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ABSTRACT: The magnetic properties of the spin-5/2 double molybdate
LiFe(MoO,), have been characterized by heat capacity, magnetic suscepti-
bility, and neutron powder diffraction techniques. Unlike the multiferroic
system LiFe(WO,), which exhibits two successive magnetic transitions,
LiFe(Mo00O,), undergoes only one antiferromagnetic transition at Ty ~ 23.8
K. Its antiferromagnetic magnetic structure with the commensurate
propagation vector k = (0, 0.5, 0) has been determined. Density functional
theory calculations confirm the antiferromagnetic ground state and provide a

numerical estimate of the relevant exchange coupling constants.

I. INTRODUCTION

Double tungstates and molybdates with the chemical formula
A'B™(MO,), form a big family of transition metal oxides,
where A is an alkali metal; B is a trivalent cation such as Bi**,
In**, or Fe*" or a rare earth, Sm*" or Eu**; and M represents
W or Mo®." > The combinations of three categories of metal
ions make this family full of varieties in physics and
functionality. The inclusion of the Li ion at A site makes
them suitable to be used in lithium-ion batteries as anode
materials, while the W/Mo can provide a relative large spin—
orbit coupling considering its 4d/Sd orbitals."*~" Most
importantly, the B-site ions with narrow bands can provide
other applicable 1physical properties, such as magnetism and
luminescence.'’™ "

Recently, NaFe(WO,), was reported to exhibit an
incommensurate spiral spin order at low temperature (<4
K),'° although this magnetism can not induce a net
ferroelectric (FE) polarization (P) due to the opposite chirality
coexisting in this material. Differently, Liu et al. revealed a
more interesting magnetic spiral in LiFe(WO,),, which breaks
the spatial reversal symmetry and induces a net FE P along the
[010] axis below 19.7 K through the inverse Dzyaloshinskii—
Moriya (DM) interaction.'” Thus, LiFe(WQ,), is the second
experimentally confirmed multiferroic material in the tungstate
family, following the first one MnWO,.'®"" Despite the
common chemical formula, the crystalline structures of double
tungstates/molybdates can vary in a large range. In fact,
LiFe(WO,), and NaFe(WO,), are different in their space
groups (C2/c vs P2/m), and the arrangements of Fe ions are
distinct. Such structural diversity makes it is possible to find
more exotic magnetic properties in double tungstates/
molybdates. For instance, it was reported that RbFe(MoO,),
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possesses a noncollinear magnetic order below 3.8 K which can
trigger the ferroelectricity.”” In addition, there are lots of other
tungstates/molybdates members, e.g., FeWO,, CoWO,,
NiwO,, CuWO,, a-FeMoO,, a-CoMoQ,, and NaCr(WO,),,
all of which display collinear antiferromagnetic orders and thus

72> Recently, Chen et al. synthesized

are not ferroelectric.”
LiFe(MoO,), and investigated it for its applications in lithium-
ion batteries.’ Distinct from either LiFe(WO,), or NaFe-
(WO,),, LiFe(Mo0O,), possesses a new space group PI and
another type of Fe framework. Its excellent electrochemical
properties have been carefully studied. Nevertheless, its
magnetic properties have never been studied yet.

In this work, we will report the magnetism of LiFe(Mo0O,),
determined from combined studies of heat capacity, magnetic
susceptibility, neutron powder diffraction, as well as density
functional theory (DFT) calculation. An antiferromagnetic
(AFM) phase transition is found around 23.8 K. Below the
Néel temperature (Ty), a long-range magnetic ordering is
established with a commensurate propagation vector (0, 0.5,
0), which does not yield multiferroicity. Above Ty, short-range
magnetic correlation persists, leading to considerable magnetic
entropy.
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Il. METHODS

High-quality polycrystalline LiFe(MoO,), samples were synthesized
using the conventional solid state reaction method in air, with the
highly purified powder of oxides and carbonates as starting materials.
The stoichiometric mixtures were ground and fired at 550 °C for 24 h
in air. The resultant powder was reground and pelletized under a
pressure of 1000 psi into disks of 2.0 cm in diameter, and then, these
pellets were sintered at 650 °C for 24 h in air again. Phase purity of
the sample was checked using X-ray diffraction (XRD) with the Cu
Ka radiation at room temperature. The magnetic properties were
measured using a superconducting quantum interference device
magnetometer (SQUID) equipped on a quantum design magneto-
meter (MPMSXL-7). The specific heat was measured on the physical
property measurement system (PPMS, Quantum Design) using the
heat relaxation method. Neutron powder diffraction (NPD) patterns
were collected with neutron wavelength 4 = 2.41 A at the HB-2A
powder diffractometer at the High Flux Isotope Reactor, Oak Ridge
National Laboratory.

