

Crystal and Magnetic Structures of the Layer Compound TiMnF_4

P. Nuñez¹), A. Tressaud, J. Grannec and P. Hagenmuller

Talence (France), Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I

W. Massa and D. Babel

Marburg, Fachbereich Chemie der Philipps-Universität und Wissenschaftliches Zentrum für Materialwissenschaften

A. Boireau and J. L. Soubeyroux

Grenoble (France), Institut Laue-Langevin

Received June 25th, 1991.

Abstract. The crystal structure and the magnetic properties of the fluoromanganate(III) TiMnF_4 have been investigated. The structure has been refined down to R/wR of 0.057/0.043 in the monoclinic $I2/a$ space group with the unit cell constants $a = 539.7(2)$ pm; $b = 544.1(2)$ pm; $c = 1248.4(5)$ pm; $\beta = 90.19(3)^\circ$ ($Z = 4$). TiMnF_4 is characterized by a layer structure formed of MnF_6 octahedra sharing their four equatorial corners. Within each octahedron the Mn—F distances range from 178 pm to 215 pm. The intralayer magnetic interaction (J/k) has been

evaluated to be approximately -0.45 K by fitting the experimental susceptibility in the 10–300 K range using the quadratic layer Heisenberg model. A 3D-antiferromagnetic ordering occurs at $T_N = 4.2(5)$ K. The magnetic cell corresponds to the nuclear one but with a primitive symmetry. The magnetic structure has been refined down to $R = 0.058$ in the $P2'/a'$ magnetic group. The Mn^{III} moments are colinear to the b -axis and show antiparallel ordering within the layers.

Kristall- und magnetische Struktur von TiMnF_4 , einer Verbindung mit Schichtstruktur

Inhaltsübersicht. Die Kristallstruktur und die magnetischen Eigenschaften des Fluoromanganates(III) TiMnF_4 wurden untersucht. Die Struktur wurde in der monoklinen Raumgruppe $I2/a$, Elementarzelle mit $a = 539,7(2)$; $b = 544,1(2)$; $c = 1248,4(5)$ pm, $\beta = 90,19(3)^\circ$ ($Z = 4$) auf R/wR 0,057/0,043 verfeinert. TiMnF_4 zeigt eine Schichtstruktur, die durch Eckenverknüpfung von MnF_6 -Oktaedern über ihre vier äquatorialen Ecken gebildet wird. Die Mn—F-Abstände innerhalb des Oktaeders liegen im Bereich von 178 bis 215 pm. Die magnetische Austauschenergie (J/k) innerhalb der Schicht wurde durch Anpassung der experimentellen Suszeptibilitätsdaten im

Temperaturbereich von 10–300 K auf der Basis des Heisenbergmodells für quadratische Schichten zu $-0,45$ K bestimmt. Dreidimensionale antiferromagnetische Ordnung tritt bei 4,2(5) K ein. Die magnetische Zelle entspricht der kristallographischen, jedoch mit primitivem Translationsgitter. Die magnetische Struktur wurde auf $R = 0,058$ in der magnetischen Raumgruppe $P2'/a'$ verfeinert. Die magnetischen Momente an Mn^{III} sind colinear zur b -Achse und zeigen antiparallele Ordnung innerhalb der Schichten.

Key words: Thallium tetrafluoromanganate(III), TiMnF_4 ; crystal structure; magnetic structure

Introduction

Many manganese(III) fluorides are known to exhibit chains or layers of corner-sharing octahedra. In addition

a structural distortion generally occurs, which is associated to the strong Jahn-Teller effect of Mn^{III} (3d^4) due to its high spin configuration.

Several types of materials appeared to be very good models for one- or two-dimensional magnetic systems. Papers dealing with magnetic properties of Mn^{III} fluorides

¹) Permanent address: Departamento de Química Inorgánica, Universidad de La Laguna, 38200 Tenerife/Spain.

built of chains of trans-[MnF₄F_{2/2}] and/or trans[MnF₂F_{2/2}(H₂O)₂] units have been published [1–3].

