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A B S T R A C T

The synthesis of a high-purity sample of the layered oxide selenide Sr2MnO2Ag1.5Se2 is reported. At ambient
temperature it crystallises in the space group I4/mmm with two formula units in the unit cell and lattice
parameters a=4.08771(1) Å, c=19.13087(8) Å. The compound displays mixed-valent manganese in a formal
oxidation state close to +2.5 and powder neutron diffraction measurements reveal that below the Néel
temperature of 63(1) K this results in an antiferromagnetic structure which may be described as A-type,
modelled in the magnetic space group PI4/mnc (128.410 in the Belov, Neronova and Smirnova (BNS) scheme)
in which localised Mn moments of 3.99(2) μB are arranged in ferromagnetic layers which are coupled
antiferromagnetically. In contrast to the isostructural compound Sr2MnO2Cu1.5S2, Sr2MnO2Ag1.5Se2 does not
display long range ordering of coinage metal ions and vacancies, nor may significant amounts of the coinage
metal readily be deintercalated using soft chemical methods.

1. Introduction

Oxide chalcogenides of composition A2MO2X2Ch2 (A=Sr, Ba;
M=1st row transition metal or Zn, X=Cu, Ag and Ch=S, Se) were first
discovered by Zhu and Hor in 1997 [1,2]. The crystal structure, shown
in Fig. 1, is similar to that originally described for Sr2Mn3Sb2O2 [3].
The transition metal, M, is in an unusual coordination environment in
which it is in a square-planar coordination by oxide ions, forming MO2

sheets, and in which it is additionally coordinated by two axial
chalcogenide ions which complete a distended MO4Ch2 octahedron
[4]. We have previously shown [5] that the compound originally
reported as Sr2MnO2Cu2S2 [2] is in fact highly copper deficient in
the chalcogenide layers and the composition accessible in a high
temperature synthesis is Sr2MnO2Cu1.5S2. In this compound and in
the selenide analogue Sr2MnO2Cu1.5Se2 [5,6] the Cu deficiency (25% of
the Cu sites are vacant) means that the average oxidation state of Mn is
approximately +2.5. These two compounds with Cu+ in tetrahedral
coordination by sulfide or by selenide behave quite differently at low
temperatures. The Cu vacancies order crystallographically below
~250 K in Sr2MnO2Cu1.5S2 resulting in strong superstructure reflec-
tions. In contrast, in Sr2MnO2Cu1.5Se2 no additional Bragg peaks
appear in the powder X-ray diffraction (PXRD) pattern at low
temperatures, although some evidence for short-range ordering ap-
pears in electron diffraction patterns [6]. We have previously described

how the length scale of the Cu/vacancy ordering evolves in the solid
solution Sr2MnO2Cu1.5(Se1−xSex)2 [6]. The absence of long-range
vacancy ordering in the selenide-rich compounds may be because
there is less of a thermodynamic driving for ordering, or the Cu ion
mobility is slightly lower than in the sulfide analogue [6].

In both Sr2MnO2Cu1.5S2 and Sr2MnO2Cu1.5Se2 the localised Mn
moments show long range magnetic order, but the magnetic structures
are very different. In both compounds, the mixed valence results in
strong ferromagnetic coupling between moments within the MnO2

sheets, but in the sulfide case the magnetic structure consists of
ferromagnetic zig-zag chains within the sheets, which are coupled
antiferromagnetically (the so-called CE type structure), while in the
selenide case each sheet displays ferromagnetic coupling and the
planes are coupled antiferromagnetically (the so-called A-type struc-
ture) [6]. This magnetic structure is also adopted by related compounds
with thicker copper sulfide layers [5]. Thus in these mixed-valent
manganese compounds where the oxidation states are between +2 and
+3, similar competition exists as is found in mixed-valent manganese
oxides with mean oxidation states similar to +3.5 [7–10]. Adamson
et al. [6] suggested a correlation exists between the shortening length
scale of the coinage metal/vacancy ordering and the tendency of A-type
magnetic ordering to be adopted (as opposed to the CE-type), however
this requires further investigation.

