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Abstract. The crystal structure and the magnetic proper- 
ties of the fluoromanganate(II1) TlMnF, have been in- 
vestigated. The structure has been refined down to R/wR 
of 0.057/0.043 in the monoclinic 12/a space group with 
the unit cell constants a = 539.7(2) pm; b = 544.1(2) pm; 
c = 1248.4(5) pm; /3 = 90.19(3)O (Z = 4). TlMnF, is cha- 
racterized by a layer structure formed of MnF, octahe- 
dra sharing their four equatorial corners. Within each 
octahedron the Mn-F distances range from 178 pm to 
215 pm. The intralayer magnetic interaction (J/k) has been 

evaluated to be approximately - 0.45 K by fitting the ex- 
perimental susceptibility in the 10 - 300 K range using the 
quadratic layer Heisenberg model. A 3 D-antiferro- 
magnetic ordering occurs at T, = 4.2(5) K. The magne- 
tic cell corresponds to the nuclear one but with a primiti- 
ve symmetry. The magnetic structure has been refined 
down to R = 0.058 in the P2'/a' magnetic group. The 
Mn"' moments are colinear to the b-axis and show anti- 
parallel ordering within the layers. 

Kristall- und magnetische Struktur von TIMnF,, einer Verbindung mit Schichtstruktur 

Inhaltsiibersicht. Die Kristallstruktur und die magneti- 
schen Eigenschaften des Fluoromanganates(II1) TlMnF, 
wurden untersucht. Die Struktur wurde in der monokli- 
nen Raumgruppe I2/a, Elementarzelle mit a = 539,7(2); 
b = 544,1(2); c = 1248,4(5) pm, f l  = 90,19(3)O (Z = 4) 
auf R/wR 0,057/0,043 verfeinert. TlMnF, zeigt eine 
Schichtstruktur, die durch Eckenverknupfung von 
MnF,-Oktaedern uber ihre vier aquatorialen Ecken gebil- 
det wird. Die Mn-F-Abstande innerhalb des Oktaeders 
liegen im Bereich von 178 bis 21 5 pm. Die magnetische 
Austauschenergie (J/k) innerhalb der Schicht wurde durch 
Anpassung der experimentellen Suszeptibilitatsdaten im 

Temperaturbereich von 10 - 300 K auf der Basis des Hei- 
senbergmodells fur quadratische Schichten zu - 0,45 K be- 
stimmt. Dreidimensionale antiferromagnetische Ordnung 
tritt bei 4,2(5) K ein. Die magnetische Zelle entspricht der 
kristallographischen, jedoch mit primitivem Translations- 
gitter. Die magnetische Struktur wurde auf R = 0,058 in 
der magnetischen Raumgruppe P2 '/a' verfeinert. Die ma- 
gnetischen Momente an Mn"' sind colinear zur b-Achse 
und zeigen antiparallele Ordnung innerhalb der Schichten. 
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TlMnF,; crystal structure; magnetic structure 

Introduction a structural distortion generally occurs, which is asso- 
ciated to the strong Jahn-Teller effect of Mn"' (3 d4) due 
to its high spin configuration. Many manganese(II1) fluorides are known to exhibit 

chains or layers of corner-sharing octahedra. In addition - 
Several types of materials appeared to be very good mo- 

dels for one- or two-dimensional magnetic systems. Pa- 
pers dealing with magnetic properties of Mn"' fluorides 
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built of chains of trans-[MnF,F,,,] and/or 
trans[MnF,F,,,(H,O),] units have been published [I - 31. 

On the other hand AMnF, (A=K,  Rb, Cs, NH,) 
phases have been described as layer structures deriving 
from the T1A1F4-type [4, 51. The distorted (MnF,) octa- 
hedra are connected by four equatorial vertices. More re- 
cently CsMnF, has been thoroughly investigated [7]. It is 
of particular interest as it is a characteristic example of a 
two-dimensional ferromagnet. I t  crystallizes in the tetra- 
gonal P4/n space group and exhibits antiferrodistortive 
ordering of elongated (MnF,) octahedra. In good agree- 
ment with the Goodenough-Kanamori rules for d4-d4 6- 
interactions, ferromagnetism has been confirmed by neu- 
tron diffraction: the Curie temperature was found to be 
T, = 18.9K; the magnetic moment was 4.04BM. 