On the other hand AMnF₄ (A=K, Rb, Cs, NH₄) phases have been described as layer structures deriving from the TlAlF₄-type [4, 5]. The distorted (MnF₆) octahedra are connected by four equatorial vertices. More recently CsMnF₄ has been thoroughly investigated [7]. It is of particular interest as it is a characteristic example of a two-dimensional ferromagnet. It crystallizes in the tetragonal P4/n space group and exhibits antiferrodistortive ordering of elongated (MnF₆) octahedra. In good agreement with the Goodenough-Kanamori rules for d⁴-d⁴ σ -interactions, ferromagnetism has been confirmed by neutron diffraction: the Curie temperature was found to be T_C = 18.9 K; the magnetic moment was 4.04 BM.

By earlier magnetic measurements [4] a transition from a ferro- to an antiferromagnetic behavior was detected for cations smaller than Cs⁺ (A=Rb⁺, NH₄⁺ or K⁺). Thus the investigation of an intermediate member of this series such as TlMnF₄ seemed to be worthwhile.

Spectroscopic properties of TlMnF₄ have been previously mentioned but the lattice constants have only been deduced from X-ray powder patterns [4].

In the present research we describe both crystal structure of TlMnF₄ determined by single-crystal X-ray diffraction and magnetic structure obtained from powder neutron diffraction patterns at low temperature. We have also investigated the powder magnetic properties.

Experimental

1. Synthesis. Mn₂O₃, prepared by decomposition of manganese(II) nitrate [6], was dissolved in aqueous hydrofluoric acid (40%). Separately a Tl⁺ solution was obtained by dissolving Tl₂CO₃ in a similar 40% HF solution. The two solutions were mixed in such a way that the Tl : Mn molar ratio was 1 : 1. The resulting solution was maintained in a covered polyethylene vessel for several days at about 50°C. Small dark-brown crystals were grown in those conditions.

2. Elemental analysis. Elemental analysis was carried out at CNRS Service Central d'Analyse. The metallic element concentration was determined using a multielement atomic absorption spectrometer and fluoride ions were titrated using an anion-selective electrode. The concentrations are the following:

- observed: Mn(16.40), Tl(60.80), F(21.51)%
- calculated for TlMnF₄ composition: Mn(16.38), Tl(60.35), F(22.67)%.

3. Structural investigation. A small brown crystal was selected for X-ray diffraction measurements on a four circle-diffractometer (Enraf-Nonius) using MoK α -radiation and a graphite monochromator. The lattice constants were refined from 25 high-angle reflections. The main experimental crystallographic data are listed in Table 1.

Table 1 Experimental crystallographic data for TlMnF₄

Crystal data	
Formula	TlMnF ₄
Molecular weight	335.308
Crystal dimensions	approx. 0.1×0.06×0.05 mm ³
Absorption	$\mu = 455 \text{ cm}^{-1}$, empirical correction
Space group	I2/a, Z = 4
Pseudo symmetry	Imam
Lattice constants (MoK α)	$a = 539.7(2) \text{ pm}$ $b = 544.1(2) \text{ pm}$ $c = 1248.4(5) \text{ pm}$ $\beta = 90.19(3)^\circ$
Temperature	293 K
Voluminal mass	$\rho = 6.07 \text{ g cm}^{-3}$
Data collection	
Diffractometer	4-circle, CAD4 (Enraf-Nonius)
Radiation	Mo-K α , graphite monochromator
Scanning-type	ω -scanning
Scanning width	(1.5 + 0.35 tg θ)° and 25% on the left and right side of a reflection for background determinations
Measuring range	2° < θ < 30°, $\pm h$, $+k$, $+l$ and $h k \bar{l}$
Reflections Total	888
Independent	506; 423 > 5 $\sigma(F_o)$
Computing	
Structure determination	Patterson methods (SHELXS-86 [8b])
Refinement	minimizing $\Sigma(\Delta F)^2$ (SHELX 76 [8a])
Scattering factors	extracted from [10]
Anomalous dispersion	extracted from [11]
Extinction coefficient	$\varepsilon = 3.5 \times 10^{-8}$ [8a]
R-values	$R = 0.057$, $wR = 0.043$ (31 parameters) [$w = 1/\sigma^2(F_o)$]

Lorentz-polarization correction was made and an empirical absorption correction (Psi-scans) was applied ($\mu = 455 \text{ cm}^{-1}$). 423 reflections were considered with $F_o > 5\sigma(F_o)$.