DFT calculations were performed using the Vienna ab initio
simulation package (VASP) with the projector augmented-wave
(PAW) potentiexls.26_28 The Perdew—Burke—Ernzerhof for solids
(PBEsol) exchange function has been adopted” to obtain an accurate
description of the crystal structure of LiFe(MoO,),. The Hubbard
Uy (=U — J) was imposed on Fe’s d orbitals using the Dudarev
implementation®® considering the strong correlation effect of 3d
orbitals. No U is applied to Mo’s 4d orbitals considering its empty
occupation and weaker correlation comparing with 3d orbitals. The
cutoff energy of the plane wave basis was fixed to 650 eV due to a
quite high convergent value of Li. The Brillouin zone was adopted
using 6 X 6 X 3 Monkhorst—Pack k-point mesh for the minimal
magnetic unit cell. Besides, both the lattice constants and atomic
positions were fully relaxed until the Hellmann—Feynman force on
each atom is below 0.01 eV/A.

lll. RESULTS AND DISCUSSION

Figure 1a shows the crystal structure of LiFe(MoQ,),, which is
described in the triclinic space group P1 (No. 2) and consisted
of separated layers of [LiO4] monocapped trigonal bipyramids,
[FeOg] octahedra, and [MoO,] tetrahedra. The framework of
magnetic Fe ions in LiFe(MoOy,), is shown in Figure 1b.

Figure 1c shows the powder XRD pattern of LiFe(MoO,),
at room temperature. The lattice parameters were refined using
the space group P1 with the Rietveld refinement technique. No
impurity phase is observed in the XRD power pattern. The
refined lattice parameters of LiFe(Mo0O,), are a = 6.7766 A, b
=7.1679 A, ¢ = 7.3104 A, a = 90.89°, f = 110.38°, and y =
105.21°, which are in good consistency with previous
works.*"*?

Besides XRD, NPD data of LiFe(MoO,), were collected at
T = 40 K, as shown in Figure 1d. The nuclear structure
refinement was conducted using FullProf with the Rietveld
method.”® Our refinement confirms that the compound
possesses a triclinic structure with the space group P1. No
impurity phase was detected. The corresponding lattice
parameters are a = 6.751(1) A, b = 7203(2) A, ¢ =
7.1702(1) A, @ = 90.6739(17)°, B = 110.2274(14)°, and y =
105.5793(17)°, in agreement with above XRD results. Table 1
summarizes more parameters such as atomic coordinates and
displacement parameters.

Figure 2a depicts the magnetic susceptibility (y) and its
inverse (1/y) as a function of temperature (T) measured
following zero field cooling (ZFC) and field cooling (FC)
processes at a 0.1 T field. The two curves almost overlap, and
no bifurcation is seen in the whole temperature range,
suggesting the absence of glass behavior. A peak of dy/dT
was observed around Ty ~ 23.8 K, indicating the establish-
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Figure 1. (a) Projection in the bc plane of the crystal structure of
LiFe(MoO,),. Red, Fe; blue, W; black, Li; gray, O. (b) Framework of
Fe ions and the magnetic exchange paths J,/J,/J5. (c) XRD pattern
measured at room T and the corresponding Rietveld fit. (d) Neutron
powder diffraction pattern collected at 40 K with a neutron
wavelength of 4 = 2.41 A.

Table 1. Refined Structural Parameters of LiFe(MoO,),
from Neutron Powder Diffraction Data Collected at 40 K
with the Neutron Wavelength of A = 2.41 A

atom (Wyck.) x y z B
Mol (2i) 0.3326(4) 0.5768(2) 0.2907(3) 0.071(3)
Mo2 (2i) 0.8221(6)  —0.0395(5) 0.2272(5) 0.071(3)
Fe (2i) 0.4001(4) 0.0996(4) 0.31752(4)  0.073(4)
Li (2i) 0.7580(2) 0.4418(2) 0.2557(2) 0.803(2)
o1 (2i) 0.4166(7) 0.8407(73) 0.3907(6) 0.342(2)
02 (2i) 0.2563(S) 0.5731(65) 0.03978(6)  0.342(2)
03 (2i) 0.0891(7) 0.4879(60) 0.3351(6) 0.342(2)
04 (2i) 0.4795(6) 0.3805(63) 0.3539(6) 0.342(2)
05 (2i) 0.6896(7) 0.1301(63) 0.2682(7) 0.342(2)
06 (2i) 0.7755(6)  —0.0499(70)  —0.0271(6) 0.342(2)
07 (2i) 0.7082(6)  —0.2787(60) 0.2690(9) 0.342(2)
08 (2i) 1.1138(6) 0.0417(63) 0.35852(6)  0.342(2)

