

# Single Crystal Growth and Magnetic Properties of High Oxidation State Material $\text{Ba}_2\text{CoO}_4$

Gihun Ryu, Hanjie Guo, Li Zhao, Maria Teresa Fernández-Díaz, Yvo Drees, Z. W. Li, Zhiwei Hu, and Alexander C. Komarek\*

This study reports on the physical properties of  $\text{Ba}_2\text{CoO}_4$  single crystals grown in a high pressure mirror furnace at oxygen pressures of 20 bar. Direction dependent magnetic susceptibility measurements on the single crystals below  $T_N \approx 25$  K reveal a spin direction which is parallel to the crystallographic  $a$ -axis. Therefore, the spin structure of  $\text{Ba}_2\text{CoO}_4$  has been re-analyzed and a different magnetic structure with magnetic moments pointing mainly in  $a$ -direction is proposed which reconciles neutron,  $\mu$  SR, and magnetic susceptibility measurements.

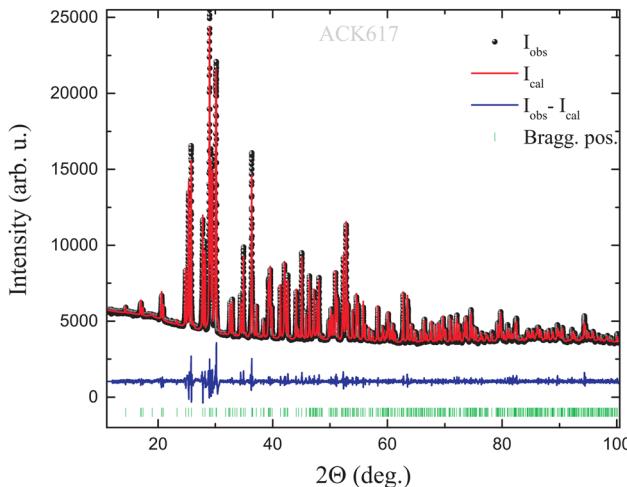
Cobalt oxide materials are known to be interesting because of a variety of fascinating properties such as superconductivity, magneto-resistance, thermoelectric power, the recent discovery of hour-glass magnetic excitation spectra as well as catalytic properties for clean energy conversion reaction including oxygen evolution (OER), hydrogen evolution reaction (HER), and applications in fuel cells and batteries.<sup>[1–15]</sup> The key aspect of Co ions that differs from other 3d transition metal (TM) ions is the spin state degree of freedom of the Co ions which can be in the low spin (LS), intermediate spin state (IS), or high spin (HS) state. The interplay of spin state, charge, and orbital degrees of freedom is responsible for its interesting properties. It was found more recently that the strong covalency of Co-oxygen bonds might be also relevant for lattice oxygen redox reactions. The Co-oxygen covalency is expected to increase with increasing Co valence from  $\text{Co}^{2+}$  to  $\text{Co}^{3+}$  and further to  $\text{Co}^{4+}$ . The spin state of  $\text{Co}^{3+}$  ions and its impact on electronic and magnetic properties in various materials are known for more than 60 years.<sup>[16,17]</sup> However, the  $\text{Co}^{4+}$  compounds are much less studied. One example is  $\text{SrCoO}_3$  and also  $\text{Sr}_2\text{CoO}_4$  where the tetravalent Co ions are in the IS state.<sup>[18–22]</sup> On the other hand  $\text{Co}^{4+}$ -ions in the LS state were found

in  $\text{BaCoO}_3$ .<sup>[23–27]</sup> Finally, a  $\text{Co}^{4+}$  HS has been reported for  $\text{Ba}_2\text{CoO}_4$  with tetrahedrally coordinated  $\text{Co}^{4+}$  ions.<sup>[28,29]</sup> However, so far the study of its electronic and magnetic properties was limited to studies on polycrystalline samples and very small single crystals.<sup>[28–30]</sup>

We have grown single crystals of  $\text{Ba}_2\text{CoO}_4$  by the floating zone technique using a high pressure mirror furnace. These crystals were used to perform direction dependent magnetic susceptibility measurements which point to a different magnetic structure than indicated by an earlier neutron study. Here,

we propose a new magnetic structure for  $\text{Ba}_2\text{CoO}_4$  which is in agreement with neutron,  $\mu$  SR, and magnetic susceptibility data.

