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Abstract

We have investigated the crystal and magnetic structure of Mn2PtPd alloy using powder X-ray
and neutron diffraction experiments. This compound is believed to belong.to the Heusler family
having crystal symmetry 14/mmm (TiAls-type). However, in this work wefound that the Pd and
Pt atoms are disordered and thus MnzPtPd crystallizes in the Lo structure having P4/mmm
symmetry (CuAu-I type) like MnPt and MnPd binary alloys#The lattice:constants are a = 2.86
A and ¢ = 3.62 A at room temperature. Mn2PtPd has a collinear.antiferromagnetic spin structure
below the Néel temperature Tn = 866 K, where Mn maments of ~4 pg lie in the ab-plane. We
observed a strong change in the lattice parameters near, Ty, The sample exhibits metallic
behaviour, where electrical resistivity and carrier concentration are of the order of 10° Q cm

and 102! cm’3, respectively.
1. Introduction

Antiferromagnets (AFMs) are special among. magnetic materials as they display magnetic
ordering but with zero magnetic_.moment. Their practical use has been established in many
fields especially in spintronics, for instance as pinning layers in giant magnetoresistance (GMR)
and tunnel magnetoresistance (NR) devices [1-13]. Here, the AFM acts as a passive
component. The absence of stray fields is a great advantage of AFMs over ferromagnets and
thus AFMs may even replace ferromagnets as an active component in spintronic devices.
However, it is difficult to,manipulate the AFMs due to their vanishing magnetic moment.
Recent advances.in controlling the antiferromagnetic configurations by electrical switching
bear a good prospect for anew era of applications [14]. In addition, high ordering temperatures
and largesmagneto-crystalline anisotropy are desired to enhance the scope for more universal

use.

Heusler allays X>YZ are a particularly promising class of materials for the search of new AFMs
for applications due to their great variability in chemical composition and properties [15-20].
Inithis.regard the recently reported phase Mn2PtPd is of interest, which was identified in a high

throughput computational study by Sanvito et al. [21] as a potential new ferromagnetic cubic
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Heusler alloy. Its subsequent experimental realization, however, rather suggested this material
to be a tetragonal antiferromagnetic Heusler compound having space group 14/mmm (TiAls-
type) with lattice constants a = 4.03 A and ¢ = 7.24 A [21]. A TiAls-type structure wouldimply
ordering of Pt and Pd atoms. A magnetic transition near 320 K was reported [21], but details
on the magnetic behaviour are unknown yet. On the other hand, several Mn based binary alloys
MnTM with various transition metals TM like Ni, Pt, Pd, Rh, Ir have been reported which are
AFMs having high Néel temperatures and the crystal symmetry P4/mmm (LL1o, CuAu-1 type)
[22-32]. Binary alloys having cubic (B2, CsCl-type) and tetragonal (klo, CuAu-I type)
structures are the building blocks to design Heusler materials [33]. Combining two binary alloys
XY and XZ belonging to the B2 structure results in a regular Heusler (L2i;:Cu.MnAl-type)
structure, given the condition that Y and Z atoms order, whereas a tetragonal Heusler (TiAls-
type) compound is expected in the case of combining two L1o structures. However, ternary
alloys XoYZ adapt the same structure as their binary precurser ifthereds a complete disorder of
Y and Z atoms. Hence, taking into account the chemical similarity between Pd and Pt atoms,
Mn2PtPd could also be considered as a CuAu-1 type phase MnPtosPdos with a disordered
arrangement of Pt and Pd atoms. In this paper ‘wereport Bur powder X-ray and neutron
diffraction studies on Mn2PtPd as well as magnetization.and electrical transport measurements.
We will show that Mn,PtPd is a CuAu-I type antiferromagnet with a Néel temperature Tn =
866(5) K.

2. Experimental details

A polycrystalline ingot of Mn,PtPd was prepared by arc melting stoichiometric amounts of
constituent elements in the presenee.of high purity Ar atmosphere. About 2.5 wt % of extra Mn
was used to compensate the weight loss due to the evaporation of Mn during the melting. The
sample was ground and characterized at room temperature by powder X-ray diffraction (XRD)
using a Huber G670'camera [Guinier technique, A = 1.54056 A (Cu—Kay radiation)]. Field and
temperature dependent magnetization measurements were performed using a vibrating sample
magnetometer (MPMS3;. Quantum Design). Temperature dependent magnetization M(T)
measurements were carried out from 2 to 400 K in zero field cooled (ZFC) and field cooled
(FC) modes. High temperature magnetization measurements were performed during heating
and eoolingfrom 300 to 1000 K using the oven option of the MPMS3. The electrical transport
properties were investigated using a physical property measurement system (PPMS, Quantum
Design). The Hall measurements were performed on a rectangular bar using a five probe