By earlier magnetic measurements [4] a transition from 
a ferro- to an antiferromagnetic behavior was detected 
for cations smaller than Cs' (A=Rb+,  NH4+ or K + ) .  
Thus the investigation of an intermediate member of this 
series such as TlMnF, seemed to be worthwhile. 

Spectroscopic properties of TlMnF, have been previ- 
ously mentioned but the lattice constants have only been 
deduced from X-ray powder patterns [4]. 

In the present research we describe both crystal structu- 
re of TlMnF, determined by single-crystal X-ray diffrac- 
tion and magnetic structure obtained from powder neu- 
tron diffraction patterns at low temperature. We have aiso 
investigated the powder magnetic properties. 

Experimental 

1. Synthesis. Mnz03, prepared by decomposition of mangane- 
se(I1) nitrate [6], was dissolved in aqueous hydrofluoric acid 
(40%). Separately a T1' solution was obtained by dissolving 
TIZCO3 in a similar 40% HF solution. The two solutions were 
mixed in such a way that the TI : Mn molar ratio was 1 : 1 .  The 
resulting solution was maintained in a covered polyethylene ves- 
sel for several days at about 50°C. Small dark-brown crystals 
were grown in those conditions. 

2. Elemental analysis. Elemental analysis was carried out at 
CNRS Service Central d'Analyse. The metallic element concen- 
tration was determined using a multielement atomic absorption 
spectrometer and fluoride ions were titrated using an anion-se- 
lective electrode. The concentrations are the following: 

- observed: Mn(16.40), T1(60.80), F(21.51)% 
- calculated for TlMnF, composition: Mn( 16.38), T1(60.35), 

F(22.67)%. 

3. Structural investigation. A small brown crystal was selected 
for X-ray diffraction measurements on a four circle-diffracto- 
meter (Enraf-Nonius) using MoKa-radiation and a graphite 
monochromator. The lattice constants were refined from 
25 high-angle reflections. The main experimental crystallo- 
graphic data are listed in Table 1. 

Table 1 Experimental crystallographic data for TlMnF, 

Crystal data 
Formula 
Molecular weight 
Crystal dimensions 
Absorption 
Space group 
Pseudo symmetry 
Lattice constants 
(MoKa) 

Temperature 
Voluminal mass 

Data collection 
Diffractometer 
Radiation 
Scanning-type 
Scanning width 

Measuring range 
Reflections Total 

Independent 

Computing 
Structure determi- 
nation 
Refinement 
Scattering factors 

TlMnF, 
335.308 
approx. 0.1 x0.06x0.05 mm3 
p = 455 cm-', empirical correction 
I2/a, Z = 4 
Imam 
a = 539.7(2)pm 
b = 544.1(2) pm 
c = 1248.4(5) pm 
p = 90.19(3)' 
293 K 
p = 6 . 0 7 g ~ m - ~  

4-circle, CAD4 (Enraf-Nonius) 
Mo-Ka, graphite monochromator 
w-scanning 
(1.5 + 0.35 tg8)" and 25% on the left 
and right side of a reflection for 
background determinations 
2" < 8 < 30", +h, +k,  +1 and h k i  
888 
506; 423 > 5 a(F,) 

Patterson methods (SHELXS-86 [8 b]) 

minimizing Z(AF)' (SHELX 76 pa]) 
extracted from [lo] 

Anomalous dispersion extracted from [ 1 1 3  
Extinction coefficient E = 3.5 x [8 a] 
R-values R = 0.057, wR = 0.043 (31 parame- 

ters) [w = l/o*(F,)] 

Lorentz-polarization correction was made and an empirical ab- 
sorption correction (Psi-scans) was applied (IJ = 455 cm-'). 
423 reflections were considered with F, > 5a(F,). 