The crystal showed only small deviations from an orthorhombic symmetry Imam. This result explains why in an earlier powder work [4] the true monoclinic space group I2/a was not detected.

The structure was determined from a Patterson map and from subsequent Fourier syntheses and could be refined with

Table 2 Atomic coordinates and anisotropic thermal parameters [10⁻²⁰ m²] for TlMnF₄ (space group I2/a)

Atom	x	y	z	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mn	0.25	0.75	0.25	0.011(2)	0.010(2)	0.010(2)	0.000(2)	-0.002(2)	0.002(2)
F1	0.277(2)	0.661(2)	0.114(1)	0.034(7)	0.026(5)	0.016(7)	-0.005(5)	0.007(7)	0.002(6)
F2	0.471(2)	1.066(2)	0.214(1)	0.018(7)	0.023(6)	0.048(11)	0.003(6)	-0.014(8)	-0.016(5)
Tl	0.25	0.2332(3)	0.0	0.0307(8)	0.0204(7)	0.030(1)	0.0	-0.0032(7)	0.0

anisotropic temperature factors for each atom down to a final $R = 0.057$ and $wR = 0.043$.²⁾ Final position and thermal parameters are reported in Table 2.

4. Magnetic measurements. Magnetic measurements were performed on powder sample with a SQUID magnetometer in the 2–300 K temperature range. The applied field ranged from 0 to 5 T. A correction for diamagnetic contribution was taken into account.

5. Neutron diffraction measurements. Neutron diffraction experiments were carried out at the high flux reactor of the Institut Laue-Langevin in Grenoble using the D1B powder diffractometer which is equipped with a large position-sensitive detector (PSD). Diffractograms were recorded with the incident wavelength $\lambda = 252.2$ pm. The powder sample was set in a vanadium container and a $4^\circ \leq 2\theta \leq 84^\circ$ angular domain has been covered. Patterns were registered between 1.5 and 200 K using a liquid helium cryostat. Crystallographic and magnetic structures were determined using the Rietveld profile refinement technique with the Young program [12]. The nuclear scattering lengths and the magnetic form factors were taken from reference [13] and [14] respectively.

Results and Discussion

1 Crystal structure

TiMnF_4 has a layer structure deriving from the TiAlF_4 -type, i.e. formed by $[\text{MnF}_6]$ octahedra sharing their four equatorial corners (Fig. 1). As for CsMnF_4 the Jahn-Teller effect of the d^4 high-spin configuration leads to a strong elongation of the octahedra (Table 3). The directions of the long axes ($\text{Mn—F2} = 215$ pm) constitute an antiferrodistortive arrangement within the layers. The shorter Mn—F distances correspond to bridging bonds ($\text{Mn'}—\text{F2} = 186$ pm) and very short terminal bonds ($\text{Mn—F1} = 178$ pm).

The layers differ from those of CsMnF_4 by the bridge angles Mn—F—Mn which decrease from 161.9° for CsMnF_4 to 146.5° for TiMnF_4 , and by the puckering type. The layers alternate with the 12-coordinated Ti^{+} ions (see. Fig. 6, Table 3).

We have recently investigated the structural and magnetic properties of the hydrates $\text{Ti}[\text{MnF}_4(\text{H}_2\text{O})]$ and $\text{Ti}_2[\text{MnF}_5] \cdot \text{H}_2\text{O}$ [3], both showing octahedral trans-chain structures.

2 Magnetic behavior

The temperature dependence of the reciprocal molar susceptibility for powder samples is plotted in Fig. 2. In the investigated temperature range a linear variation is ob-

