

−Q and 9K
Q , and 9K

−Q = (−1)Q9K
Q

for all K and σπ = +1, with 9K
Q purely real. The identity

9K
−Q = (−1)Q9K

Q holds for M−2 , in which environments are
related by a product of time reversal and inversion, θ I, leading
to a magnetic motif +, −, and a structure factor,

M−2 ;9
K
Q = [1+ σθ (−1)h+k

][exp(iϕ)

+ σθσπ exp(−iϕ)]〈OK
Q〉. (4.2)

Looking at the two structure factors (4.1) and (4.2),
appropriate for M+2 and M−2 , they differ only with respect to
a dependence on Miller index k through the phase angle ϕ =
2πky, which will either be cos(ϕ) or [i sin(ϕ)] for magnetic
diffraction (σθ = −1) and an E1–E1 event (σπ = +1).

Unit-cell structure factors for diffraction enhanced by an
E1–E1 event are discussed by Lovesey and Dobrynin [15] in
the context of diffraction data collected for a single value of
|k|, namely (0,±1, l)with l half-integer, in which case it is not
possible to distinguish between M+2 and M−2 using resonant
x-ray Bragg diffraction.

5. Sr3Ir2O7

Space-group Bbcb (#68 origin choice 1), orthorhombic
(alternative setting of Ccca derived using the transform
abc→ bca), and centrosymmetric crystal-class D2h (mmm)
with B-centring ( 1

2 , 0, 1
2 ) [25]. Ir ions on sites 8(e) with

point group C2c, with four Ir ions at sites 0, 0, z; 1
2 , 0, 1

2 −

z; 1
2 ,

1
2 ,−z; 0, 1

2 ,
1
2+z. The general coordinate z= 0.097 [26].

From C2c〈OK
Q〉 = (−1)Q〈OK

Q〉 = 〈O
K
Q〉 it follows that Q is

even for both values of σπ . Whence, dipoles 〈O1
a〉 = 〈O

1
b〉 = 0,

and magnetic charge is allowed in an E1–M1 event. Like 〈T1
〉,

the anapole, 〈G1
〉, is parallel to the c-axis but it does not

contribute to diffraction with k + l even. Sr3Ir2O7 is a bilayer
variant of the single layer Sr2IrO4, which is the subject of
section 3, and the two iridates support orthogonal alignments
of Ir magnetic dipoles.

5.1. Resonant x-ray Bragg diffraction

Diffraction data enhanced at L2 and L3 absorption edges have
been published by Kim et al [11] for reflections (h, k, l) with
integer Miller indices, and conditions h+ k odd and h+ l odd
(k+l even) that are space-group forbidden. Our analysis shows
that the magnetic propagation vector is (1, 0, 0), with two
candidates for the magnetic space-group Pccca (Cpc′ca) or
PAban (Cpcca) associated with the one-dimensional irreps Y+3
and Y−1 , respectively (figure 5). The latter is shown to be the
correct choice by appealing to data for integrated intensities
as a function of Miller index l that is displayed in figure 6.

For Y+3 environments relative to 0, 0, z are derived
with C2b, θI and θ IC2b, respectively, and the corresponding
motif of dipole moments is +, −, −, +. Employing an

5
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Figure 5. Sr3Ir2O7; magnetic dipole configuration associated with
Y−1 irrep.

anti-translation and Q even, the electronic structure factor is,

Y+3 ;9
K
Q = [1+ σθ (−1)h+l

][exp(iϕ)

+ σθσπ (−1)h+k exp(−iϕ)]

× [〈OK
Q〉 + σθσπ (−1)k+l+K

〈OK
−Q〉], (5.1)

where the first factor expresses a restriction on Miller
indices from an anti-translation element, and we find 9K

−Q =

σθσπ (−1)k+l+K9K
Q . The phase angle ϕ = 2π lz. Turning to

the second candidate, Y−1 , environments relative to 0, 0, z
are derived with θC2b, I and θ IC2b, respectively, and the
corresponding motif of dipole moments is +, +, +, +. The
remaining four environments are generated by application of
time reversal, θ , that creates a motif with opposite polariza-
tions and − replaces +. The electronic structure factor is,

Y−1 ;9
K
Q = [1+ σθ (−1)h+l

]

× [exp(iϕ)+ σπ (−1)h+k exp(−iϕ)]

× [〈OK
Q〉 − σπ (−1)k+l+K

〈OK
−Q〉]. (5.2)

Time-even multipoles (σθ = +1) do not contribute at
reflections h + l odd studied by Kim et al [11], and observed
intensity will vanish with increasing temperature and loss of
magnetic order.