The crystal showed only small deviations from an orthor- 
hombic symmetry Imam. This result explains why in an earlier 
powder work [4] the true monoclinic space group I2/a was not 
detected. 

The structure was determined from a Patterson map and 
from subsequent Fourier syntheses and could be refined with 

Table 2 Atomic coordinates and anisotropic thermal parameters m2] for TlMnF., (space group I2/a) 

Atom x Y Z u11 u22 u33 U*3 U,, UlZ 

Mn 0.25 0.75 0.25 0.011(2) O.OlO(2) O.OlO(2) O.OOO(2) -0.002(2) 0.002(2) 
F1 0.277(2) 0.661(2) 0.1 14(1) 0.034(7) 0.026(5) 0.016(7) - 0.005(5) 0.007(7) 0.002(6) 
F2 0.471(2) Z .066(2) 0.214(1) 0.018(7) 0.023(6) 0.048(21) 0.003(6) -0.014(8) -0.016(5) 
T1 0.25 0.2332(3) 0.0 0.0307(8) 0.0204(7) 0.030(1) 0.0 - 0.0032(7) 0.0 
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anisotropic temperature factors for each atom down to a final 
R = 0.057 and wR = 0.043.') Final position and thermal para- 
meters are reported in Table 2. 

4. Magnetic measurements. Magnetic measurements were per- 
formed on powder sample with a SQUID magnetometer in the 
2 - 300 K temperature range. The applied field ranged from 0 to 
5 T. A correction for diamagnetic contribution was taken into 
account. 

5. Neutron diffraction measurements. Neutron diffraction ex- 
periments were carried out at the high flux reactor of the Insti- 
tut hue-Langevin in Grenoble using the DlB powder diffracto- 
meter which is equipped with a large position-sensitive detector 
(PSD). Diffractograms were recorded with the incident wave- 
length I = 252.2 pm. The powder sample was set in a vanadium 
container and a 4" 5 28 5 84" angular domain has been cover- 
ed. Patterns were registered between 1.5 and 200K using a li- 
quid helium cryostat. Crystallographic and magnetic structures 
were determined using the Rietveld profile refinement technique 
with the Young program [12]. The nuclear scattering lengths 
and the magnetic form factors were taken from reference [I31 
and [ 141 respectively. 

Results and Discussion 

I Crystal structure 

Fig. 1 Arrangement of MnFs octahedra in TlMnF4: (a, b) 
plane; white double lines: elongated axes; Mn-F distances in 
pm (ORTEP drawing (91: thermal ellipsoids at the 50% proba- 
bility level) 

TlMnF, has a layer structure deriving from the 
TlAlF,-type, i.e. formed by [MnF,] octahedra sharing 
their four equatorial corners (Fig. 1). As for CsMnF, the 
Jahn-Teller effect of the d4 high-spin configuration leads 
to a strong elongation of the octahedra (Table 3). The di- 
rections of the long axes (Mn-F2 = 215 pm) constitute 
an antiferrodistortive arrangement within the layers. The 
shorter Mn-F distances correspond to bridging bonds 
(Mn'-F2 = 186pm) and very short terminal bonds 
(Mn-F1 = 178pm). 

The layers differ from those of CsMnF, by the bridge 
angles Mn-F-Mn which decrease from 161.9' for 
CsMnF, to 146.5" for TlMnF,, and by the puckering 
type. The layers alternate with the 12-coordinated T1+ 
ions (see. Fig. 6, Table 3). 

We have recently investigated the structural and mag- 
netic properties of the hydrates T1[MnF,(H20)] and 
Tl,[MnF,] - H20 [3], both showing octahedral trans- 
chain structures. 

2 Magnetic behavior 

The temperature dependence of the reciprocal molar sus- 
ceptibility for powder samples is plotted in Fig. 2. In the 
investigated temperature range a linear variation is ob- 

*)The structure factor tables have been deposited in the 
Fachinformationszentrum Karlsruhe, Gesellschaft fur wissen- 
schaftlich-technische Information, W-75 14 Eggenstein- 
Leopoldshafen 2, with number CSD-55 897. 
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Fig. 2 Temperature dependence of the reciprocal susceptibility 
of TlMnF4 

served with a small 8, value of - 7 K. The experimental 
Curie constant (C, = 2.87) is in good agreement with 
the usual values found for manganese(II1) compounds. 