Sr2MnO2Cu1.5S2 and Sr2MnO2Cu1.5Se2 also exhibit differences in

http://dx.doi.org/10.1016/j.jssc.2016.10.010
Received 18 August 2016; Received in revised form 4 October 2016; Accepted 10 October 2016

⁎ Corresponding author.
E-mail address: simon.clarke@chem.ox.ac.uk (S.J. Clarke).

Journal of Solid State Chemistry 245 (2017) 61–66

0022-4596/ © 2016 Published by Elsevier Inc.
Available online 11 October 2016

crossmark

http://www.sciencedirect.com/science/journal/00224596
http://www.elsevier.com/locate/jssc
http://dx.doi.org/10.1016/j.jssc.2016.10.010
http://dx.doi.org/10.1016/j.jssc.2016.10.010
http://dx.doi.org/10.1016/j.jssc.2016.10.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jssc.2016.10.010&domain=pdf


their chemical reactivities. In Sr2MnO2Cu1.5S2, Mn may be oxidised
topotactically by suspending the compound in a solution of I2 and
acetonitrile. Removal of about 10% of the Cu, resulting in a limiting
composition of Sr2MnO2Cu1.33S2, leads to the compound adopting an
incommensurately-modulated Cu/vacancy ordering scheme at room
temperature and the oxidation of Mn results in dramatic changes in the
magnetic ordering [11]. In contrast, Sr2MnO2Cu1.5Se2 does not appear
to be susceptible to deintercalation of Cu by stirring in I2, a possible
reason for this is that the Cu+ ions are less mobile in the selenide layers.

Jin et al. reported the synthesis of Sr2MnO2Ag1.5Se2, [12] having

found that the compound formed with an intrinsic Ag deficiency of 0.5
per formula unit compared with the idealised stoichiometric composi-
tion “Sr2MnO2Ag2Se2” which would have all sites fully occupied.
Magnetometry data suggested that the compound was antiferromag-
netically ordered below 67 K. However, it was found that
Sr2MnO2Ag1.5Se2 could only be synthesised approximately 90 wt%
pure via a purely solid-state route [12]. In this work we verify the
difficulties in achieving high purity material using purely solid state
synthesis techniques, but we report that an I2 purification step results
in the isolation of Sr2MnO2Ag1.5Se2, with ~99 wt% purity. This has
enabled us to compare and contrast the crystal structure, magnetic
ordering and chemical properties with those of the Cu-containing
chalcogenide analogues using synchrotron powder X-ray diffraction
(PXRD) and powder neutron diffraction (PND).

2. Experimental

2.1. Synthesis

All manipulations were performed in a Glovebox technology Ltd Ar-
filled glovebox. Sr2MnO2Ag1.5Se2 was synthesised on the 3 g scale from
SrO (prepared by thermal decomposition of SrCO3 (Alfa 99.99%)), Mn
(Aldrich 99%), Ag (Aldrich 99.9%) and Se (Alfa 99.999%) in the ratio
2:1:2:2. These reactants were thoroughly ground together in an agate
pestle and mortar, pressed into 13 mm diameter pellets at a force of 5 t,
loaded into an alumina crucible and sealed in silica ampoules under
dynamic vacuum. The ampoules were heated to 700 °C at a rate of
10 °C min−1 and held at this temperature for 21 days, before being
cooled to room temperature. A long heating period was used because it
was found that highest sample purities were achieved when compara-
tively low temperatures and long reaction times were used. The
resulting product was tested for purity by laboratory powder X-ray
diffraction (PXRD). The purity of the sample was significantly less than
when the reaction was performed on a 1 g scale, so the sample was
reground and reheated at 700 °C for 3 days. PXRD analysis showed this
improved the purity of the sample to approximately 93 wt%, with SrSe
and Ag as the dominant impurities.