geometry at different temperatures from 2 K to 300 K in fields up to 5 T. For the neutron
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diffraction study, the sample was powdered by grinding followed by annealing at 773 K in an
evacuated quartz tube for 24 hours. Neutron powder diffraction experiments were carried out
on the instrument E6 at the BER Il reactor of the Helmholtz-Zentrum Berlin. This instrument
uses a pyrolytic graphite (PG) monochromator selecting the neutron wavelength A = 242:A. In
order to investigate in detail the crystal structure of Mn,PtPd a powder pattern was:collected at
1012 K, well above the magnetic ordering temperature of Ty = 866 K. The sample was heated
up in a quartz ampoule using a high-temperature furnace (AS Scientific Produets Ltd:,
Abingdon, GB). The temperature dependence of the crystal and magnetic structure was
investigated between 296 and 1012 K, where 18 and 6 patterns were collected below and above
Tn, respectively. Neutron powder patterns were recorded between/the diffraction angles (26)
5.5 and 136.5 °. Rietveld refinements of the powder diffraction data were carried out with the
program FullProf [34], using the nuclear scattering lengths b(Mn) ==3.73 fm, b(Pd) = 5.91
fm, and b(Pt) = 9.63 fm [35]. The magnetic form factor of .the Mn_atoms was taken from Ref.
[36].

3. Results and discussion IS
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Figure 1. Observed X-ray diffraction pattern (black) of Mn,PtPd. For comparison, calculated patterns for space
groups P4/mmm (CuAu-1 type, red) and 14/mmm (TiAls-type, blue) are shown together.

The phase purity of the sample was examined by powder X-ray diffraction as shown in figure
1. To determine the crystal structure, calculated XRD patterns for both structure models
P4/mmm (CuAu-1 type with a = 2.86 A and ¢ = 3.61 A) and 14/mmm (TiAlz-type with a = 4.04

A and c=7.23 A) are shown in addition. The observed diffraction peaks match well with both

models. In particular, the lattice parameters compare well with those reported by Sanvito et
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al. [21] using space group 14/mmm (TiAls-type, a = 4.03 A and ¢ = 7.24 A). However, the
absence of some additional peaks in the experimental pattern which are present in the calculated
I4/mmm pattern suggests that Pt and Pd are atomically disordered and thus Mn.PtPd rather
crystallizes in P4/mmm symmetry. Below we will show the detailed structural analysisiusing

the powder neutron diffraction data.
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Figure 2. (a) Temperature dependent/magnetization M(T) per formula unit of Mn,PtPd from 300 to 1000 K
measured using the oven option and from 2 t0 400 K (in the inset) (b) Magnetic isotherms at different temperatures.

To determine the magnetic behaviour and the ordering temperature we have performed
magnetization measurements as a function of temperature and field. Figure 2(a) shows the
temperature dependence of the magnetization M(T) from 300 to 1000 K and in the inset from 2
to 400 K. For the‘high temperature M(T) measurements the sample was heated from room
temperature.to 1000 K and then cooled down to room temperature again in the presence of a
magnetic field of 0.1 T. The broad maximum in the M(T) curve indicates that the sample
undergoes an:antiferromagnetic ordering transition with a Néel temperature (Tn) of about 870
K. The observed Tn for Mn2PtPd is close to the average of the Ty values of 780 and 970 K
which were reported for the binary AFMs MnPd and MnPt, respectively [25,26,29-31]. This is
further support that Mn,PtPd rather is a CuAu-I type than a TiAls-type AFM material. For

4
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obtaining low temperature M(T) data, the sample was cooled down to 2 K and measurements
were carried out in the zero field cooled (ZFC) and field cooled (FC) modes from 2 to 400 K at
0.1 T. Both ZFC and FC magnetization curves followed the same path. In contrast to Ref. [21]
we did not observe any indication for a magnetic transition near 320 K. At temperatures below
100 K an up-turn in the magnetization is apparent. A similar behaviour has been reported for
MnPt alloys due to a very small deviation from the equiatomic composition [26]. Therefore, a
small amount of off-stoichiometry in the sample could be the reason for this kind of behaviour
and also for the irreversibility in the magnetization being observed at 470.4;0n ceoling (figure
2(a)). In figure 2(b) magnetic isotherms M(H) are shown at different temperatures. The linear
increase of M with H is in agreement with the anticipated AFM order. There.are no indications

for a hysteresis or spontaneous magnetization.
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Figure 3. Results of the Rietveld refinements of the neutron powder diffraction data of Mn,PtPd collected on the
instrument E6 at 1012 K (a) and 296 K (b), respectively. The crystal structure was refined in the tetragonal space
group-P4/mmm. The calculated patterns (crystal structure in red, crystal and magnetic structure in green) are
compared with, the observed ones (black circles). The difference patterns (blue) as well as the positions (black
bars) of\the nuclear (N) and magnetic (M) Bragg reflections are shown. The broad features are due to scattering

by the quartz sample container.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPCM-111456.R1