Figure 6. Sr3Ir2O7; integrated intensity in the π ′σ channel of
scattering as a function of Miller index l for reflections (1, 0, l) with
l even and (0, 1, l) with l odd. Experimental data from Kim
et al [11] are shown by red points. Black points are proportional to
[sinϕ sin(θ − α)]2 which is the intensity variation predicted for
irrep Y−1 ,PAban (Cpcca) with an azimuthal angle ψ = 180◦. An
overall scale factor is the only fitting parameter between
experimental data and the simulation.

We specialize to σπ = +1, and construct corresponding
unit-cell structure factors. With h + l odd and k + l even
we satisfy conditions in the resonant x-ray Bragg diffraction
experiment and find,

Y+3 ;9
K
Q = 4 cosϕ[〈TK

Q 〉 + 〈T
K
−Q〉], (5.3)

and,

Y−1 ;9
K
Q = 4i sinϕ[〈TK

Q 〉 + 〈T
K
−Q〉], (5.4)

where Q is even and K odd, i.e., non-magnetic scattering is
forbidden and F(E1–E1)σ ′σ = 0.

Euler angles α, β, γ define the setting of the crystal at the
origin of an azimuthal-angle scan, ψ = 0, defined in figure 1,
where ψ is the angle of rotation of the crystal about the Bragg
wavevector (h, k, l) = ha∗+ kb∗+ lc∗. By definition [16, 17],

AK
Q + BK

Q = exp(iQα)
∑

q
dK

Q,q(β) exp(iqγ )9K
q , (5.5)

with q = 0,±1, . . . ,±K in the general case, and dK
Q,q(β) an

element of the Wigner rotation matrix. For the case in hand K
is odd and q even.

Let the unit vector (t1, t2, t3) = (h, k, l)/|(h, k, l)| For
(h, 0, l) with a∗ in the plane of scattering, sin(α) =
t1, cos(α) = −t3 and β = γ = π/2. One finds A1

0 = 0, and A1
1

and B1
1 proportional to 91

0 = 8〈T1
c 〉 and purely real. Whence,

Y+3 ;F(E1–E1)π ′σ =−i4
√

2〈T1
c 〉 cosϕ[sin θ cosα

+ cos θ sinα cosψ],

F(E1–E1)π ′π = −i4
√

2〈T1
c 〉 cosϕ sin(2θ) sinα sinψ,

(5.6)
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and,

Y−1 ;F(E1–E1)π ′σ =4
√

2〈T1
c 〉 sinϕ[sin θ cosα

+ cos θ sinα cosψ],

F(E1–E1)π ′π = 4
√

2〈T1
c 〉 sinϕ sin(2θ) sinα sinψ,

(5.7)

together with F(E1–E1)σ ′σ = 0. Turning to reflections
(0, k, l) with b∗ in the plane of scattering at ψ = 0, sin(α) =
t2, cos(α) = −t3, β = π/2 and γ = 0. The foregoing unit-cell
structure factors, calculated for (h, 0, l), are the correct ones
for (0, k, l) upon using appropriate values of θ and α. For
both types of reflection there is no diffraction at the origin
of the azimuthal-angle scan, ψ = 0, in the unrotated channel
of scattering, π ′π . In this polarization channel, diffraction
by magneto-electric multipoles is also proportional to sin(ψ)
and, consequently, it is not the origin of the small intensity
reported by Kim et al [11].