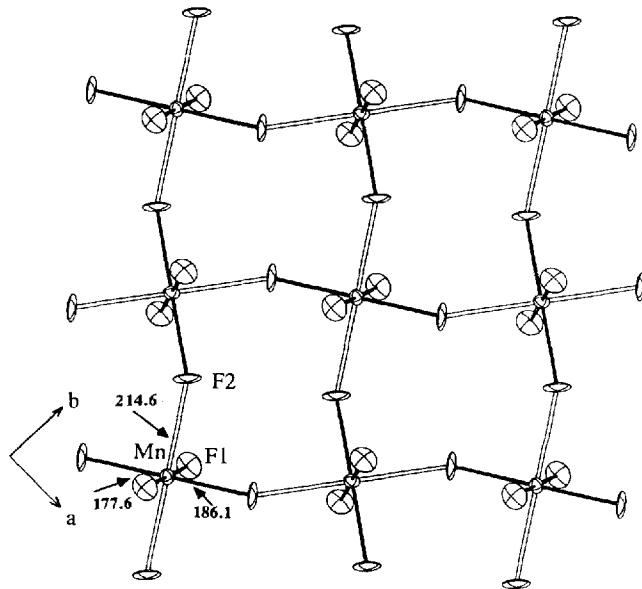


Fig. 1 Arrangement of MnF_6 octahedra in TiMnF_4 : (a, b) plane; white double lines: elongated axes; Mn—F distances in pm (ORTEP drawing [9]: thermal ellipsoids at the 50% probability level)

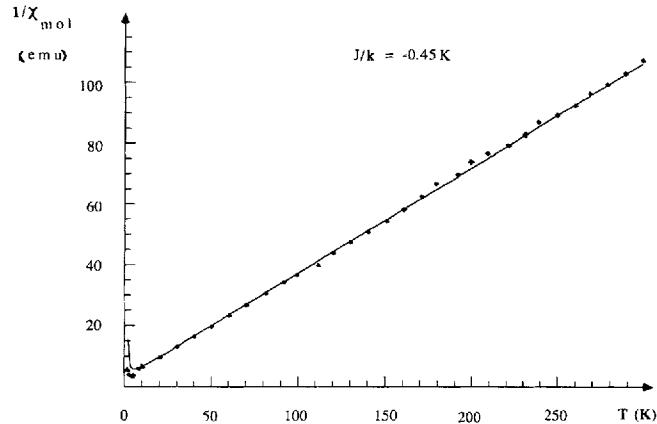


Fig. 2 Temperature dependence of the reciprocal susceptibility of TiMnF_4

served with a small θ_p value of -7 K. The experimental Curie constant ($C_M = 2.87$) is in good agreement with the usual values found for manganese(III) compounds.

The exchange constant between Mn atoms within a plane (J/k) has been calculated by fitting the susceptibility data to the quadratic layer Heisenberg antiferromagnetic model as described by Lines [15]. Fitting was based on the following equation:

$$\frac{Ng^2\beta^2}{J_{\chi(T)}} = 3\theta + \sum_{n=1}^{\infty} \frac{C_n}{\theta^{n-1}},$$

where $\theta = KT/JS(S+1)$, g is the Lande factor, N the number of spins in the lattice, C_n are coefficients calculated from the general formalism of ref. [16].

²⁾ The structure factor tables have been deposited in the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information, W-7514 Eggenstein-Leopoldshafen 2, with number CSD-55 897.

This method allowed to fit the broad susceptibility maximum which experimentally characterizes two-dimensional quasi-Heisenberg antiferromagnets. It yielded an intralayer exchange constant: $J/k = -0.45$ K. The weakness of this value can account for the low value of the 3D-ordering antiferromagnetic temperature (see below).

According to Goodenough-Kanamori rules, an antiferrodistortive (MnX_6) octahedra arrangement is generally associated with a ferromagnetic behavior, whereas a ferrodistortive structural arrangement leads to antiferromagnetism. X-ray and neutron diffraction studies on $CsMnF_4$ seemed to confirm such an assumption: the antiferrodistortive arrangement observed for this material induces a bulk ferromagnetism [5]. On the other hand the magnetic J/k value obtained for $TlMnF_4$ at first sight contradicts the above rules: $TlMnF_4$ exhibits an intralayer antiferromagnetic behavior associated with an antiferrodistortive structural arrangement.