The sample was then purified by stirring 2.5 g of sample in a
solution containing I2 (0.9979 g, 1.0 M equivalent) and NaI (1.1786 g,
2.0 M equivalents) dissolved in dry acetonitrile, in an ice-bath, under a
N2 atmosphere (using Schlenk line techniques). The suspension was
left stirring for two days before removing the solution by filtration. The
powder was then washed with dry acetonitrile and dried under vacuum.
2.0 g of powder was isolated by filtration and this appeared phase-pure
by laboratory PXRD analysis. I2 was used to purify the sample because
it has been found with similar samples that I2 removes both SrSe and
Ag from the sample. NaI was used in the reaction to increase the
solubility of AgI. NaI dissolves readily in acetonitrile, producing an
excess of I– ions in the solution, these react with AgI to form
complexes, such as [AgI2]

–, which have a far greater solubility than
AgI [13]. This iodine treatment also enabled us to assess whether
significant oxidative deintercalation of Ag was possible using this
method as has been described for Sr2MnO2Cu1.5S2 [11].

2.2. Diffraction measurements

Initial structural characterisation was carried out by powder X-ray
diffraction using a PANanlytical Empyrean instrument operating in
Bragg-Brentano geometry with a Ge(111) monochromator to select
CuKα1 radiation. Detailed structural characterisation was undertaken
on the high-resolution synchrotron X-ray powder diffractometer I11 at
the Diamond Light Source, UK [14]. Low-temperature PND measure-
ments to probe the crystal structure and to characterise magnetic long
range order were performed on the WISH time-of-flight diffractometer
at the ISIS Pulsed Neutron Source, UK, which is particularly optimised
for long d-spacing data for measurement of magnetic ordering [15].

Fig. 1. The crystal structure of A2MO2X2Ch2 (A=Sr, Ba), M=1st row transition metal,
X=coinage metal (Cu or Ag), Ch=chalcogenide).
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On I11 two batches of a single Sr2MnO2Ag1.5Se2 sample, isolated
before and after the I2 purification step, were ground with amorphous
boron (to reduce preferred orientation and absorption effects), loaded
in 0.5 mm diameter borosilicate glass capillaries and measured at room
temperature using Si-calibrated X-rays, with wavelength of approxi-
mately 0.826 Å (the exact wavelength used for each measurement is
given with the Rietveld plots). Data were collected in the range 2≤2θ/°
≤92 using the Mythen position-sensitive detector (PSD) and in the
range 0≤2θ/° ≤150 using the Multi-Analyser-Crystal (MAC) detector.

Low-temperature PND measurements were performed on WISH
using a multi-wavelength beam of neutrons on the same sample
purified using I2 that had been used for the PXRD measurements.
This sample (1.9 g in mass) was loaded in to a 6 mm diameter
cylindrical vanadium sample can. Data were collected at 1.7, 55, 60,
65, 70 and 125 K inside an Oxford Instruments cryostat. Rietveld
refinement against both PND and PXRD data were conducted using the
TOPAS Academic Version 5 software [16]. The magnetic structure was
determined using ISODISTORT [17] in conjunction with TOPAS
Academic.

2.3. Magnetometry

The magnetic properties of the sample were measured on a
Quantum Design MPMS-XL SQUID magnetometer. 15–20 mg batches
of powder were contained in gelatin capsules. Temperature dependent
measurements in the range 2≤T/K≤300 were carried out on warming
in an applied magnetic field of 100 Oe either after cooling in zero
applied field (zero-field-cooled (ZFC)) or after cooling in the measuring
field (Field-cooled (FC)). Additional measurements in the range
150≤T/K≤300, made at applied fields of 30 kOe and 40 kOe, were
used to obtain the intrinsic high temperature magnetic susceptibility
because magnetisation isotherms (see Appendix A, Fig. S4) revealed a
very slight deviation from linearity at low fields which may be due to a
minuscule amount of a magnetic impurity (estimated as < 0.006 wt%
of adventitious elemental iron). Magnetisation isotherms were mea-
sured in the field range –50≤H/kOe≤+50.

3. Results and discussion

3.1. Crystal structure

Synchrotron PXRD measurements were used to probe any changes
in the structure of the compound during the purification step using I2.
Stirring in an iodine solution in acetonitrile has been used to
deintercalate copper in the related compound Sr2MnO2Cu1.5S2, and
in that case is accompanied by a contraction of the unit cell volume by
1.6% and the appearance of superstructure reflections [11].