Integrated intensity in the π ′σ channel of scattering as a
function of Miller index l is proportional to [cosϕ sin(θ±α)]2

for Y+3 and [sinϕ sin(θ ± α)]2 for Y−1 , where the two signs
are for ψ = 180◦ (−) and ψ = 0◦ (+). All three angles,
ϕ, θ and α, are functions of Miller index l. Data reported
by Kim et al [11], reproduced in figure 6, are seen to be
well represented by [sinϕ sin(θ − α)]2. We conclude for the
iridate Sr3Ir2O7 that the magnetic motif is Y−1 ,PAban (Cpcca)
with propagation vector (1, 0, 0). The configuration of dipole
moments is the same as that depicted by Kim et al [11],
although the propagation vector is not (0, 0, 0) quoted by the
authors. It is notable that our simulation of intensity of Y−1 ,
namely [sinϕ sin(θ ± α)]2, shows remarkable differences for
ψ = 180◦ (−) and 0◦ (+), with [sin(θ−α)]2/[sin(θ+α)]2 =
55.0 at l = 13. Using figure 1, a setting ψ = 180◦ places the
a-axis mostly along q + q′ for reflections (1, 0, l) and l large
and even, and the b-axis mostly along q + q′ for (0, 1, l) and
l large and odd.

Finally, we point out that the magnetic symmetry
PAban (Cpcca) deduced with the foregoing arguments does
not allow a weak ferromagnetic component. Observation
of the latter is reported; see, for instance, [28, 29].
This inconsistency most probably relates to the crystal
structure symmetry which must be different from Bbcb. This
space-group was deduced as a possible distorted variant of
the parent I4/mmm symmetry with the ( 1

2 ,
1
2 , 0) propagation

vector (X-point of symmetry). Considering others isotropy
subgroups of I4/mmm with this propagation vector, we found
that the magnetic motif shown in figure 5 in combination
with either Cmcm or Cmma crystal structure symmetry will
result in the Cm′cm′ or Cm′m′a, magnetic space-groups,
respectively, which allow in-plane weak ferromagnetic
component. Thus, more experimental efforts are necessary
to reinvestigate the crystal structure of Sr3Ir2O7 and make it
consistent with the observed physical properties.

5.2. Iridium ground-state wavefunction

Much is written about the role of a Jeff =
1
2 state in explaining

novel features of iridates [1–15]. It is composed entirely of 5d
electron states with total angular momentum j = 5

2 , states that

do not contribute to diffraction enhanced by the L2 absorption
edge, because they violate selection rules for an E1–E1 event.
Hence, experimental observation of next to no intensity at
the L2 absorption edge might be viewed as evidence of an
electron state dominated by Jeff =

1
2 . It has been shown in

the case of Sr2IrO4 that zero intensity at the L2 absorption
edge can be achieved with an iridium state that contains
j = 3

2 , meaning that said state is assuredly not Jeff =
1
2 [14].

Magnetic dipole moments in Sr2IrO4 are normal to the c-axis.
Here we re-visit the argument for zero intensity at the L2
absorption edge using j = 3

2 for dipoles parallel to the c-axis,
which is appropriate for Sr3Ir2O7. We conclude that 〈T1

c 〉L2 =

0 is possible with an iridium ground-state that includes states
j = 3

2 and, consequently, the state is not Jeff =
1
2 .

Let one component of a Kramers doublet be,

|u〉 =
∑
j,m

0(j,m)|j,m〉, with

∑
j,m

|0(j,m)|2 = 1, (5.8)

where j = 3
2 and 5

2 for a d-state, and 0(j,m) are coefficients
with properties to be determined. The second component of
the doublet |v〉 = θ |u〉 is constructed from |u〉 with a standard
convention θ(0(j,m)|j,m〉) = (−1)j−m0(j,m)∗|j,−m〉. A
trial ground-state [f |v〉 + |u〉]/

√
(1 + |f |2), with a complex

mixing parameter f , gives for the expectation value 〈TK
c 〉 =

〈TK
0 〉 of interest,

〈TK
0 〉 = (1+ |f |

2)−1
∑
j,j′,m

〈j,m|TK
0 |j
′,m〉

× [0(j,m)∗0(j′,m)− |f |20(j,m)0(j′,m)∗

+ (−1)j
′
+m
{f0(j,m)∗0(j′,−m)∗

+ f ∗0(j,m)0(j′,−m)}], (5.9)

with K odd, and the matrix element 〈j,m|TK
0 |j
′,m〉 purely real.