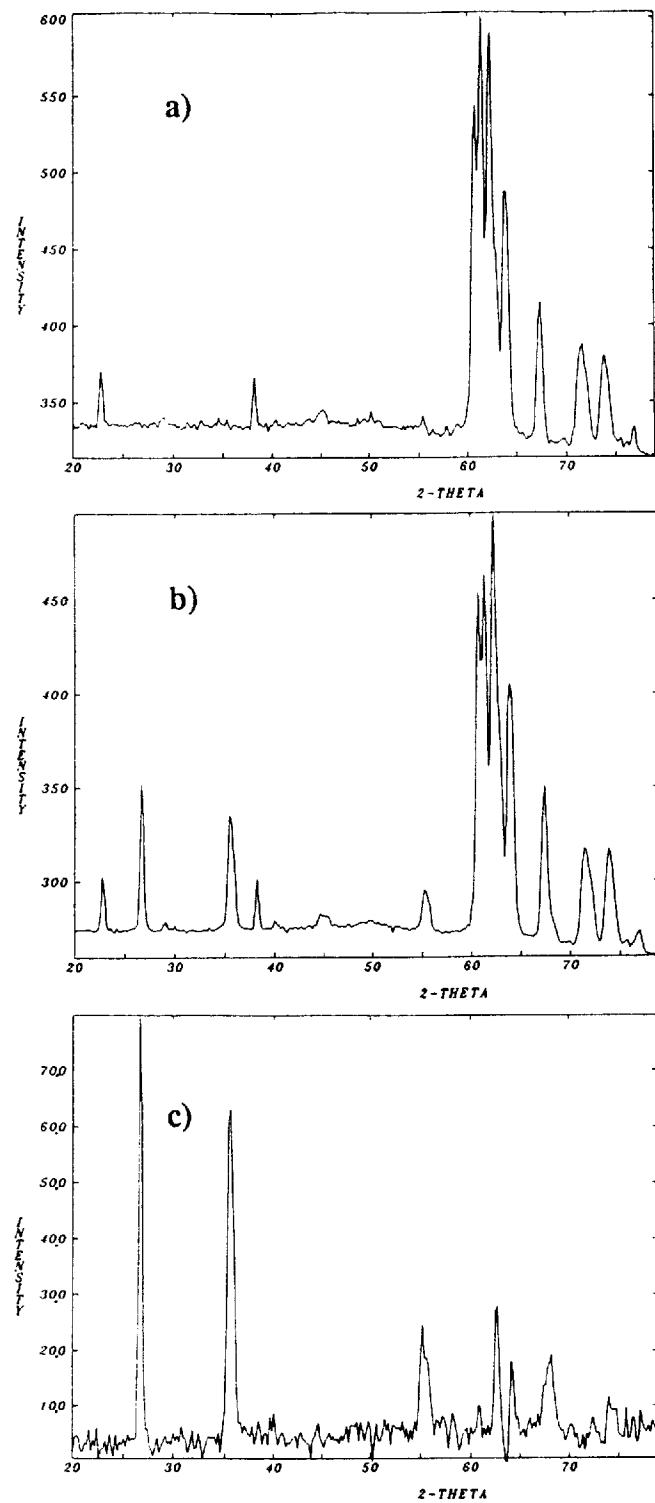
If we compare the layer structure of $TlMnF_4$ with that of $CsMnF_4$ we observe actually that the exchange angles $Mn-F-Mn$ are quite different from each other. In $TlMnF_4$ this angle is about 146.5° , which corresponds to a deviation from the ideal angle (180°) stronger than that of $CsMnF_4$ (161.9°). In such conditions the mixtures of the d_{xz} and d_{yz} Mn^{3+} orbitals forming π -bonds with the p_x and p_y orbitals of fluorine have to be considered; these couplings which are responsible for antiferromagnetism strongly compete with the $e_g-p\sigma-e_g$ interactions. This trend is in good agreement with that previously observed in other series of Mn^{III} fluorides [2].

