

phys. stat. sol. (a) 13, K79 (1972)

Subject classification: 18.4; 22

Institute of Nuclear Research, Świerk Research Establishment, Warszawa (a), and
 Institute of Low Temperatures and Structural Research,
 Polish Academy of Sciences, Wrocław (b)

Magnetic Structure of UPb_3

By

J. LECIEJEWICZ (a) and A. MISIUK (b)

UPb_3 shows a sharp minimum in the inverse magnetic susceptibility versus temperature curve indicating its antiferromagnetic origin (Fig. 1) (1). A neutron diffraction study has been therefore undertaken to determine the magnetic structure of UPb_3 .

A polycrystalline sample has been synthetized from spectrally pure components in a berylia crucible sealed in evacuated quartz tube. The sample was first heated at $600^{\circ}C$ for 150 h annealed at $300^{\circ}C$ during next 300 h and finally cooled down to room temperature during one week.

X-ray and neutron patterns show strong lines due to a $AuCu_3$ type lattice, however, it is impossible to decide whether the atomic distribution is ordered or disordered at room temperature, because X-ray and neutron scattering amplitudes for uranium and lead are close to each other (neutron scattering amplitudes for U and Pb are 0.84×10^{-12} and 0.96×10^{-12} cm respectively (2)).

The crystal structure of UPb_3 is of the $AuCu_3$ type (3). The lattice constant was determined from X-ray patterns to be $(4.793 \pm 0.002)\text{\AA}$ at room temperature.

On neutron diffraction patterns taken at $4.2^{\circ}K$ we found, apart from strong nuclear peaks, two superstructure reflections due to magnetic ordering. Both were

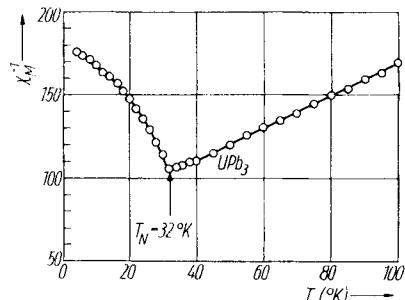


Fig. 1. Inverse molar susceptibility vs. temperature curve for UPb_3 (1)

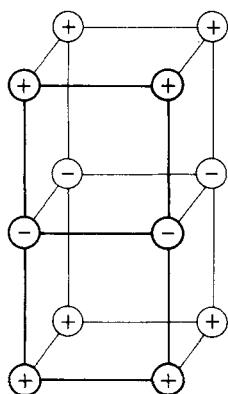


Fig. 2. The magnetic structure of UPb_3

indexed on a unit-cell of tetragonal symmetry with $a = a_0$ and $c = 2 a_0$ (a_0 is the lattice constant of UPb_3). The proposed magnetic structure consists of uranium magnetic moments aligned oppositely in adjacent (001) ferromagnetic places (Fig. 2). The configurational symmetry is $\text{P}4/\text{mmm}$ with

$$\begin{aligned} 1 \text{ U (+)} &\text{ at } 1 \text{ (a)} & 0, 0, 0; \\ 1 \text{ U (-)} &\text{ at } 1 \text{ (b)} & 0, 0, 1/2. \end{aligned}$$

This model requires the presence of magnetic reflections with 1 odd only, as observed in experiment. For these reflections the magnetic structure factor is $F(Mhkl) = 2p$, where p is the magnetic scattering amplitude. The absence of the $M\ 0\ 0\ 1/2$ peak suggests that the alignment of uranium magnetic moments is along the fourfold axis. In this case

$$\langle q^2 \rangle_{00\frac{1}{2}} = 0 .$$

The mean value of the magnetic moment determined from the intensities of both observed $M\ 10\ \frac{1}{2}$ and $M\ 11\ \frac{1}{2}$ peaks is (1.7 ± 0.1) Bohr magnetons, using the magnetic form factor of uranium for the $5f^2$ configuration (4). An ordered distribution of U and Pb atoms at 4.2°K is assumed.

The temperature dependence of the $M\ 10\ \frac{1}{2}$ peak height gives the Néel temperature at 32°K (Fig. 3).

The other two AuCu_3 -type uranium compounds - UTl_3 and UIn_3 - which also show antiferromagnetic behaviour at low temperatures (5) are now investigated by

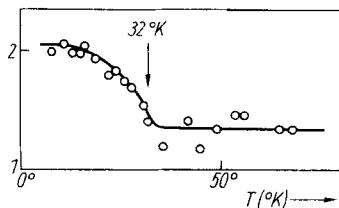


Fig. 3. The height of the $M\ 10\ \frac{1}{2}$ peak as a function of temperature

neutron diffraction.

References

- (1) A. MISIUK, J. MULAK, and A. CZOPNIK, Bull. Acad. Polon. Sci., Ser. Sci. Chim., in the press.
- (2) The Neutron Diffraction Commission IU Cryst., Acta cryst. A25, 391 (1969).
- (3) R.J. TEITEL, J. Metals 4, 397 (1952).
- (4) B.C. FRAZER, G. SHIRONE, D.E. COX, and C.E. OLSEN, Phys. Rev. 140, A1448 (1965).
- (5) A. MISIUK, J. MULAK, and A. CZOPNIK, to be published.

(Received August 1, 1972)