**Experimental Details:** Single crystals of  $\text{Ba}_2\text{CoO}_4$  were grown by the traveling solvent floating zone method in a HKZ high pressure mirror furnace from *Scidre*. Feed and seed rods were prepared by high temperature solid state reaction. Therefore, appropriate amounts of  $\text{BaCO}_3$  (99.997%, Alfa Aesar) and  $\text{Co}_3\text{O}_4$  (99.997%, Alfa-Aesar), with Ba:Co molar ratio of 2:1, were ground together and sintered (two times for  $\approx 1/2$  and  $\approx 1$  day, respectively) at 1050 °C in air with intermediate grindings. Finally, a rod was pressed out of the powders and sintered for  $\approx 12$  h at 1060 °C in air. Then,  $\text{Ba}_2\text{CoO}_4$  single crystals were grown in a high pressure mirror furnace at somewhat elevated oxygen pressures of  $\approx 20$  bar. Suitable growth conditions could be reached only with a slow growth rate of  $\approx 3$  mm/h (with feed and seed rods being inversely rotated). The crystal structure was determined by means of powder and single crystal X-ray diffraction (XRD) using a Bruker powder X-ray diffractometer with  $\text{Cu}-K_{\alpha}$  radiation and a Bruker D8 Venture single crystal diffractometer using  $\text{Mo}-K_{\alpha}$  radiation. The analysis of the XRD data has been performed with the Jana2006 and Fullprof program packages.<sup>[31–33]</sup> The magnetic properties of our samples were studied using a SQUID magnetometer (MPMS3 SQUID VSM, Quantum Design Inc.). Because  $\text{Ba}_2\text{CoO}_4$  is hygroscopic we prepared the samples for the measurements of the magnetic susceptibility mainly in an argon-filled glovebox with the level of  $\text{O}_2$  and  $\text{H}_2\text{O}$  being around 1 ppm. Finally, the exposure time in air was reduced to less than 10 min before mounting samples into the SQUID-VSM or PPMS devices. Using an incident neutron wavelength of 2.41 Å neutron scattering experiments have been performed at the D20 diffractometer at the ILL in Grenoble, France.


**Results and Discussion:** Parts of our  $\text{Ba}_2\text{CoO}_4$  single crystal were crushed to powder and analyzed by means of powder X-ray diffraction, see Figure 1. These measurements indicate that our

Dr. G. Ryu, Dr. H. Guo, Dr. L. Zhao, Dr. Y. Drees, Dr. Z. W. Li, Dr. Z. Hu, Dr. A. C. Komarek  
Max-Planck-Institute for Chemical Physics of Solids  
Nöthnitzer Str. 40  
D-01187 Dresden, Germany  
E-mail: alexander.komarek@cpfs.mpg.de

Dr. G. Ryu  
Max-Planck-POSTECH Center for Complex Phase Materials  
Pohang University of Science and Technology  
Pohang 37673, Korea

Dr. M. T. Fernández-Díaz  
Institut Laue-Langevin (ILL)  
71 avenue des Martyrs  
F-38042 Grenoble Cedex 9 Grenoble, France