Table 1 compares selected refined parameters of the sample of
Sr2MnO2Ag1.5Se2 before purification and after purification with the
parameters published by Jin et al. [12] The Rietveld refinement against
the PXRD data is shown in Fig. 2 for the purified sample and further
plots and tables of structural parameters are supplied in the
Supplementary Material (Appendix A: Figs. S1 & S2, Tables S1 & S2).

Table 1 shows that the I2 purification step reduces the unit cell
volume by 0.588(6) Å3 (0.18%), this is significantly larger than the
difference in cell volume obtained in two separate measurements on
the purified sample measured using the different detectors on I11 (see
Table S1; there is ~0.1 Å3 (~0.03%) apparent difference between the
volumes measured using the Mythen PSD and the MAC detector for the
purified sample), so may be judged to be the result of a real reduction
in Ag occupancy which occurs during the reaction with I2. In the
Sr2MnO2Cu1.5S2 system, deintercalation of 11% of the Cu from
Sr2MnO2Cu1.5S2 results in a 1.6% reduction in cell volume [11].
Extrapolating this trend to Sr2MnO2Ag1.5Se2 allows us to estimate that
only ~1% of the Ag in Sr2MnO2Ag1.5Se2 has been deintercalated in the
I2 purification step, and this is not contradicted by the independent

refinement of the Ag site occupancy before and after purification. We
note that the cell volume after the purification step is marginally larger
than that reported by Jin et al., but the samples were not all measured
on the same diffractometer. We conclude that a variation in Ag
occupancy of about 1% is accessible using the purification with I2; we
cannot rule out that a similar variation in Ag occupancies is also
accessible via a purely solid state synthesis route for this compound.

Data were also recorded independently on I11 using the MAC
detector for the sample after purification. The use of the analyser
crystals mean that the MAC detector offers higher resolution, more
accurate lattice parameters and is less sensitive to anomalies, such as
capillary precession, than the Mythen PSD. Fig. 2 shows the Rietveld
plot for the purified sample. The refined parameters are given in Tables
S1 and S2 (in Appendix A) and Table 2 lists important structural
parameters obtained from this refinement. Independent refinements of
the Ag site occupancies from the MAC and PSD data sets obtained on
I11 produced a mean Ag site occupancy of 0.770(3). Refinement of the
structure of the same sample against PND data at 125 K and 1.7 K (see
Fig. 6 below and Figs. S5–S10 and Tables S3–S6 in Appendix A)
produced an Ag site occupancy of 0.750(4). We deduce that a
composition of Sr2MnO2Ag1.52(2)Se2 reflects the realistic uncertainty
on the refined composition from our PXRD and PND measurements.
We note that this large Ag deficiency relative to the idealised
“Sr2MnO2Ag2Se2” stoichiometry seems to be intrinsic to samples made
at high temperatures [12] because additional Ag than is required by the
Sr2MnO2Ag1.5Se2 composition remains as a spectator phase during the
synthesis and is removed in the purification step.

Selected structural parameters are compared for Sr2MnO2Cu1.5S2,
Sr2MnO2Cu1.5Se2 and Sr2MnO2Ag1.5Se2 in Table 2. As the sizes of the
coinage metal and chalcogenide ions increase the c/a ratio increases
dramatically. This is due to a relatively small increase in a (which is
equal to twice the Mn–O bond length), so consequently the c lattice
parameter increases disproportionately and expands by ~1.25 Å (~7%)
as Cu+ in Sr2MnO2Cu1.5Se2 is replaced by Ag+ in Sr2MnO2Ag1.5Se2.
This results in a large distortion of the AgSe4 tetrahedron in
Sr2MnO2Ag1.5Se2 compared with the almost regular CuSe4 tetrahedron
in Sr2MnO2Cu1.5Se2, (Fig. 3). Despite repeated attempts, we have been
unable to make a sample containing the sulfide analogue phase
Sr2MnO2Ag1.5S2, presumably because the tetrahedron becomes too
distorted and the quinary phase is unstable with respect to the binaries
SrS, MnO which are formed along with elemental Ag.