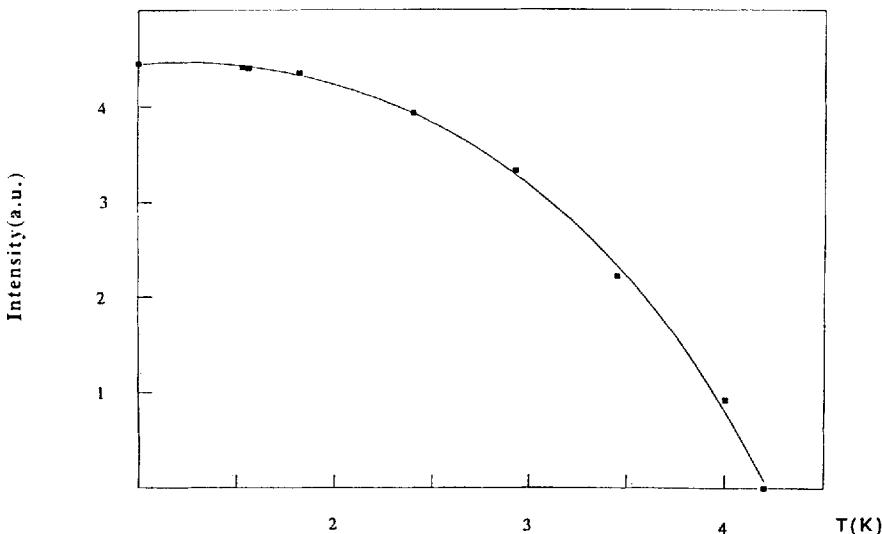
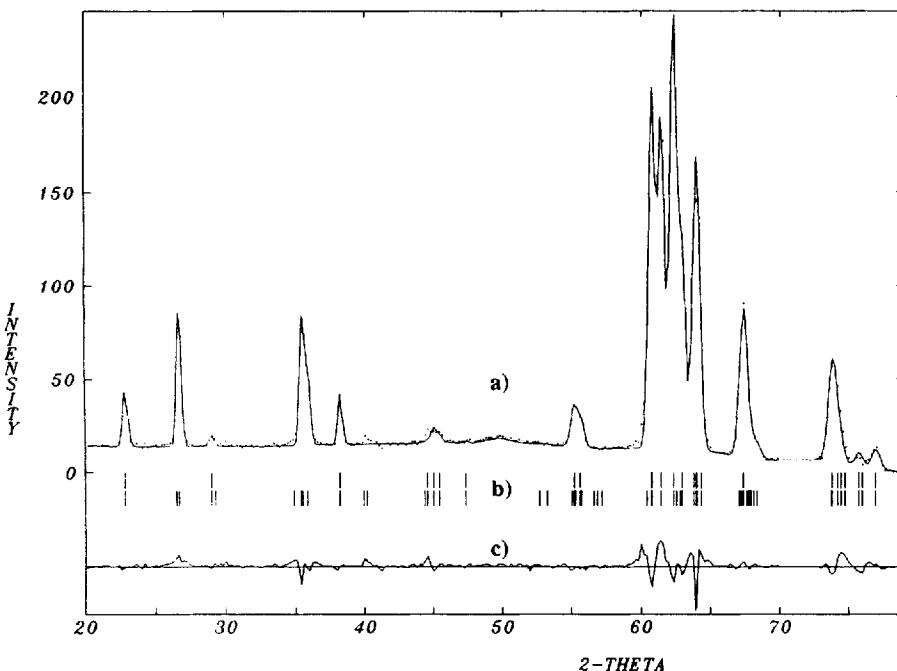
3 Magnetic structure

A neutron diffraction study has been carried out down to 1.34 K (Fig. 3). The study of the temperature dependence of the intensity of some magnetic peaks in the 1.34–20 K temperature range has allowed to determine the 3D-magnetic ordering temperature $T_N = 4.2(5)$ K (see Fig. 4). The magnetic peaks which appear below T_N can be indexed in the nuclear cell but with a primitive lattice. The unit cell constants at 1.34 K are the following: $a = 536.1(2)$ pm; $b = 539.7(2)$ pm; $c = 1243.5(3)$ pm; $\beta = 89.20(1)^\circ$.

Various magnetic configurations have been tested to fit the observed intensities. The best result, which corresponds to a magnetic R-factor of 0.058, with $R_{magn} = 100 \times \sum [I_{magn}(\text{obs}) - I_{magn}(\text{calc})] / \sum I_{magn}(\text{obs})$ can be described as follows: in the magnetic cell the magnetic atoms are assigned to two different sites: Mn1 ($1/4, 3/4, 1/4$); Mn2 ($3/4, 1/4, 3/4$).