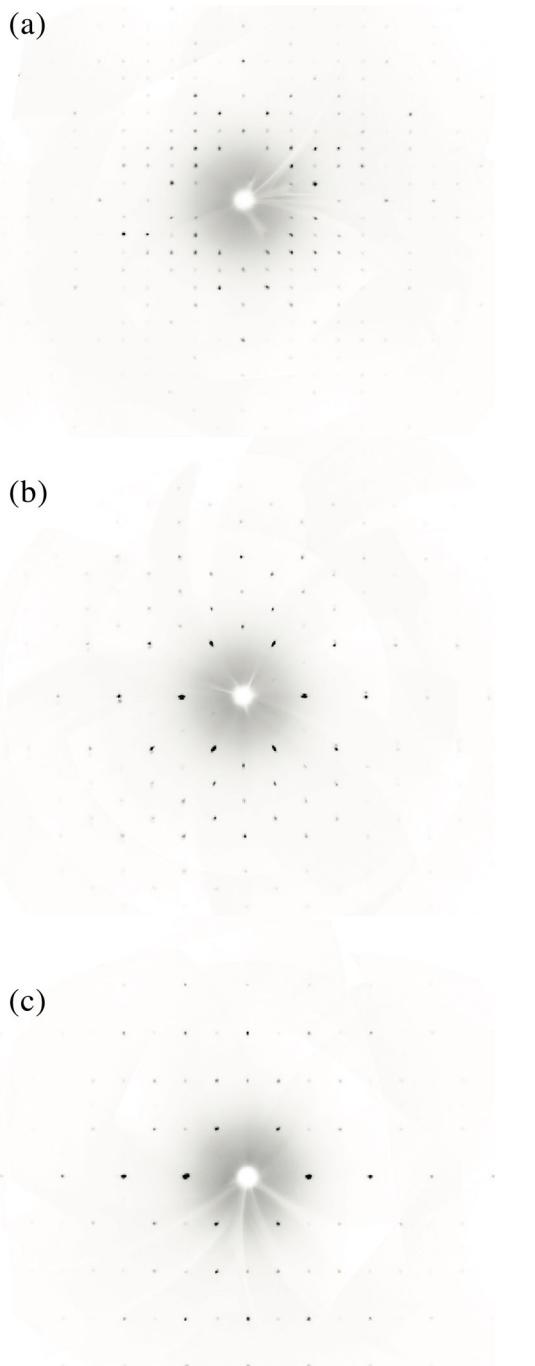
DOI: 10.1002/pssr.201800537



**Figure 1.** Room temperature powder XRD (PXRD) pattern of our  $\text{Ba}_2\text{CoO}_4$  crystals grown at  $p_{\text{O}_2} = 20$  bar (black dots). Red and blue solid lines are fits obtained by Le Bail fits and the difference between observed and calculated intensities, respectively. Vertical bars at the bottom show the calculated positions of Bragg peaks.

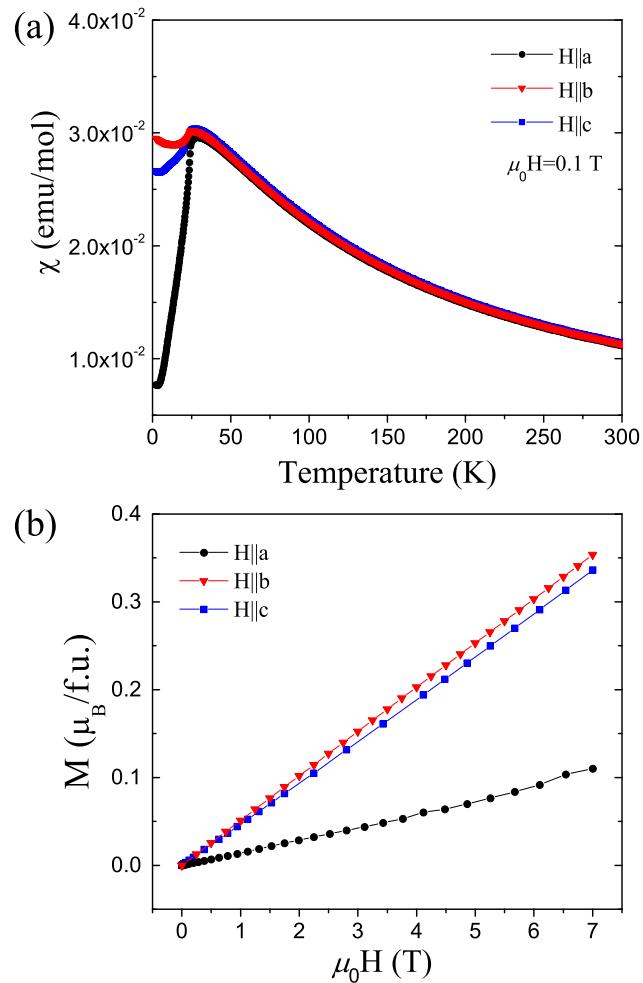
single crystals are free from impurities. The lattice parameters obtained from the refinement with space group  $P2_1/n$  are listed in **Table 1**. Subsequent single crystal X-ray diffraction experiments have been performed and the observed X-ray scattering intensities within the  $(0KL)$ ,  $(HOL)$ , and  $(HKO)$  planes of reciprocal space are shown in **Figure 2a–c**. The structural information obtained within a crystal structure refinement is listed in Table 1. Our results are consistent with literature values.<sup>[28,29]</sup> In  $\text{Ba}_2\text{CoO}_4$  the Co-ions are tetrahedrally surrounded by the oxygen ions and the  $\text{CoO}_4$  tetrahedra are separated by the Ba ions, that is, the Ba ions are octahedrally coordinated by the  $\text{CoO}_4$  tetrahedra. The typical Co–O bond lengths within the  $\text{CoO}_4$  tetrahedra are of the order of 1.8 Å, which is shorter than the ones in  $\text{BaCoO}_3$  with the same valence state of  $\text{Co}^{4+}$ , but with an octahedral coordination – the latter ones amount to  $\approx 1.9$  Å.<sup>[20,21]</sup>