The crystal structure of Mn.PtPd was refined from a powder neutron diffraction data set
collected at 1012 K (figure 3(a)), which is above the magnetic ordering temperature of Tn =
866 K. The refinements were carried out in the tetragonal space groups P4/mmm (No. 123) and
I14/mmm (No. 139), respectively. In the space group P4/mmm the Mn atoms are locatedrat the
Wyckoff position 1d(*2,%,%), while the Pd and Pt atoms are statistically distributed at the
position 1a(0,0,0). The refinement resulted in a satisfactory residual Rr = 0.0178. In the space
group 14/mmm the unit cell is enlarged with the dimensions aV2 x av2 x 2c. {In this setting the
Mn atoms occupy the position 4d(0,%2,%4), while the Pd and Pt occupy different. atomic sites
located at the positions 2a(0,0,0) and 2b(0,0,%2) or vice versa. The refinement resulted exactly
in the same residual for both settings, but the obtained residual of Rr = 0.0357"1s considerably
enlarged compared to the refinement in P4/mmm. This can be ascribed/to the fact that a
segregation of the Pt and Pd atoms clearly leads to an emergence of the Bragg reflections 101,
103, and 213 (Y2 %2 1¥%, % Y2 1%, and 1% % 1% in the setting.of P4/mmm). Due to the fact that
these reflections do not exist the Pd and Pt atoms are statistically:distributed at both positions
2a and 2b. Considering the fact that no intensity was'detected.at these particular reflections we
conclude that the crystal structure of Mn2PtPd can be well descﬁbed in the space group P4/mmm
having the smaller unit cell. The results of the Rietveld refinements are summarized in table 1.

Table 1. Results of the neutron diffraction study of Mn2PtPd. The crystal structure refinements
of the data sets were carried out inthe tetragonal space group P4/mmm. Listed are the unit cell
parameters and the interatomic distances between the metal atoms (up to 4 A) obtained at 296
and 1012 K. Further the experimental magnetic moment of the Mn atom is given. The listed

residuals of the refinement of the crystal and magnetic structure are defined as Rr = > ||Fobs| —

|FcaIcH/Z|Fobs| and Rm= Z|||obs| = “calc”/Z“obs, respectively.

Mn,PtPd at 296 K at 1012 K
a[A] 2.85512(13) 2.95250(13)
c[A] 3.61438(18) 3.53069(18)
cla 1.26593(11) 1.19583(11)
V [AT] 29.463(3) 30.778(3)
d(Mn-Pt/Pd) 2.7096(1) 2.7341(1)
de(Mn-Mn) 2.8551(1) 2.9525(1)
da(Mn-Mn) 3.6144(2) 3.5307(2)
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Rr 0.0178 0.0210
Mexp(M n) 4.093(10) -
Rm 0.0214 -

In the neutron powder patterns collected at 296 K (figure 3(b)) two strong magnetic reflections
were observed at the 2@ positions 34.8 and 53.4°. This can be ascribed to a long-range magnetic
ordering of the Mn moments. These reflections could be indexed as (*2 ¥2'Q)m and (*2 %2 1)m
using the smaller unit cell (crystal structure type with space group P4/mmim) as described above.
These two reflections can be generated by the rule (hkl)m = (hkl)n &K where the propagation
vector is k = (%2,%,0). This suggests that the magnetic unit cell parameters\are doubled along
the a and b axes. In this type of magnetic ordering the magnetic moments‘of the Mn atoms are
antiferromagnetically coupled along the a and b axes with the spin sequence + —+ — ... . From
a symmetry analysis using the program BASIREP of the FullProf suite [34] one obtains two
irreducible representations, which describe a spin structure, where the moments are either
aligned parallel to the tetragonal c axis or aligned withinthe ab plane, respectively. Our Rietveld
refinements clearly show that the Mn moments are ‘aligned within the tetragonal ab plane,
resulting in a residual Rm = 0.0214, where the intensity ratio of the first two magnetic reflections
is 1(¥2 Y2 0)m/1(*%2 Y2 1)m = 1.0. Assuming.a.spin-alignment parallel to the c axis one obtains a
considerably enlarged ratio of 3.3. In our. refinements we further assumed the magnetic
moments to be aligned parallel*to,the directions [110] or [100]. For these two models we
practically obtained the same residuals, which shows that we are not able to determine the
moment direction within the.tetragenal ab plane. It has been reported that MnPt exhibits two
different magnetic structures [30]. At high temperatures above 750 K, the Mn moment lies in
the basal plane whereas'it undergoes a spin-flip transition in a broad temperature region ranging
from 750 to 570 K,Jeading to-a magnetic structure with Mn moments aligned parallel to the
tetragonal ¢ axis¢:By contrast, MnPd exhibits only the magnetic structure with the moments

lying in the ab plane.