3.2. Magnetometry

Magnetic susceptibility measurements were performed on the
sample before and after purification to assess whether the purification
step caused a significant change in magnetic behaviour. The magnetic
susceptibility measurements (Fig. 4(a)) show that the sample is
paramagnetic above 63(1) K, where an antiferromagnetic transition
occurs.

Table 1
Refined parameters from Rietveld refinement of the Sr2MnO2Ag1.5Se2 samples before
and after purification and comparison with data published by Jin et al. [12].

Parameter Before purification After purification Jin et al.

X-ray source Synchrotron I11a Synchrotron I11a Cu Kα
Wavelength (Å) 0.826222 0.825953 1.5418
Purity by mass (%) 92 ~99 90
Space group I4/mmm I4/mmm I4/mmm
a (Å) 4.08973(2) 4.08771(1) 4.0882(1)
c (Å) 19.14709(9) 19.13087(8) 19.1179(2)
V (Å3) 320.252(3) 319.664(3) 319.525(5)
Ag occupancy 0.7852(7) 0.7733(6) 0.720(2)

wRp (%) 1.183 0.854 4.57

a Both measured using the same detector (PSD) for comparison, the fits are shown in
Figs. S1 and S2.
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Table 3 compares magnetometry data from the sample described in
this paper (before and after purification) with data from Jin et al. [12]
The Weiss temperature (θ) and effective magnetic moment (μeff) were
derived from the linear 150–300 K region of the inverse susceptibility
(see Fig. 4(b) and S3–S4).

The data show that TN, θ and μeff are similar within the experi-
mental uncertainty before and after purification. The calculated μeff is
in between the values that expected from the spin-only formula for
high-spin octahedral Mn2+(5.92 μB) and Mn3+(4.90 μB), this reflects
that Mn in the compound has an oxidation state between +2 and +3.
Similar values of the effective moment were found for Sr2MnO2Cu1.5S2
(5.45(3) μB) [5] and Sr2MnO2Cu1.5Se2 (5.63(3) μB), [6] which are both
close analogues of Sr2MnO2Ag1.5Se2.

The 100 Oe susceptibility data (Fig. 4(a)) reveal a slight divergence
of ZFC and FC data below TN, similar to that observed in the original
report of Sr2MnO2Cu1.5S2 [2]. The magnetisation isotherm (Fig. 5),
measured at 5 K, is slightly offset from the origin. These observations
suggest a small glassy element to the magnetism arising from some
disorder and frustration of the magnetic interactions. It is possible that
this arises from a slight inhomogeneity in the distribution of Mn2+ and
Mn3+ ions, which itself may arise from the disorder in the distribution
of Ag+ ions and Ag-site vacancies in the compound. The magnetisation
isotherm at 5 K (Fig. 5) also shows a slight upwards curvature in the
magnetisation at high fields which is not evident in measurements of
magnetisation against applied field above the antiferromagnetic order-
ing temperature (Fig. S4); this suggests that the compound is meta-
magnetic but that the field-induced antiferromagnetic to ferromagnetic
transition would occur at much higher fields than 50 kOe.
Metamagnetic behaviour has been observed in the series
Sr2MnO2Cu2m−δSm+1, (m=2, 3) [5] which have a larger separation
between MnO2 layers. In those compounds the magnetic moments in
the MnO2 layers are coupled ferromagnetically, and the layers are
coupled antiferromagnetically in low applied fields. The applied field

required to drive the systems into the ferromagnetic state decreases as
the separation of the layers increases [5].