The magnetic susceptibility  $\chi(T)$  and magnetization  $M(H)$  of  $\text{Ba}_2\text{CoO}_4$  are shown in **Figure 3** for  $H$  parallel to the  $a$ ,  $b$ , and  $c$  axis (black, red, and blue symbols).  $\chi(T)$  exhibits a broad peak around 25 K which is associated with the emergence of anti-ferromagnetic correlations,<sup>[28]</sup> see Figure 3a. Below 25 K the magnetic susceptibility is almost constant for  $H \parallel c$  and for  $H \parallel b$  whereas a strong decrease toward zero can be observed with decreasing temperature for  $H \parallel a$ . This observation indicates an anti-ferromagnetic structure with moments pointing in  $a$ -direction. However, a different magnetic structure was derived from neutron scattering experiments,<sup>[29]</sup> which reported magnetic moments of  $3.08 \mu_B$  per Co ion in  $c$ -direction and  $0.91 \mu_B$  in  $b$ -direction within a noncollinear antiferromagnetic structure with propagation vector  $\mathbf{k} = (1/2 \ 0 \ 1/2)$ .<sup>[29]</sup> Also  $\mu\text{SR}$  experiments provide conflicting results and indicate magnetic moments within the  $ab$ -plane.<sup>[34]</sup>


In order to reconcile the neutron measurements with our direction dependent susceptibility and  $\mu\text{SR}$  measurements we re-analyzed the magnetic structure of  $\text{Ba}_2\text{CoO}_4$  and performed powder neutron diffraction measurements at the D20

**Table 1.** Room-temperature structure of  $\text{Ba}_2\text{CoO}_4$  (grown at 20 bar oxygen pressure) obtained by means of single crystal XRD on a twinned single crystal.