Magnetic moments of both Mn1 and Mn2 atoms appear to be colinear to the b-axis and antiparallel to each other with a value of $3.1(3)$ BM. The refined neutron diffraction pattern corresponding to such a hypothesis is given in Fig. 5. The expected value of the resulting magnetic moment is about 3.5 BM for a magnetic ion with $S = 2$. However, due to the low value of the Neel tempe-





Fig. 3 Experimental neutron diffractograms of $TlMnF_4$ at $T = 8$ K^a), $T = 1.34$ K^b) and difference pattern^c)

rature this difference can be attributed to an incomplete saturation of the moment at 1.34 K. Observed and calculated intensities for such a model are collected in Table 4. We can describe therefore the magnetic structure as formed of Mn^{III} atoms antiferromagnetically coupled inside

Table 3 Interatomic distances [pm] and angles [deg] in TlMnF_4

Mn—F1	2×	177.6(10)	Tl—F1,F1 ⁱ)	2×	273(1)
Mn—F2	2×	186.1(10)	Tl—F1 ^j)	2×	298(1)
Mn ^a)—F2	2×	214.6(10)	Tl—F2 ^k)	2×	307(1)
			Tl—F1 ^a) ^b)	2×	322(1)
mean Mn—F		192.8	Tl—F1 ^k) ^j)	2×	342(1)
			Tl—F2 ^a) ^j)	2×	348(1)
F1—Mn—F2		88.5(5)			
F1—Mn—F2 ^b)		89.2(6)	mean Tl—F		315
F2—Mn—F2 ^b)		88.2(5)			
			in plane:		
Mn—F2—Mn ^a)		146.5(7)	Mn ··· Mn	4×	383.2(2)
			between planes:		
			Mn ··· Mn	2×	624.2(3)

Symmetry operations: ^a) 0.5+x, 1-y, z; ^b) x-0.5, 2-y, z; ^c) 1-x, y-0.5, 0.5-z; ^d) 0.5+x, 2-y, z; ^e) 1-x, -y, -z; ^f) -x, -y, -z; ^g) 1-x, 1-y, -z; ^h) -x, 1-y, -z; ⁱ) 0.5-x, y, -z; ^j) x-0.5, 1-y, z; ^k) x, y-1, z; ^l) 0.5-x, y-1, -z

Fig. 4 Temperature dependence of the (100) magnetic peak**Fig. 5** Refined neutron diffraction pattern of TlMnF_4 at $T = 1.34 \text{ K}$ [calculated profile intensities (full line) a); positions of nuclear peaks (above) and magnetic peaks (below) b); difference spectrum c)]

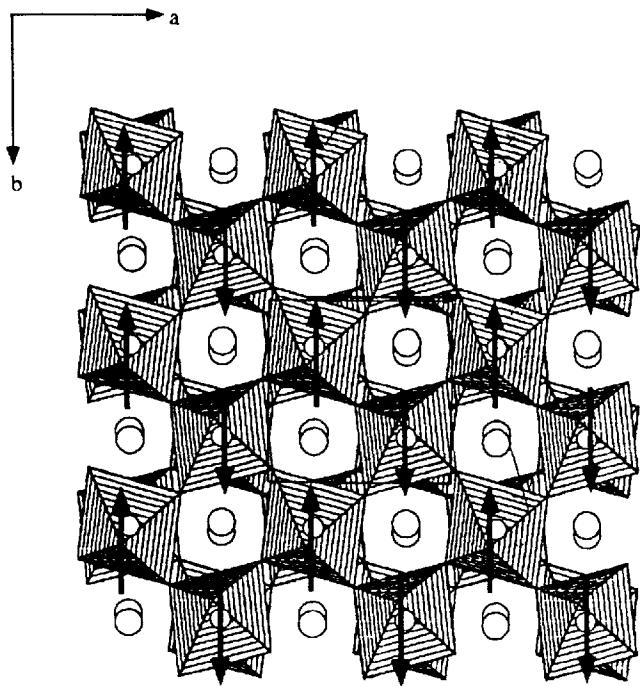


Fig. 6 Magnetic structure of TlMnF_4

Table 4 Observed and calculated intensities of magnetic reflections for TlMnF_4 at $T = 1.34 \text{ K}$