“Space group: P1,a=6.751(1) A, b =7.203(2) A, ¢=7.1702(1) A, a
=90.6739(17)°, f = 110.2274(14)°, y = 105.5793(17)°, R, = 3.00%,

R,, = 5.61%.

ment of long-range magnetic ordering, as shown in the inset of
Figure 2b. The y(T) of LiFe(Mo0O,), can be well fitted to the
Curie—Weiss law y = C/(T — Ocy), as also shown in Figure 2a.
Our fitting in the temperature range between 100 and 300 K
yields the Curie constant C ~ 4.53 emu K/mol and negative
Curie—Weiss temperature Ocyy ~ —52.85 K, suggesting
dominant AFM interactions between Fe’s spins. The effective
moment per Fe** of 6.02 uy is very close to spin-only moment
(5.92 pg) for high-spin Fe’* (§* = 5/2, L = 0).

Figure 2b shows the magnetic susceptibility under a high
magnetic field (6 T). There is a maximum of y at T, ~ 32.8
K, which may due to the ordering of short-range magnetic
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Figure 2. (a) Temperature dependence of magnetic susceptibility
(left y-axis) and its inverse (right y-axis) of LiFe(MoO,), measured
under a 0.1 T field. (b) Temperature evolution of magnetic
susceptibility under various magnetic fields. The inset shows the
amplified view of the derivatives of y around the phase transition
temperature. (c) Moment size of the Fe** ion as a function of
magnetic field at various temperatures.

correlation for this low-dimensional spin system. The peak of
dy/dT appears near Ty ~ 23.8 K, in agreement with
aforementioned long-range AFM magnetic ordering (LRO).
In addition, Figure 2c shows the magnetization (M) as a
function of magnetic field (H) at various temperatures 2, 10,
and 50 K. The M(H) curves below Ty show nonlinear
behavior with the applied magnetic field. The largest M value is
only ~0.4 up/Fe when magnetic field is up to 6.5 T at 2 K,
suggesting the canting AFM state under strong magnetic fields.

We also measured the T-dependence of its heat capacity
(C,), as shown in the Figure 3a. A clear A-shaped peak was
observed around T ~ 23.8 K, which is one more indication of
the long-range magnetic ordering. Considering the fact that
LiFe(Mo0Qy,), is an insulator, the specific heat mainly contains
the contributions from both magnons and phonons. At high
temperatures, C, is fully dominated by the phonon excitation
contribution. Thus, the C, of isostructural and nonmagnetic
LiGa(MoOQ,), (red curve in Figure 3a) was measured and used
to subtract the phonon contribution from LiFe(M00Q,),. Then
the obtained magnetic heat capacity Cy; is shown in Figure 3b.
The broad hump in both magnetic susceptibility and specific
heat around ~10 K might originate from the temperature-

value is very close to the calculation value of total spin entropy
of RIn(2S + 1) = 14.897 J/(mol K) (R = 8.314 J/(mol K)).
The entropy gain at Ty is only ~48.8% of the total magnetic
entropy, indicating the existence of short-range magnetic
correlations above Ty, which is a characteristic of low-
dimensional magnets.

To reveal the AFM spin structure of LiFe(MoO,),, the NPD
pattern was collected at 1.5 K. As shown in Figure 4b, a series
of new Bragg peaks indicated by the second row of vertical bars
show up compared to the data collected at 40 K. The inset
displays a zoomed view of the low-Q region to show the peaks
more clearly. No obvious change of lattice parameters was
observed. In Figure 4c, the difference between the 40 and 1.5
K patterns clearly shows the details of these magnetic Bragg
peaks. The observed magnetic peaks can be well indexed with a
commensurate propagation vector k = (0, 0.5, 0), distinct from
the incommensurate one k = (0.890, 0, 0.332) seen in
LiFe(WO,), and a noncollinear triangular spin order seen in
RbFe(MoO,),.

Figure 4a exhibits the temperature evolution of the peak
intensity of the (0, —0.5, 1) magnetic Bragg peak. A fit to the
power law I = A(T. — T)* over the temperature range 8—29 K
yields T, = 24.1(2) K and a critical exponent = 0.218. The
obtained /3 is close to the expected value for the 2D-XY model
(~0.23) expected for layered magnetic structures.”

Representation analysis constrains the possible magnetic
structures to the basis vectors associated with an irreducible
representation (IR) of the crystal space group and k = (0, 0.5,
0). We used SARAh software to perform the analysis on
magnetic Fe’* ions. There are two possible irreducible
representation allowed for the Fe’* ion at the 2i Wyckoff
position, corresponding to I'; and I', in the Kovalev numbering
scheme, as listed in Table 2. Three basis vectors are allowed for
each representation. While the I'} is ruled out since it cannot
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Figure 4. (a) Temperature evolution of the (0, —0.5, 1) magnetic
Bragg peak. (b) Neutron powder diffraction pattern collected at 1.5 K
with a neutron wavelength of 4 = 241 A. The inset shows the
enlarged area of the low Q region to clearly exhibit the magnetic
Bragg peaks. (c) Comparison of neutron powder diffraction patterns
collected at 1.5 and 40 K.