| Formula            | $\text{Ba}_2\text{CoO}_4$ |              |              |
|--------------------|---------------------------|--------------|--------------|
| Space group        | $P2_1/n$ (No.14)          |              |              |
| $a$ (Å)            | 5.91916(13)               |              |              |
| $b$ (Å)            | 7.62832(18)               |              |              |
| $c$ (Å)            | 10.42286(27)              |              |              |
| $\beta$ (°)        | 91.270(1)                 |              |              |
| Atomic coordinates |                           |              |              |
| Atom               | $x$                       | $y$          | $z$          |
| Ba1                | 0.75481(7)                | 0.85082(4)   | 0.08216(3)   |
| Ba2                | 0.24244(7)                | 0.49187(3)   | 0.19006(3)   |
| Co1                | 0.74767(13)               | 0.27562(8)   | 0.07983(6)   |
| O1                 | 0.7621(8)                 | 0.5079(5)    | 0.0821(4)    |
| O2                 | 0.5105(7)                 | 0.1992(6)    | 0.1646(5)    |
| O3                 | 1.0009(7)                 | 0.1790(6)    | 0.1445(4)    |
| O4                 | 0.7184(7)                 | 0.1860(5)    | 0.9197(4)    |
| Atom               | $U_{11}$                  | $U_{22}$     | $U_{33}$     |
| Ba1                | 0.01735(15)               | 0.00570(12)  | 0.01545(15)  |
| Ba2                | 0.01660(14)               | 0.00447(11)  | 0.00702(12)  |
| Co1                | 0.0109(3)                 | 0.0034(2)    | 0.0068(3)    |
| O1                 | 0.035(2)                  | 0.0065(15)   | 0.019(2)     |
| O2                 | 0.020(2)                  | 0.019(2)     | 0.034(2)     |
| O3                 | 0.0137(18)                | 0.0157(19)   | 0.025(2)     |
| O4                 | 0.027(2)                  | 0.0111(16)   | 0.0104(17)   |
| Atom               | $U_{12}$                  | $U_{13}$     | $U_{23}$     |
| Ba1                | -0.00028(12)              | 0.00009(13)  | -0.00150(10) |
| Ba2                | -0.00019(11)              | -0.00033(11) | 0.00018(10)  |
| Co1                | 0.0000(2)                 | 0.0002(3)    | -0.0001(2)   |
| O1                 | 0.0020(18)                | -0.001(2)    | 0.0000(15)   |
| O2                 | 0.0019(17)                | 0.0128(18)   | 0.0137(19)   |
| O3                 | -0.0009(16)               | -0.0037(16)  | 0.0076(17)   |
| O4                 | 0.0005(16)                | -0.0036(16)  | -0.0012(14)  |
| Co–O distances     |                           |              |              |
| Atoms              | Distance (Å)              |              |              |
| Co1–O1             | 1.774(4)                  |              |              |
| Co1–O2             | 1.774(5)                  |              |              |
| Co1–O3             | 1.789(4)                  |              |              |
| Co1–O4             | 1.808(4)                  |              |              |


12457 reflections have been collected up to  $2\theta_{\text{max}} = 79^\circ$  with an internal  $R$ -value of 4.38% and a redundancy of 4.72. The  $R$ -values and goodness of fit amount to  $R = 3.94\%$ ,  $R_w = 6.65\%$  and  $\text{GOF} = 1.48$ . The refined volume fractions of the two monoclinic twin domains amount to 91.4(4)% and 8.6(4)% respectively. The corresponding lattice parameters were determined from powder X-ray diffraction measurements on pulverized single crystals ( $\chi^2 = 2.91$ ).

diffractometer ( $\lambda = 2.41$  Å). We propose a different magnetic structure for  $\text{Ba}_2\text{CoO}_4$  which is, finally, in agreement with neutron scattering experiments,  $\chi(T)$  results as well as with  $\mu\text{SR}$  measurements.<sup>[34]</sup> We also indexed all magnetic reflections with



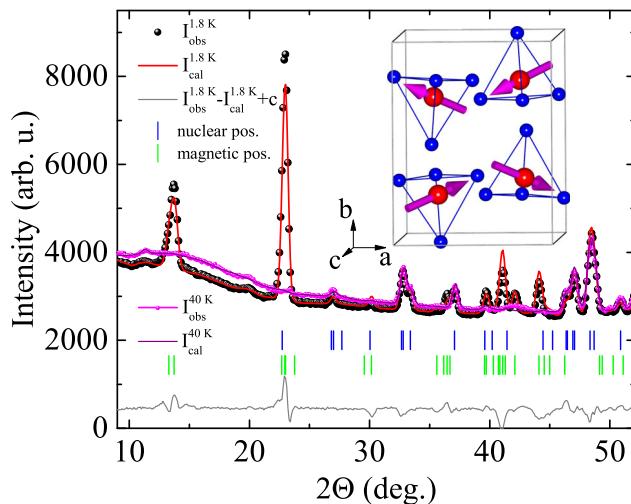
**Figure 2.** Intensities within the (a)  $(0KL)$ , (b)  $(HOL)$ , and (c)  $(HKO)$  planes of reciprocal space measured in single crystal X-ray diffraction measurements of our  $\text{Ba}_2\text{CoO}_4$  single crystal grown at 20 bar oxygen pressure.