Coefficients 0(j,m) and f are chosen to meet the requirement
that 〈TK

0 〉 is purely real. Contributions proportional to f
are purely real for arbitrary 0(j,m) and f . Remaining
contributions to 〈TK

0 〉 must obey Im[0(j,m)∗0(j′,m)] = 0.
We satisfy this condition in the simplest manner and choose
all 0(j,m) purely real and go on to find,

〈TK
0 〉 = (1+ |f |

2)−1
∑
j,j′,m

〈j,m|TK
0 |j
′,m〉

× [(1− |f |2)0(j,m)0(j′,m)

+ 2f ′(−1)j
′
+m0(j,m)0(j′,−m)], (5.10)

where f ′ = Real f .
Next, we specialize to the L2 absorption edge, for which

the matrix element 〈j,m|TK
0 |j
′,m〉 = 0 unless j = j′ = 3

2 , and
a magnetic dipole (K = 1),

〈T1
0 〉L2 = [18

√
2(1+ |f |2)]−1

×[(|f |2 − 1){30(j, 3
2 )

2
− 30(j,− 3

2 )
2

+ 0(j, 1
2 )

2
− 0(j,− 1

2 )
2
}

+ 4f ′{30(j, 3
2 )0(j,−

3
2 )− 0(j,

1
2 )0(j,−

1
2 )}],

(5.11)
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with j = 3
2 . Our expression for 〈T1

0 〉L2 is quite general
apart from selecting purely real coefficients rather than some
other, more complicated, choice of coefficients that satisfy
Im[0(j,m)∗0(j,m)] = 0. A similar calculation reveals that the
requirement 〈T1

±1〉L2 = 0 is met for f = 1 and coefficients that
obey the identity,

〈T1
±1〉L2 ∝ 0(j,− 1

2 )[
√

30(j, 3
2 )+ 0(j,−

1
2 )]

− 0(j, 1
2 )[
√

30(j,− 3
2 )+ 0(j,

1
2 )] = 0. (5.12)

If
√

30(j, 3
2 )+ 0(j,−

1
2 ) = 0 and

√
30(j,− 3

2 )+ 0(j,
1
2 ) = 0

we see that 〈T1
0 〉L2 and 〈T1

±1〉L2 are both zero, using f = 1.

Another example is one coefficient with m = ± 3
2 different

from zero, akin to the case encountered for Sr2IrO4 [14]. At
the L3 absorption edge, 〈T1

0 〉L3 need not be zero because it
depends on products 0( 3

2 ,m)0( 5
2 ,m′) and 0( 5

2 ,m)0( 5
2 ,m′)

while conditions apply to 0( 3
2 ,m) in order that contributions

0( 3
2 ,m)0( 3

2 ,m′) lead to 〈T1
〉L2 = 0.

6. CaIrO3

Space-group Cmcm (#63), orthorhombic, centrosymmetric
crystal-class D2h (mmm) with C-centring ( 1

2 ,
1
2 , 0). Crystal

physics of the layered post-perovskite CaIrO3 is thoroughly
reviewed by Cheng et al [12]. In the chemical structure Ir
ions use sites 4(a) that are centres of inversion symmetry with
a diad axis of rotation symmetry parallel to the a-axis, C2a.
Ions occupy sites 0, 0, 0; 0, 0, 1

2 that are centres of inversion
symmetry.

To match observations made with resonant x-ray Bragg
diffraction [13], we find it is necessary to invoke the symmetry
of an odd diad C′2a ≡ θC2a that confines magnetic dipoles
to the b–c plane, while sites used by Ir ions remain centres
of inversion symmetry. In addition, environments at positions
0, 0, 0 and 0, 0, 1

2 differ by a two-fold rotation about the
b-axis, C2b, creating a motif +, − for magnetic dipoles
aligned along the c-axis. In the chemical structure and a point
group 2/m,C2b is equivalent to C2c = C2bC2a but this is
no longer the case with magnetic order. Because a centre of
inversion symmetry exists, we need consider only parity-even
multipoles, with σθ = (−1)K , that satisfy 〈TK

Q 〉 = θC2a〈TK
Q 〉 =

〈TK
−Q〉 resulting in the identity 〈TK

Q 〉 = (−1)Q〈TK
Q 〉
∗.