Table 2. Basis Vectors for the Space Group P1 with the
Propagation Vector k = (0, 0.5, 0)“

IR BV  Fel (04027, 0.102, 0.318)  Fe2 (0.597, 0.897, 0.682)
l—‘1 41 (17 0) 0) (_L 07 0)

¥ (01 1, 0) (01 -1, O)

4} (07 0, 1) (0/ 0, _1)
I, Wa (1,0,0) (1,0,0)

Ys (07 1) 0) (O; 11 0)

WVs (07 0) 1) (0; Or 1)

“The decomposition of the magnetic representation for the Fe site
(0.4027, 0.102, 0.318) is 'z, = 3, + 30, The atoms of the
nonprimitive basis are defined according to 1, (0.4027, 0.102, 0.318);
2, (0.597, 0.897, 0.682).

reproduce the correct magnetic intensities, the I', spin model
gives us good fitting results as shown in Figure 4b. The
corresponding magnetic structure is presented in Figure S with
the refined amplitude of the magnetic moment 4.23(1) yi5. The
projections of the moment on the crystallographic axes are

&
&
&

SRR

Figure 6. Sketch of possible spin configurations in the LiFe(MoO,),
lattice.

As shown in Figure 7, the AF2—AFM configuration has the
lowest energy despite the choice of U,g, in agreement with our
neutron experimental result. The calculated local magnetic
moment of the AF2—AFM state is 4.22 ug/Fe at Uy = 4 €V,
which is quite close to our neutron experiments (4.23 y5/Fe).
In fact, Ug = 4 eV is a proper choice to describe Fe’s 3d
orbitals according to previous studies,'”*> which will be
adopted as the default one. The optimized lattice constants of
the AF2—AFM state are a = 6.748 A, b = 7.233 A, and ¢ =
7.113 A, which are quite close to our neutron experiments (a =
6751 A, b =7203 A, c=7.1702 A at 1.5 K).

Furthermore, the magnetism of LiFe(Mo,), can be
described using a Heisenberg model:

H=—] Y 8$8—], 288 —J 2SS,

Gif) [KI] {mn} (1)

where ]}, J,, and J; are the exchange couplings (as indicated in
Figure 1b) between iron spins S’s. Using the optimized ground
state configuration, the exchange coeflicients are extracted
from DFT calculations: J; = —18.03 meV, ], = 2.06 meV, and
J5 = 2.07 meV, respectively. The strongest negative exchange J;
indicates the AFM coupling between the nearest neighbor iron
spins. Those longer distance exchanges J, and J; are much
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Figure 7. DFT results of single LiFe(MoO,), as a function of U (a)
Energy (per Fe) of various magnetic orders. The FM state is taken as
the reference. (b) Local magnetic moment of Fe calculated within the
default Wigner—Seitz sphere. (c) Band gaps. (d) Relaxed lattice
constants of AF2 states.

weaker: the positive J, implies FM interaction along the b-axis,
and the positive J; means that the magnetic coupling between
near iron is FM exchange. In short, our theoretical calculation
confirms the magnetic ground state of LiFe(MoO,),.

The atomic-projected density of states (DOS) of the AF2—
AFM state is shown in Figure 8. It is clear that this system is an
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Figure 8. Atomic-projected density of states (DOS) of AF2 (U = 4

V). Below the Fermi level, the oxygen and irons have large overlap
ranges, implying orbital hybridization.

insulator with an indirect gap of 2.46 eV. According to DOS,
the topmost valence bands are mainly contributed by the
hybrid O’s 3p orbitals and Fe’s 3d orbitals (lower Hubbard
bands), while the lowest conduction bands are mainly from
Fe’s 3d orbitals (ie, upper Hubbard bands). The slight
reduction of local magnetic moment from the ideal 5 yp/Fe is
due to such hybridization.

IV. CONCLUSION

In summary, the physical properties of the spin-5/2 double
molybdate LiFe(Mo0O,), have been systematically investigated
experimentally and theoretically. Our magnetic susceptibility
and heat capacity measurements found an antiferromagnetic
long-range ordering at Ty ~ 23.8 K, which was further
confirmed by neutron diffraction. Its antiferromagnetic

magnetic structure with the commensurate propagation vector
k = (0, 0.5, 0) has also been determined. Our DFT calculations
further verified the magnetic ground state. Short-range
magnetic correlation was also made evident above the Néel
temperature.
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