a propagation vector  $\mathbf{k} = (1/2 \ 0 \ 1/2)$ . The magnetic symmetry analysis for space group  $P2_1/n$  and the  $\text{Co}^{4+}$  ions at the  $4e$  site yields irreducible representations with the basis vectors that are summarized in **Table 2**. The magnetic structure can be described by IR  $\Gamma_4$  with magnetic moments pointing mainly in  $a$ -direction,



**Figure 3.** (a) Temperature dependence of the (ZFC) magnetic susceptibility of  $\text{Ba}_2\text{CoO}_4$  measured for all crystallographic directions  $H \parallel a$ ,  $H \parallel b$ , and  $H \parallel c$ . (b) Magnetization of  $\text{Ba}_2\text{CoO}_4$  at 2 K.

thus, being consistent with our direction-dependent magnetic susceptibility measurements. The refinement of the magnetic structure (magnetic  $R$ -factor  $\approx 21.0\%$ ) yields a moment size of  $\approx 3.5(1) \ \mu_B/\text{Co}$  which is only tilted by roughly  $21(1)^\circ$  ( $24(2)^\circ$ ) away from the  $a$ - toward the  $b$ - ( $c$ -) direction. The components of the ordered magnetic moment along the  $a$ -,  $b$ -, and  $c$ -direction amount to  $2.97(5) \ \mu_B/\text{Co}$ ,  $-1.13(5) \ \mu_B/\text{Co}$ , and  $-1.30(9) \ \mu_B/\text{Co}$ , respectively. The magnetic structure is shown in the inset of **Figure 4**.


In Ref. [29] a refinement with same magnetic symmetry but with the  $a$ -component of the magnetic moment being fixed to zero has been performed. Such a refinement leads to somewhat larger magnetic  $R$ -values (22.8% compared to 21.0%) and is also conflictive with our orientation dependant magnetic susceptibility measurements.

*Conclusion:* We have grown sizeable single crystals of  $\text{Ba}_2\text{CoO}_4$  in a high pressure floating zone furnace. Our direction dependent magnetic susceptibility measurements on our single crystals reveal a spin direction which is basically parallel to the crystallographic  $a$ -axis within the anti-ferromagnetic state. Hence, we re-analyzed the magnetic structure of  $\text{Ba}_2\text{CoO}_4$  by

**Table 2.** Nonzero IRs together with basis vectors  $\psi_v$  for Co atoms in  $\text{Ba}_2\text{CoO}_4$  with space group  $P2_1/n$  and  $\mathbf{k} = (1/2 \ 0 \ 1/2)$  obtained from representational analysis.

| IRs        | $\psi_v$ | Co1     | Co2      | Co3      | Co4      |
|------------|----------|---------|----------|----------|----------|
| $\Gamma_1$ | $\psi_1$ | (1 0 0) | (-1 0 0) | (1 0 0)  | (-1 0 0) |
|            | $\psi_2$ | (0 1 0) | (0 1 0)  | (0 1 0)  | (0 1 0)  |
|            | $\psi_3$ | (0 0 1) | (0 0 -1) | (0 0 1)  | (0 0 -1) |
| $\Gamma_2$ | $\psi_1$ | (1 0 0) | (-1 0 0) | (-1 0 0) | (1 0 0)  |
|            | $\psi_2$ | (0 1 0) | (0 1 0)  | (0 -1 0) | (0 -1 0) |
|            | $\psi_3$ | (0 0 1) | (0 0 -1) | (0 0 1)  | (0 0 -1) |
| $\Gamma_3$ | $\psi_1$ | (1 0 0) | (1 0 0)  | (1 0 0)  | (1 0 0)  |
|            | $\psi_2$ | (0 1 0) | (0 -1 0) | (0 1 0)  | (0 -1 0) |
|            | $\psi_3$ | (0 0 1) | (0 0 1)  | (0 0 1)  | (0 0 1)  |
| $\Gamma_4$ | $\psi_1$ | (1 0 0) | (1 0 0)  | (-1 0 0) | (-1 0 0) |
|            | $\psi_2$ | (0 1 0) | (0 -1 0) | (0 -1 0) | (0 1 0)  |
|            | $\psi_3$ | (0 0 1) | (0 0 1)  | (0 0 -1) | (0 0 -1) |