3.3. Magnetic structure

Simultaneous refinements against four banks (2/9, 3/8, 4/7 and 5/
6) of WISH data at 125 K (Fig. 6(a) and Tables S3 and S4) are in
agreement with the structural model derived from PXRD analysis. No
additional peaks from long range ordering of Ag+ ions and vacancies
were apparent. The reflection at d=5.07 Å is indexed as the dominant
magnetic reflection of MnO ( < 1% by mass) [18]. At 1.7 K additional
reflections (see Fig. 6(b) and Tables S5 and S6) were evident, which
diminished in intensity on warming and vanished above TN (Fig. S11
and S12). These reflections were indexed on the nuclear unit cell
(propagation vector k=(0 0 0)), but with a breaking of symmetry, so
that the magnetism may be described by space group PI4/mnc
(128.410) in the Belov, Neronova and Smirnova (BNS) scheme; a
setting of space group IP4/mm’m’ (139.15.1193) in the Opechowski
and Guccione (OG) scheme) [19]. This relaxation of symmetry allows
for refinement of the mM3+(a) mode on the Mn sites, which
corresponds to A-type antiferromagnetic order, in which the spins
are aligned parallel within the MnO2 planes, but anti-parallel in
adjacent MnO2 planes (see Fig. 6 inset). This model accounts for all
additional intensity in the data (wRp=3.674%) and gives a refined
ordered magnetic moment of 3.99(2) μB.

The magnetic structure adopted by Sr2MnO2Ag1.5Se2 is similar to
that found for Sr2MnO2Cu1.5Se2 [6] and the related sulfides
Sr2MnO2Cu3.5S3 and Sr2MnO2Cu5.5S4 [5]. The ordered magnetic
moment of Sr2MnO2Cu1.5Se2 at base temperature is 4.1(1) μB, [6] it
is therefore similar within the experimental uncertainty, to that of
Sr2MnO2Ag1.5Se2. These two compounds are isostructural, with similar
refined coinage metal occupancies, indicative of similar Mn oxidation
states (~+2.5). The Mn–O distances differ only by 0.01 Å (0.5%),
indicating a similar degree of covalency in the compounds. These
factors explain the similar ordered magnetic moments for the two
phases. However, the Néel temperature, TN, for three-dimensional
ordering is ~9 K lower in Sr2MnO2Cu1.5Se2 (53 K) than in
Sr2MnO2Ag1.5Se2 (63(1) K). Although the c lattice parameter is
significantly larger in Sr2MnO2Ag1.5Se2, due to the larger size of the
coinage metal ion, the Mn–Se distance in Sr2MnO2Ag1.5Se2 is 0.04 Å
(1.34%) shorter than in Sr2MnO2Cu1.5Se2; this, and the different shape
of the coinage metal tetrahedron (Fig. 3) may be the factors which lead
to slightly stronger inter-plane exchange constants in Sr2MnO2Ag1.5Se2
than in Sr2MnO2Cu1.5Se2. Direct measurement of the exchange con-
stants using neutron spectroscopy would enable this difference to be
investigated in greater detail.

Fig. 2. Rietveld refinement of the purified sample of Sr2MnO2Ag1.5Se2, against I11 data
(MAC detector) at room temperature (See Tables S1 and S2 and Table 2).

Table 2
Comparison of selected structural parameters for Sr2MnO2Cu1.5S2, (PND data from Ref. [5]) Sr2MnO2Cu1.5Se2 (PND data from Ref. [6]) and Sr2MnO2Ag1.5Se2 (synchrotron PXRD data
(Fig. 2)).

Sr2MnO2Cu1.5S2 [5] Sr2MnO2Cu1.5Se2 [6] Sr2MnO2Ag1.5Se2

a (Å) 4.01218(3) 4.06655(3) 4.08798(1)
c (Å) 17.1916(2) 17.8830(1) 19.13391(9)
c/a ratio 4.28485(6) 4.39759(4) 4.68053(3)
V (Å³) 276.743(5) 295.729(5) 319.759(3)
Cu or Ag occupancy 0.745(5) 0.773(2) 0.770(3)
Mn–O distance (Å) [4]a 2.00608(5) 2.03328(1) 2.04399(1)
Mn–S(Se) distance(Å) [2]a 2.9200(9) 3.0002(3) 2.9652(5)
Mn–S(Se)/Mn-O ratio 1.4555 1.4779(5) 1.4507(5)
Cu(Ag)–S(Se) distance (Å) [4]a 2.4337(1) 2.5094(2) 2.7357(3)
S(Se)–Cu(Ag)–S(Se) angle (°) [2]a 111.03(5) 108.25(5) 96.69(2)
S(Se)–Cu(Ag)–S(Se) angle (°) [4]a 108.70(5) 110.09(5) 116.215(9)

a Numbers in square brackets give the number of bonds/angles of each type. See also Fig. 3.
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4. Conclusions