6.1. Resonant x-ray Bragg diffraction

Resonant x-ray diffraction has been reported by Ohgushi
et al [13]. Intensity is observed at space-group forbidden
reflections (0, 0, l) with l an odd integer. Templeton and
Templeton scattering by electric quadrupoles (K = 2) with
angular anisotropy is allowed [27], as we shall see.

A short calculation leads to an electronic structure factor,

9K
Q = [1+ (−1)h+k

][1+ (−1)lC2b]〈T
K
Q 〉

= [1+ (−1)h+k
][〈TK

Q 〉 + (−1)l(−1)K+Q
〈TK
−Q〉],

(6.1)

and it can be different from zero for h+k even. Bulk electronic
properties are described by9K

Q with h = k = l = 0. One finds

Figure 7. CaIrO3; magnetic dipole components transforming
according to the 0+4 irrep.

91
0 = 0, and 91

+1 proportional to 〈T1
b 〉 showing that there

is a ferromagnetic component to the magnetization parallel to
the b-axis. Again using h+k even but with l odd, for magnetic
Bragg diffraction, the result 9K

Q = 2[1 − (−1)K+Q
]〈TK

Q 〉 =

9K
−Q gives the condition K + Q odd.

CaIrO3 is a simple case of a weak ferromagnet, when both
antiferromagnetic and ferromagnetic patterns of magnetic
dipoles have identical symmetry and therefore must be
coupled together. With magnetic dipoles normal to the a-axis
there are two candidate magnetic groups, with magnetic
propagation vector 0 at the 0-point of symmetry. These are,
Cm′c′m associated with 0+2 irrep and Cm′cm′ associated with
0+4 irrep that are distinguished by ferromagnetic components
parallel to the c-axis and b-axis, respectively. The latter,
depicted in figure 7, is a property of the iridate under
consideration, and thus we have an unambiguous assignment
Cm′cm′ for CaIrO3.

For reflections (0, 0, l) Euler angles in (5.5) are α =
π, β = π/2 and γ = 0. With l odd all AK

Q are zero, leading

to F(E1–E1)σ ′σ = F(E1–E1)π ′π = 0. Contributions BK
Q to

F(E1–E1)π ′σ are B1
1 and B2

2 which yield,

F(E1–E1)π ′σ = 2[i
√

2 sin θ〈T1
c 〉 + 2 cos θ sinψ〈T2

+1〉
′′
].

(6.2)

We conclude that, contributions to diffraction by the magnetic
dipole, 〈T1

c 〉, and non-magnetic quadrupole are 90◦ out of
phase, whence intensity |F(E1–E1)π ′σ |2 as a function of
azimuthal angle is cos(2ψ) plus a constant. It is notable
that, the dipole parallel to the b-axis, 〈T1

b 〉, which creates
a ferromagnetic motif, does not contribute to F(E1–E1)π ′σ
evaluated for reflections (0, 0, l) with Miller index l an
odd integer. The quadrupole with angular anisotropy that
generates Templeton and Templeton scattering 〈T2

+1〉
′′
=

−
√
( 2

3 )〈T
2
bc〉 in terms of Cartesian components. When ψ = 0

the crystal b-axis is in the plane of scattering and in the
opposite direction to q+ q′ (figure 1).
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Dependence of F(E1–E1)π ′σ in result (6.2) on θ and ψ
agrees with a result quoted by Ohgushi et al [13]. However,
the authors do not specify any properties of the magnetic and
non-magnetic contributions to scattering, shown here to be a
dipole 〈T1

c 〉 and a quadrupole 〈T2
bc〉, respectively.