The atoms are defined as Co1: (0.7477 0.2756 0.0798); Co2: (-0.2477 0.7756 0.4202); Co3: (-0.7477 -0.2756 -0.0798); Co4: (1.2477 0.2244 0.5798).



**Figure 4.** Fit of the (magnetic) neutron scattering intensities at 1.8 K with our new proposed spin structure of  $\text{Ba}_2\text{CoO}_4$ . Red/blue spheres denote Co/O ions. The blue polyhedra indicate the  $\text{CoO}_4$  tetrahedra. The magenta arrows indicate the spin directions within this magnetic structure. The corresponding components along the  $a$ -,  $b$ -, and  $c$ -direction amount to  $2.97(5) \ \mu_B/\text{Co}$ ,  $-1.13(5) \ \mu_B/\text{Co}$ , and  $-1.30(9) \ \mu_B/\text{Co}$ , respectively. The comparison with the 40 K data reveals the magnetic peaks that appear below  $T_N$ .

means of powder neutron diffraction and propose a magnetic structure with magnetic moments mainly pointing in  $a$ -direction that reconciles neutron,  $\mu\text{SR}$ , and susceptibility measurements.

## Acknowledgements

The research in Dresden is supported by the Deutsche Forschungsgemeinschaft through Grant No. 320571839. G.R. acknowledges the

financial support by the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (No.2016K1A4A4A01922028).

## Conflict of Interest

The authors declare no conflict of interest.

## Keywords

cobaltate, high oxidation state material, magnetism, spin structure

Received: October 8, 2018

Revised: October 23, 2018

Published online:

- [1] R. E. Schaak, T. Klimczuk, M. L. Foo, R. J. Cava, *Nature* **2003**, 424, 527.
- [2] S. Ishiwata, T. Nakano, I. Terasaki, H. Nakao, Y. Murakami, Y. Uwatoko, M. Takano, *Phys. Rev. B* **2011**, 83, 020401.
- [3] X. Huang, W. Zhang, *Sci. Rep.* **2016**, 6, 38212.
- [4] I. Terasaki, Y. Sasago, K. Uchinokura, *Phys. Rev. B* **1997**, 56, R12685.
- [5] A. T. Boothroyd, P. Babkevich, D. Prabhakaran, P. G. Freeman, *Nature* **2011**, 471, 341.
- [6] Y. Drees, D. Lamago, A. Piovano, A. C. Komarek, *Nat. Commun.* **2013**, 4, 2449.
- [7] Y. Drees, Z. W. Li, A. Ricci, M. Rotter, W. Schmidt, D. Lamago, O. Sobolev, U. Rütt, O. Gutowski, M. Sprung, A. Piovano, J. P. Castellan, A. C. Komarek, *Nat. Commun.* **2014**, 5, 5731.
- [8] H. Guo, W. Schmidt, L. H. Tjeng, A. C. Komarek, *Phys. Status Solidi RRL* **2015**, 9, 580.
- [9] Z. W. Li, Y. Drees, C. Y. Kuo, H. Guo, A. Ricci, D. Lamago, O. Sobolev, U. Rütt, O. Gutowski, T. W. Pi, A. Piovano, W. Schmidt, K. Mogare, Z. Hu, L. H. Tjeng, A. C. Komarek, *Sci. Rep.* **2016**, 6, 25117.
- [10] J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, *Science* **2017**, 358, 751.
- [11] B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Garca-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. Garca de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, *Science* **2016**, 352, 333.
- [12] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, *Science* **2011**, 334, 1383.
- [13] H. Jeen, W. S. Choi, M. D. Biegalski, C. M. Folkman, I. C. Tung, D. D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm, H. N. Lee, *Nat. Mater.* **2013**, 12, 1057.
- [14] A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. Shao-Horn, *Nat. Chem.* **2017**, 9, 457.
- [15] A. Grimaud, W. T. Hong, Y. Shao-Horn, J. M. Tarascon, *Nat. Mater.* **2016**, 15, 121.
- [16] J. B. Goodenough, *J. Phys. Chem.* **1958**, 6, 287.
- [17] M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H. J. Lin, C. T. Chen, L. H. Tjeng, *Phys. Rev. Lett.* **2006**, 97, 176405.
- [18] R. H. Potze, G. A. Sawatzky, M. Abbate, *Phys. Rev. B* **1995**, 51, 11501.
- [19] J. H. Lee, K. M. Rabe, *Phys. Rev. Lett.* **2011**, 107, 067601.
- [20] J. Kuneš, V. Krápek, N. Parragh, G. Sangiovanni, A. Toschi, A. V. Kozhevnikov, *Phys. Rev. Lett.* **2012**, 109, 117206.