The exchange constant between Mn atoms within a 
plane (J/k) has been calculated by fitting the susceptibili- 
ty data to the quadratic layer Heisenberg antiferromagne- 
tic model as described by Lines [ 151. Fitting was based on 
the following equation: 

where 8 = kT/JS(S + I), g is the Lande factor, N the 
number of spins in the lattice, Cn are coefficients calcula- 
ted from the general formalism of ref. [16]. 
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This method allowed to fit the broad susceptibility ma- 
ximum which experimentally characterizes two-dimensio- 
nal quasi-Heisenberg antiferromagnets. It yielded an in- 
tralayer exchange constant: J/k = -0.45 K. The weak- 
ness of this value can account for the low value of the 
3D-ordering antiferromagnetic temperature (see below). 

According to Goodenough-Kanamori rules, an antifer- 
rodistortive (MnX,) octahedra arrangement is generally 
associated with a ferromagnetic behavior, whereas a fer- 
rodistortive structural arrangement leads to antiferro- 
magnetism. X-ray and neutron diffraction studies on 
CsMnF, seemed to confirm such an assumption: the an- 
tiferrodistortive arrangement observed for this material 
induces a bulk ferromagnetism [ 5 ] .  On the other hand the 
magnetic J/k value obtained for TlMnF, at first sight 
contradicts the above rules: TlMnF, exhibits an intralay- 
er antiferromagnetic behavior associated with an antifer- 
rodistortive structural arrangement. 

If we compare the layer structure of TlMnF, with that 
of CsMnF, we observe actually that the exchange angles 
Mn-F-Mn are quite different from each other. In 
TlMnF, this angle is about 146.5', which corresponds to 
a deviation from the ideal angle (180") stronger than that 
of CsMnF, (161.9'). In such conditions the mixtures of 
the d,, and d,, Mn3+ orbitals forming x-bonds with the 
p, and py orbitals of fluorine have to be considered; 
these couplings which are responsible for antiferromag- 
netism strongly compete with the eg-po-eg interactions. 
This trend is in good agreement with that previously ob- 
served in other series of Mn"' fluorides [2]. 

3 Magnetic structure 

A neutron diffraction study has been carried out down to 
1.34 K (Fig. 3). The study of the temperature dependence 
of the intensity of some magnetic peaks in the 1.34 - 20 K 
temperature range has allowed to determine the 3D-mag- 
netic ordering temperature T, = 4.2(5) K (see Fig. 4). 
The magnetic peaks which appear below T, can be in- 
dexed in the nuclear cell but with a primitive lattice. The 
unit cell constants at 1.34K are the following: 
a = 536.1(2) pm; b = 539.7(2) pm; c = 1243.5(3) pm; 
p = 89.20(1)". 

Various magnetic configurations have been tested to fit 
the observed intensities. The best result, which corre- 
sponds to a magnetic R-factor of 0.058, with 
Rmagn = 100 XZ1[Imagn (obs)-Imag, (calc)]/Z I,, (obs) can 
be described as follows: in the magnetic cell the magnetic 
atoms are assigned to two different sites: Mnl (1/4, 3/4, 
1/4); Mn2 (3/4, 1/4, 3/4). 