Sr2MnO2Ag1.5Se2 has been synthesised with > 99% purity,

Fig. 3. The XS(Se)4 coordination environment of (a) Sr2MnO2Cu1.5S2 [5] and (b) Sr2MnO2Cu1.5Se2 [6] and (c) Sr2MnO2Ag1.5Se2.

Fig. 4. (a) The magnetic susceptibility of the purified Sr2MnO2Ag1.5Se2 sample under
ZFC and FC conditions with a measuring field of 100 Oe. The inset compares the ZFC
magnetic susceptibility of Sr2MnO2Ag1.5Se2 before and after purification. (b) The
magnetic susceptibility of the purified sample obtained from measurement in a magnetic
field range where the magnetic moment of the sample varies linearly with field (see
experimental Section 2.3) and the inverse magnetic susceptibility with line of best fit,
from which the effective magnetic moment and Weiss temperature were derived.

Table 3
Comparison of magnetometry data for Sr2MnO2Ag1.5Se2 obtained from the samples
described in this paper and the sample described by Jin et al. [12].

Parameter Before
purification

After
purification

Jin et al.

Néel temperature, TN

(K)
63(1) 63(1) 67

Weiss temperature, θ
(K)

+41(2) +45(3) +46.8

Effective moment, μeff
(μB)

5.47(1) 5.45(1) 5.82(1)

Fig. 5. Magnetisation isotherm of the purified sample of Sr2MnO2Ag1.5Se2, measured at
5 K in the range −50 kOe <H < +50 kOe. The inset shows the slight offset from the
origin.
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although an ambient temperature purification step using a solution of
I2 in acetonitrile was required to remove small amounts of impurity
phases. This I2 purification step results in an extremely small (~1%)
reduction in Ag occupancy through oxidative deintercalation, showing
that only a very narrow phase width is accessible using this soft
chemical approach in this case. Magnetic susceptibility measurements
in the Curie-Weiss regime produce an effective moment of 5.45(1) μB
per Mn ion, consistent with the mixed valence (Mn oxidation state of
+2.5), and a positive Weiss temperature suggesting that the strongest
interactions between Mn moments are ferromagnetic. Below the Néel
temperature of 63(1) K the magnetic structure of the compound was
accordingly found to be A-type antiferromagnetic (with ferromagnetic
coupling of nearest neighbour Mn moments), with a long range ordered
moment of 3.99(2) μB per Mn ion, similar to that of Sr2MnO2Cu1.5Se2
[6]. In Sr2MnO2Ag1.5Se2 there is no evidence for a superstructure
arising from long range crystallographic ordering of coinage metal ions
and vacancies, nor is the coinage metal readily extracted by reaction
with iodine. This behaviour is similar to the case of Sr2MnO2Cu1.5Se2,
but contrasts with the case of Sr2MnO2Cu1.5S2 where there is long
range Cu/vacancy order and several percent of the Cu ions may readily
be extracted by oxidative deintercalation [11]. The coinage ion
mobilities [20] and the distribution of the ions [21] in antifluorite-
type Cu2–xS and Cu2–xSe (0≤x≤0.2) are reportedly similar. The
different behaviours of the oxide sulfide Sr2MnO2Cu1.5S2, and the

oxide selenides Sr2MnO2Cu1.5Se2 and Sr2MnO2Ag1.5Se2 with antifluor-
ite-type coinage metal chalcogenide layers are presumably due to small
differences in the thermodynamic driving force for cation/vacancy
order or cation deintercalation, and to small differences in ionic
mobility.
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