[21] J. Matsuno, Y. Okimoto, Z. Fang, X. Z. Yu, Y. Matsui, N. Nagaosa, M. Kawasaki, Y. Tokura, *Phys. Rev. Lett.* **2004**, *93*, 167202.

[22] J. Matsuno, Y. Okimoto, M. Kawasaki, Y. Tokura, *Phys. Rev. Lett.* **2005**, *95*, 176404.

[23] H. Taguchi, Y. Takeda, F. Kanamaru, M. Shimada, M. Koizumi, *Acta Crystallogr.* **1977**, *33*, 1298.

[24] J. Sugiyama, H. Nozaki, Y. Ikeda, K. Mukai, D. Andreica, A. Amato, J. H. Brewer, E. J. Ansaldo, G. D. Morris, T. Takami, H. Ikuta, *Phys. Rev. Lett.* **2006**, *96*, 197206.

[25] C. Felser, K. Yamaura, R. J. Cava, *J. Solid State Chem.* **1999**, *146*, 411.

[26] V. Pardo, P. Blaha, R. Laskowski, D. Baldomir, J. Castro, K. Schwarz, J. E. Arias, *Phys. Rev. B* **2007**, *76*, 165120.

[27] H. Nozaki, M. Janoschek, B. Roessli, J. Sugiyama, L. Keller, J. H. Brewer, E. J. Ansaldo, G. D. Morris, T. Takami, H. Ikuta, *Phys. Rev. B* **2007**, *76*, 014402.

[28] R. Jin, H. Sha, P. G. Khalifah, R. E. Sykora, B. C. Sales, D. Mandrus, J. Zhang, *Phys. Rev. B* **2006**, *73*, 174404.

[29] K. Boulahya, M. Parras, J. M. González-Calbet, U. Amador, J. L. Martnez, M. T. Fernández-Díaz, *Chem. Mater.* **2006**, *18*, 3898.

[30] K. Boulahya, M. Parras, A. Vegas, J. M. González-Calbet, *Solid State Sci.* **1998**, *2*, 57.

[31] V. Petricek, M. Dusek, L. Palatinus, *Jana2006*. Institute of Physics, Praha, Czech Republic **2006**.

[32] L. Palatinus, G. Chapuis, *J. Appl. Crystallogr.* **2007**, *40*, 786.

[33] J. Rodríguez-Carvajal, *Physica B* **1993**, *192*, 55.

[34] P. L. Russo, J. Sugiyama, J. H. Brewer, E. J. Ansaldo, S. L. Stubbs, K. H. Chow, R. Jin, H. Sha, J. Zhang, *Phys. Rev. B* **2009**, *80*, 104421.