Magnetic moments of both Mnl and Mn2 atoms appe- 
ar to be colinear to the b-axis and antiparallel to each 
other with a value of 3.1 (3) BM. The refined neutron dif- 
fraction pattern corresponding to such a hypothesis is gi- 
ven in Fig. 5 .  The expected value of the resulting magne- 
tic moment is about 3.5 BM for a magnetic ion with 
S = 2. However, due to the low value of the Nee1 tempe- 

600 I 1 

2 - T H E T A  

P- rnrri 

Fig. 3 Experimental neutron diffractograms of T1MnF4 at 
T = 8 IP), T = 1.34 Kb) and difference pattern') 

rature this difference can be attributed to an incomplete 
saturation of the moment at 1.34 K. Observed and calcu- 
lated intensities for such a model are collected in Table 4. 
We can describe therefore the magnetic structure as form- 
ed of Mn'" atoms antiferromagnetically coupled inside 
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Table 3 Interatomic distances [pm] and angles [deg] in T1MnF4 

Mn-F1 2 x  177.6(10) Tl--Fl,Fl') 2 x  273(1) 

Mn")-F2 2 x  224.6(10) T1-F2k)') 2 x  307(1) 
TI-F1 a)h) 2 x  322(1) 

mean Mn-F 192.8 TI-F1 ')I) 2 x  342(1) 
Tl-F2')i) 2 x  348(1) 

Fl-Mn-F2 88.5(5) 
FI-Mn-F2b) 89.2(6) mean TI-F 315 
F2-Mn-F2b) 88.2(5) 

in plane: 
Mn-F2-Mn") 146.5( 7) Mn.  * .Mn 4x 383.2(2) 

between planes: 
Mn. .Mn 2 x  624.2(3) 

Mn-F2 2 x  186.1(10) TI-F i ')') 2X 298(1) 

Symmetry operations: ")OS+x, 1-y, z; b ) ~ - 0 . 5 ,  2-y, z; c ) l - x ,  y-0.5, 0.5-z; d )0 .5+~ ,  2-y, z; ') 1-x, -y, -z; 9 -x, -Y, 
-z ;g) l -x ,  I-y, -z; h, -x, I-y, -z; ' ) O . ~ - X ,  y, - z ; ' ) x - O . ~ ,  I-y, Z; ')x, y-I, Z; ' ) O . ~ - X ,  y-I,  - Z  
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Fig. 4 Temperature dependence of 
the (100) magnetic peak 

Fig. 5 Refined neutron diffraction 
pattern of TlMnF4 at T = 1.34 K [cal- 
culated profile intensities (full line) a); 
positions of nuclear peaks (above) and 
magnetic peaks (below) b); difference 
spectrum c)] 
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_1 
1 
b 

Fig. 6 Magnetic structure of TlMnF, 

Table 4 Observed and calculated intensities of magnetic reflec- 
tions for TlMnF, at T = 1.34 K 

- 
1 0 0 3264 3716 1 0 4 553 613 
1 0 2 1700 1990 1 2  0 161 172 
- 0 1 2 1489 1453 2 1 0 63 1 70 1 
1 0  2 1686 1723 1 2 2 195 201 
1 0 4  562 569 - 2 1 2 524 539 
0 1 4  850 887 - 1 2 2 197 206 

2 1 2  518 558 

a layer and ferromagnetically coupled between two alter- 
nating planes with a compensated resulting moment as 
shown in Fig. 6. This scheme corresponds to the P2’/a’ 
magnetic group. 

Conclusions 

The structural and magnetic data obtained for TIMnF, 
point out the strong influence of the Mn-F-Mn bridg- 
ing angle on the magnetic couplings: an antiferromagnet- 
ic ordering is observed instead of the ferromagnetic beha- 
vior which could be expected as a consequence of the an- 
tiferrodistortive structural ordering shown in Fig. 1. This 
result illustrates the competition between 0- and Ir-super- 
exchange mechanisms for low bridging angles. It con- 

firms the previous investigations on the Mn“’ chain com- 
pounds A,MnF, e xH,O (A = monovalent cation; x = 0 
or 1) in which the intrachain antiparallel exchange con- 
stant has been shown to decrease strongly with decreasing 
Mn-F-Mn bridging angles [2]. The small negative va- 
lues of the intralayer exchange constant (J/k = 

- 0.45 K) thus gives an indication of the presence of both 
parallel and antiparallel coupling mechanisms within a 
layer. 

The authors are indebted to J. Darriet for valuable discussions. 
One of us (PN) thanks the Government of Canary Islands for 
a grant. This work has been carried out in the scope of an EEC 
Research Program. 
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