$h \ k \ l$	$I_{\text{calc.}}$	$I_{\text{obs.}}$	$h \ k \ l$	$I_{\text{calc.}}$	$I_{\text{obs.}}$
1 0 0	3264	3716	1 0 4	553	613
1 0 2	1700	1990	1 2 0	161	172
0 1 2	1489	1453	2 1 0	631	701
1 0 2	1686	1723	1 2 2	195	201
1 0 4	562	569	2 1 2	524	539
0 1 4	850	887	1 2 2	197	206
			2 1 2	518	558

a layer and ferromagnetically coupled between two alternating planes with a compensated resulting moment as shown in Fig. 6. This scheme corresponds to the $\text{P}2'/\text{a}'$ magnetic group.

Conclusions

The structural and magnetic data obtained for TlMnF_4 point out the strong influence of the Mn—F—Mn bridging angle on the magnetic couplings: an antiferromagnetic ordering is observed instead of the ferromagnetic behavior which could be expected as a consequence of the antiferrodistortive structural ordering shown in Fig. 1. This result illustrates the competition between σ - and π -superexchange mechanisms for low bridging angles. It con-

firms the previous investigations on the Mn^{III} chain compounds $\text{A}_2\text{MnF}_5 \cdot x\text{H}_2\text{O}$ (A = monovalent cation; $x = 0$ or 1) in which the intrachain antiparallel exchange constant has been shown to decrease strongly with decreasing Mn—F—Mn bridging angles [2]. The small negative values of the intralayer exchange constant ($J/k = -0.45 \text{ K}$) thus gives an indication of the presence of both parallel and antiparallel coupling mechanisms within a layer.

The authors are indebted to J. Darriet for valuable discussions. One of us (PN) thanks the Government of Canary Islands for a grant. This work has been carried out in the scope of an EEC Research Program.

References

- [1] P. Nuñez, J. Darriet, P. Bukovec, A. Tressaud, P. Hagenmuller: *Mat. Res. Bull.* **22** (1987) 661
- [2] J. Pebler, W. Massa, H. Lass, B. Ziegler: *J. Solid State Chem.* **71** (1987) 87
- [3] P. Nuñez, A. Tressaud, J. Darriet, P. Hagenmuller, F. Hahn, G. Frenzen, W. Massa, D. Babel, A. Boireau, J. L. Soubeyroux: *Inorg. Chem.*, to appear (1992)
- [4] P. Köhler, W. Massa, D. Reinen, B. Hofmann, R. Hoppe: *Z. anorg. allg. Chem.* **446** (1978) 131
- [5] W. Massa, M. Steiner: *J. Solid State Chem.* **32** (1980) 137
- [6] T. E. Moore, M. Ellis, P. E. Selwood: *J. Am. Chem. Soc.* **72** (1950) 856
- [7] W. Massa: *Gesellschaft Deutscher Chemiker, Hauptversammlung*, Bonn 1989, VCH Weinheim, p. 323
- [8] G. M. Sheldrick: a) SHELX-76, Program for Crystal Structure Determination, Cambridge (1976), b) SHELXS-86, Program for Crystal Structure Solution, Göttingen (1986)
- [9] C. K. Johnson: ORTEP, A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-3794, Oak Ridge, USA (1965)
- [10] D. T. Cromer, J. D. Mann: *Acta Crystallogr.* **A24** (1968) 321
- [11] D. T. Cromer, D. Libermann: *J. Chem. Phys.* **53** (1970) 1891
- [12] R. A. Young, D. B. Wiles: *J. Appl. Crystallogr.* **14** (1981) 149
- [13] V. F. Sears: Internal Report AECL-8490 (1984)
- [14] P. J. Brown: "International Tables for Crystallography", vol. C to appear (1992)
- [15] M. E. Lines: *J. Phys. Chem. Solids* **31** (1970) 101
- [16] G. S. Rushbrooke, P. J. Wood: *Mol. Phys.* **1** (1958) 257

Address for correspondence:

Dr. A. Tressaud
Laboratoire de Chimie du Solide du CNRS, Univ.
Bordeaux I
F-33405, Talence Cedex, France