Energy profiles observed at the L3 absorption edge,
where most data were collected [13], show several distinct,
closely spaced contributions, which is not so for the other
three iridates [4, 6, 7, 11]. This added complexity gives
more weight to the value of results derived from crystal
symmetry, since they surmount such complexity. Ohgushi
et al [13] report very weak intensities at the L2 absorption
edge. This finding, of next to no intensity at L2, and our
result for the magnetic point group, C′2a, imposes restrictions
on the iridium wavefunction. The necessary steps are akin to
exercises reported for Sr3Ir2O7, section 5.2, and Sr2IrO4 [14].

7. Discussion

Magnetic properties of the iridates Sr2IrO4, Na2IrO3,
Sr3Ir2O7 and CaIrO3 are discussed taking account of recently
published data for Bragg intensities observed in resonant
x-ray diffraction. The experimentalists chose iridium atomic
resonances, L2 and L3, in order that intensities relate directly
to 5d valence states, and charge, spin and orbital electronic
degrees of freedom therein may be observed.

Bragg intensities are here simulated with an atomic
model—using multipoles constructed from the electronic
ground-state of an iridium ion—that is well-suited to make
best use of symmetry. Our electronic structure factors
serve the immediate purpose, of interpreting x-ray Bragg
intensities, but are also a platform on which to interpret
future investigations using, say, dichroic signals, resonant
x-ray diffraction or neutron diffraction [16]. Multipoles we
identify as giving rise to diffracted intensity can be estimated
with ab initio methods of calculating electronic structure.

Magnetic space-groups are considered for each com-
pound. For two compounds, Sr3Ir2O7 and CaIrO3, published
x-ray data permit us to assign a magnetic space-group,
while for Na2IrO3 there are simple reasons for indecision
that we delineate. A complete description of Sr2IrO4 with
magnetic propagation vector (1, 1, 1) is accomplished using
published x-ray diffraction data in conjunction with our own
high-resolution data gathered on a powder sample by neutron
diffraction. In all cases, configurations of magnetic dipoles are
depicted in cartoons.

Some aspects of the magnetic properties of Sr2IrO4 and
Na2IrO3 are covered in previous publications, [14] and [15],
respectively. In the case of Sr2IrO4 we here conclude that,
the magnetic space-group PIcca (Ipb′ca) is consistent with
reflection conditions present in resonant x-ray and neutron
diffraction data (magnetic space-groups are given in the
Belov–Neronova–Smirnova and Opechowski–Guccione (in
brackets) notations). Magnetic space-groups Cc2/c (C2c2/m′)
and Cc2/m (C2c2/m) are shown to be consistent with
currently available resonant x-ray diffraction data for
Na2IrO3.

Sr3Ir2O7 is discussed using space-group Bbcb for the
crystal structure. Our study of resonant diffraction data leads
to the assignment PAban (Cpcca) with propagation vector (1,
0, 0). To this end, we must confront data for the integrated
intensity in a channel with rotated polarization (π ′σ ) as a
function of Miller index l with a simulation. In this exercise,
we achieve a quality of fit superior to that already published
and, in addition, our propagation vector is not the (0, 0, 0)
quoted by the same authors [14]. It is noteworthy that, a
magnetic symmetry PAban (Cpcca) does not allow a weak
ferromagnetic component that has been reported [28, 29]. This
apparent inconsistency most probably relates to the crystal
structure symmetry which must be different from Bbcb, and
there is a case for refinement to our knowledge of the crystal
structure.

Additional work on Sr3Ir2O7 is directed at an improved
knowledge of the Ir wavefunction. This entails imposing
constraints on the wavefunction to comply with point-group
symmetry and a calculation of Ir dipoles observed at L2 and L3
absorption edges. It is shown that a much-discussed candidate
for the Ir wavefunction, labelled Jeff =

1
2 [1, 4, 11], is not a

certain favourite.
Bulk magnetization and resonant x-ray Bragg diffraction

data [13] lead us to assign Cm′cm′ for the magnetic
space-group of CaIrO3, a simple case of a weak ferromagnet.
Moreover, we are able to specify the exact nature of the
magnetic (time-odd) dipole and electric (Templeton and
Templeton scattering and time-even) quadrupole engaged in
diffraction.
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