

Magnetic structure of NpTGa_5 (T: Fe, Co, Ni)

F. Honda^a, N. Metoki^{a,b,*}, K. Kaneko^a, D. Aoki^c, Y. Homma^c, E. Yamamoto^a, Y. Shiokawa^{a,c}, Y. Ōnuki^{a,d}, E. Colineau^e, N. Bernhoeft^f, G.H. Lander^e

^aAdvanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-1195, Japan

^bDepartment of Physics, Tohoku University, Sendai 980-8578, Japan

^cInstitute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313, Japan

^dGraduate School of Science, Osaka University, Toyonaka 560-0043, Japan

^eEuropean Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe, Germany

^fDRFMC-CEA, 38054, Grenoble, France

Abstract

We have succeeded in growing single crystalline samples of NpTGa_5 (T: Fe, Co, Ni). Magnetic structures of these compounds have been studied by neutron diffraction. We summarize the results of the unusual variety of magnetic structure occurring in NpTGa_5 and discuss them in terms of their electronic structural point of view.

© 2005 Elsevier B.V. All rights reserved.

PACS: 75.50.Ee; 75.25.+z

Keywords: NpTGa_5 ; Magnetic structure; Neutron scattering

After the discovery of superconductivity above 18 K in PuCoGa_5 , actinide based ‘115’ compounds have received increasing attention [1]. It is a great advantage of the ‘115’ system that single crystals of Ce ($4f^1$), U ($5f^3$), Np ($5f^4$) and Pu ($5f^5$) can be grown with various transition metal elements. Thus, the ‘115’ is an excellent candidate for

studying the multiple 5f electron system. The appearance of superconductivity in Ce and Pu compounds and its absence in U and Np compounds are theoretically studied and discussed based on band structure calculation and the $j-j$ coupling scheme [2]. It might be due to strong itinerant character of 5f electrons in U-system, whereas magnetism is rather stable in Np-system. In this paper, we summarize the magnetic structure of NpTGa_5 (T: Co, Fe, Ni), as revealed by neutron diffraction measurements.

Very recently, high-quality single crystalline samples of NpTGa_5 (T: Fe, Co, Ni) have been

*Corresponding author. Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-1195, Japan. Tel.: +81 29 282 3872; fax: +81 29 282 5939.

E-mail address: metoki@kotai3.tokai.jaeri.go.jp
(N. Metoki).

grown by the self-flux method. Np metal was prepared by the electrolysis from the aqueous solution [3]. Magnetic susceptibility measurements revealed the antiferromagnetic (AFM) transition in NpCoGa₅ [4,5] and NpFeGa₅ [6] below $T_N = 47$ and 118 K, respectively. On the contrary, NpNiGa₅ shows successive ferromagnetic (FM) transitions at 18 and 30 K.

AFM reflections with the propagation vector $q = (0\ 0\ 1/2)$ have been found below T_N in NpCoGa₅ [7]. Fig. 1 is the (111/2) AFM peak measured at $T = 3$ K, which disappears at $T = 50$ K. The absence of the (001/2) peak indicates the moment direction to be parallel to the c -axis. The integrated intensities of the AFM reflections (Fig. 2) are well explained with model calculation, assuming the magnetic structure as shown in the inset of Fig. 2. In this calculation, the magnetic form factor of Np³⁺ ion was used. No magnetic moment was assumed on the Co site. The magnetic structure is the same as that for UPdGa₅ and UPtGa₅ [8–10].

In NpFeGa₅, AFM reflections with $q = (1/2\ 1/2\ 0)$ have been observed as shown in Fig. 3 [11]. The integrated intensities of the (1/21/2) AFM peaks are plotted as open circles

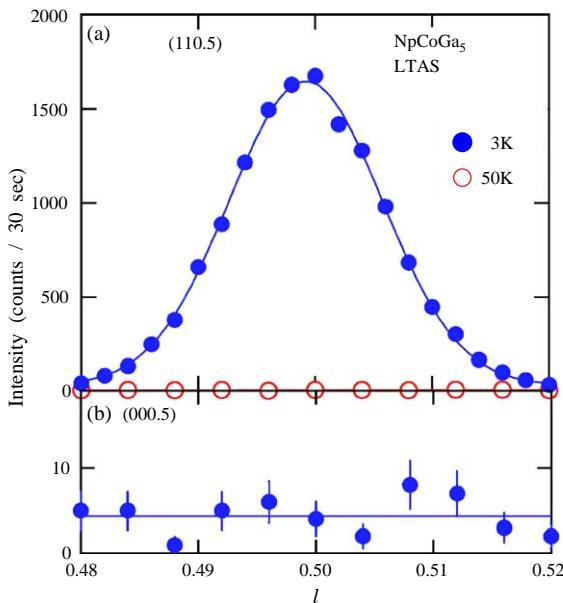


Fig. 1. The line scan in NpCoGa₅ at 3 and 50 K.

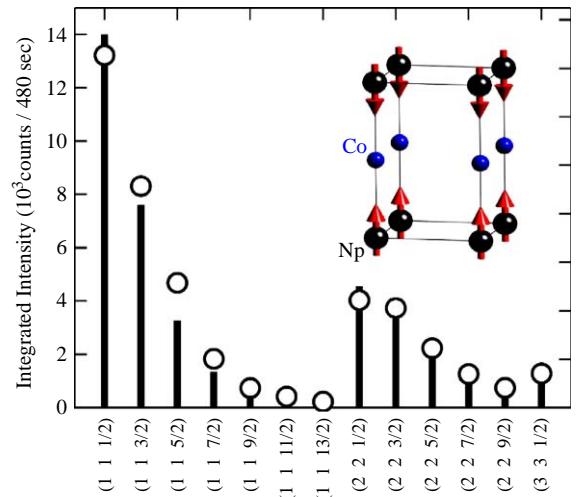


Fig. 2. The integrated intensity of AFM reflections of NpCoGa₅.

