

The synthesis, and crystal and magnetic structure of the iron selenide BaFe_2Se_3 with possible superconductivity at $T_c = 11$ K

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2012 J. Phys.: Condens. Matter 24 059502

(<http://iopscience.iop.org/0953-8984/24/5/059502>)

View the [table of contents for this issue](#), or go to the [journal homepage](#) for more

Download details:

IP Address: 208.4.14.30

This content was downloaded on 25/06/2016 at 07:32

Please note that [terms and conditions apply](#).

Corrigendum: The synthesis, and crystal and magnetic structure of the iron selenide BaFe_2Se_3 with possible superconductivity at $T_c = 11$ K

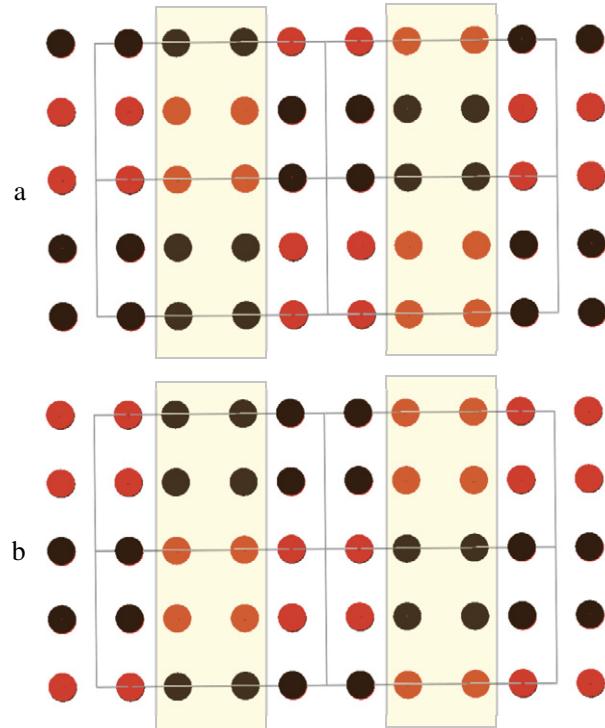
2011 *J. Phys.: Condens. Matter* **23** 402201

A Krzton-Maziopa¹, E Pomjakushina¹, V Pomjakushin², D Sheptyakov², D Chernyshov³, V Svitlyk³ and K Conder¹

¹ Laboratory for Development and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

² Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

³ Swiss–Norwegian Beam Lines at ESRF, BP220, F-38043 Grenoble, France


Received 28 November 2011

Published 18 January 2012

Online at stacks.iop.org/JPhysCM/24/059502

Owing to a technical mistake, we erroneously used the wrong computer file for plotting the magnetic structure of the solution that we found for the irreducible representation (irrep) τ_2 , which was shown in figure 4(b) in the original article. Table 3, showing also the details of the magnetic structure refinements for τ_2 , and figure 4(a) were correct. The corrected figure 4 is shown in this corrigendum. The structure in (b) looks similar to that in (a), but the geometries of the Fe plaquettes forming ferromagnetic four-spin blocks are slightly different for the (a) and (b) cases of different (τ_1 and τ_2) symmetry. For completeness, we explicitly list the symmetry operators, coordinates and spin directions +1 or -1 along the a -axis for all eight Fe atoms in the zeroth cell for the (a) and (b) structures.

Symmetry operator	x, y, z	Spin direction for a, b
x, y, z	0.494, 0.001, 0.353	+1, +1
$-x + 1/2, -y, z + 1/2$	0.006, 0.999, 0.853	-1, +1
$-x, y + 1/2, -z$	0.506, 0.501, 0.647	-1, +1
$x + 1/2, -y + 1/2, -z + 1/2$	0.994, 0.499, 0.147	-1, -1
$-x, -y, -z$	0.506, 0.999, 0.647	-1, -1
$x + 1/2, y, -z + 1/2$	0.994, 0.001, 0.147	+1, -1
$x, -y + 1/2, z$	0.494, 0.499, 0.353	-1, +1
$-x + 1/2, y + 1/2, z + 1/2$	0.006, 0.501, 0.853	-1, -1

Figure 4. Refined magnetic structure models ((a) and (b)) for Ba123. The magnetic structures for τ_1 (a) and τ_2 (b) are shown in the projection on the bc -plane. The black and red circles correspond to the up and down spin directions. The Se_2Fe_3 double chains separated by a distance of approximately $a/2$ along the a -axis are shown with a different background color.