The same.spin structure is also adopted by Mn,PtPd throughout the whole temperature range.
There are no indications for a spin-flip transition. It is noted that we did not observe any
significant change in the magnetic configuration below 470 K which indicates that the
irreversibility in the M(T) curve (figure 2a) is rather related to off-stoichiometry or defects than

being an intrinsic bulk property.
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The determined moment value at 296 K is uexp(Mn) = 4.09(10) g, which is similar as for many
other magnetic intermetallic alloys containing Mn [24-26,29,31,37]. The temperature
dependence of the magnetic moment of the Mn atom was investigated in the temperaturetange
from 296 to 1012 K. In figure 4(a) it is seen that the saturation of the magnetic moments s
almost reached at 296 K. The magnetic order disappears at the Néel temperature In. = 866(5)
K. The lattice parameters, the c/a ratio, and the volume of the unit cell are displayed in figure
4 (b) and 4 (c) respectively. The lattice parameters at 296 K are a = 2.86 A and ¢'=.3.62 A.
Interestingly, the Rietveld refinements of the powder patterns revealed a.strong.change of the
lattice parameters near the Néel temperature, which results in a pronounced increase of the
tetragonal distortion as reflected in the c/a ratio. This is ascribed to the fact that'the apical bond
length da(Mn-Mn) is strongly elongated below Tn, whereas the equatorial bond length de(Mn-
Mn) is shortened (see table 1). A similar strong magneto-elastic coupling on going from the
paramagnetic to the AFM phase was observed for MnPd and.the lattice anomaly was attributed
to deformation sensitive nearest neighbour Mn-Mn interactions [29]. On the other hand the cell
volume is continuously decreasing to lower temperatures without pronounced anomalies near

@
the Néel temperature.
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Figure 4. (a) Temperature dependence of the magnetic moment of the Mn atoms in Mn,PtPd. Antiferromagnetic

ordering,sets in at the Néel temperature Ty = 866(5) K, where the lattice parameters a and ¢ [shown in (b)] reveal
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a strong decrease and increase, respectively. The temperature dependence of the c/a ratio and the unit cell volume

V are shown in (c). The dotted lines are only a guide for the eye.
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Figure 5. (a) Temperature dependence of electrical resistivity p(T)-and (b) Hall resistivity pw as a function of field

from 2 to 300 K of Mn,PtPd. The carrier concentration 'nmis shown in the inset.

Figure 5 (a) shows the electrical resistivity asta function of temperature from 2 K to room
temperature. The sample exhibits. metallic behaviour and has resistivity values of the same order
of magnitude (10° Q c¢m) as those-0fiMnPt [26] and MnPd alloys [25]. We measured the Hall
resistivity pn at different temperatures between 2 and 300 K as shown in figure 5 (b). The
straight line behaviour of the Hall\resistivity with the applied field is expected for the collinear
AFM structure which shows@ normal Hall effect. Anomalous Hall effects scaling with the
magnetization are onlyfound for ferromagnets or peculiar types of non-collinear
antiferromagnets [38]. The calculated carrier concentration from Hall measurements is shown
in the inset of figure 5 (b)< The carrier concentration is given by the equation n = uyH/epy,
where o is the vacuum permeability, H is the applied field and e is the elementary charge. The
carrier concentration’is of the order of 10%* cm™. The Hall resistivity decreases and carrier

concentration increases with increase in temperature.
4. Conclusions

We found that MnoPtPd adopts the L1o (CuAu-I)-type crystal structure similar to MnPt and

MnPd binary alloys. As for MnPd the magnetic moments of the Mn atoms (~4 pg) are

9
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antiferromagnetically coupled in the ab-plane without evidence for a spin-flip transition.
Mn2PtPd has an ordering temperature Ty = 866 K which is the average of the ordering
temperatures of MnPd and MnPt. A pronounced change in the lattice parameters near Tn'shows
strong magneto-elastic coupling. We observe that Mn;PtPd has metallic characteristics

analogous to MnPt and MnPd.
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