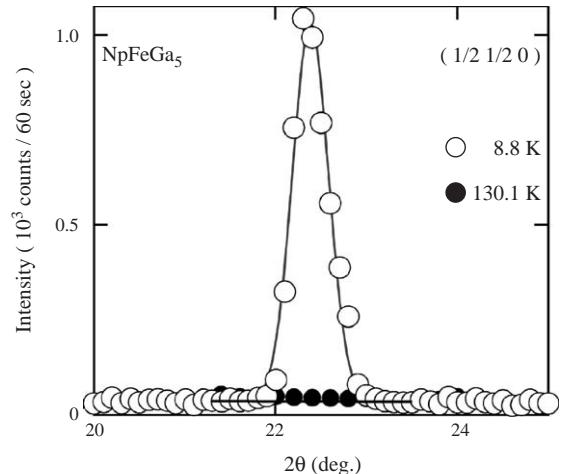


Fig. 3. The radial scan at (1/2 1/2 0) in NpFeGa₅.

as shown in Fig. 4. It is notable that the integrated intensity is strong for odd l and weak for even l . This feature cannot be explained from a simple collinear magnetic structure with the magnetic moment only on Np site. But this can be reproduced assuming a ferrimagnetic structure on Np and Fe magnetic sublattices. Note that the magnetic structure factor is proportional to the sum and the difference of the Np and Fe moment for even l and odd l , respectively. Thus, the Fe moment should be opposite to the moment of

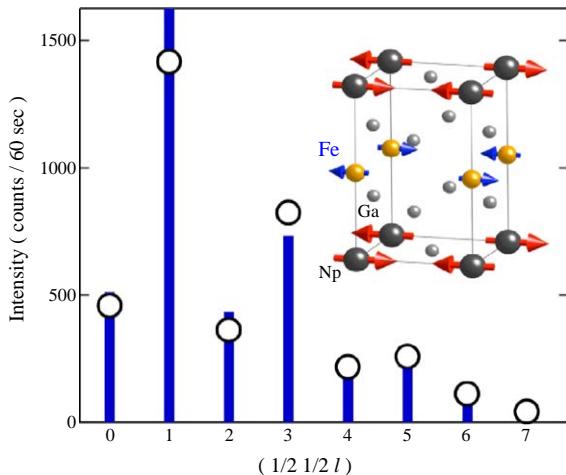


Fig. 4. The integrated intensity of AFM reflections of NpFeGa₅.

neighboring Np. One may explain the experimental data with the model calculation assuming the ferrimagnetic structure shown in the inset of Fig. 4. The in-plane moment direction cannot be determined because of the multi domain structure. The magnetic moment was derived as $0.24\mu_B/\text{Fe}$ and $0.86\mu_B/\text{Np}$, respectively. In our model calculation we used the magnetic form factor of Np³⁺ free ion and j_0 (zeroth order Bessel function) for Fe. The magnetic structures of NpCoGa₅ and NpFeGa₅ are significantly different. NpCoGa₅ exhibits in-plane FM and inter-plane AFM interaction, whereas the ones for NpFeGa₅ are opposite, namely in-plane AFM and inter-plane FM. The magnetic propagation $q = (1/2 1/2 0)$, C-type structure, is found for the first time in NpFeGa₅ in '115' system. The moment direction is also different.

The existence of Fe moment indicates that the 5f–3d hybridization is rather important in Np

system. In the U-'115' system, however, the transition metal d-bands are fully occupied, thus no magnetism is expected. The uranium 5f and Ga 4p hybridization band plays a dominant role for the transport and magnetic properties in the U-'115' system.

We briefly mention the preliminary results on NpNiGa₅ [11]. The two successive FM transitions at $T_{C1} = 30\text{ K}$ and $T_{C2} = 18\text{ K}$ were confirmed by means of neutron diffraction. Surprisingly, however, we observed a clear $(1/2 1/2 1/2)$ AFM peak which starts to increase below $T_{C2} = 18\text{ K}$. This propagation vector has been reported in UNiGa₅ [8] but appeared neither NpCoGa₅ nor NpFeGa₅. The presence of the $(1/2 1/2 1/2)$ AFM peak indicates that a canted AFM structure appears below T_{C2} .

We have two models to explain the successive transition in NpNiGa₅, (i) Np sublattice exhibits the FM and a canted structure below T_{C1} and T_{C2} , respectively or (ii) Np (Ni) sublattice shows a FM order below T_{C1} and a canted AFM order appears on Ni (Np) sublattice below T_{C2} . Spin polarized neutron diffraction experiment are planned to clarify the magnetic structure in NpNiGa₅.

References

- [1] J.L. Sarrao, et al., Nature (London) 420 (2002) 297.
- [2] T. Maehira, et al., Phys. Rev. Lett. 70 (2003) 207 007.
- [3] Y. Shinokawa, et al., J. Alloys Compd. 255 (1996) 98.
- [4] E. Colineau, et al., Phys. Rev. B 69 (2004) 184 411.
- [5] D. Aoki, et al., J. Phys. Soc. Japan 73 (2004) 519.
- [6] E. Yamamoto, et al., Proceeding of SCES'04, 2005.
- [7] N. Metoki, et al., in preparation.
- [8] Y. Tokiwa, et al., J. Phys. Soc. Japan 71 (2002) 725.
- [9] S. Ikeda, et al., J. Phys. Soc. Japan 72 (2003) 576.
- [10] K. Kaneko, et al., Phys. Rev. B 68 (2003) 214 419.
- [11] K. Kaneko, et al., in preparation.