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given in equation (9). While this should offer a reason-
able first approximation for the included TDS cor-
rection (but not the intensity distribution), its accuracy
for weaker reflections and normal scans is open to
serious question when there are appreciable differences
between neighboring structure factors (such as in
NaCl, for example) because of the uncertainty in any
large negative contributions from ‘other’ reciprocal
lattice points. An extension to non-cubic materials
should also be possible using the relations derived by
Rouse & Cooper (1969), but the results should be con-
siderably more complicated. Finally, our study was
also limited to one-phonon scattering. Calculations
based on simple models (Paskin, 1959; Borie, 1961)
show that the neglected n-phonon TDS varies as
(2M)*/n! so our calculated intensity distribution can
give a good estimate of the total TDS only if 2M is
small. The two-phonon and higher order TDS distri-
butions appear to peak much less sharply than does
the one-phonon TDS, so their contribution to an in-
cluded TDS correction should be much smaller, but
there has not yet been any specific calculation of these
quantities. Thus, if the one-phonon included TDS cor-
rection is large, the neglect of the higher-order terms
must be recognized to be a possible significant source
of error.
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Application of Representation Analysis to the Magnetic
Structure of Nickel Chromite Spinel

By E.F.BERTAUT AND J.DULAC
C.N.R.S. and C.E.N.-G — Grenoble, France

(Received 24 April 1972)

The magnetic structure of the tetragonal nickel chromite spinel (ao=5-76; c¢=8:50 A) has been solved
by representation analysis in space group I4,/amd. Magnetic reflexions decompose into two sets; (a)
ferrimagnetic ones, produced by a Néel mode along the x-axis and belonging to the two-dimensional
Ts, representation of wave vector k=[000]; (b) antiferromagnetic reflexions produced by non-colinear
anticentered y and z modes belonging to a two-dimensional representation of wave vector k=[001].
The Shubnikov groups of the ferri- and antiferromagnetic modes considered separately are Imm’a” and
1,2'2°2, respectively. Their intersection has the very low symmetry P2,. The antiferromagnetic mode
of Ni (in 000 and 041) has only y components (S,=0-58). The chromium spins decompose into two
sets: Cr; (in 04§ and 413) has y and z components (S,= + 0-73 for the former and —0-73 for the latter
atom, S, = — 0-45): Cry (in +1% and £03) has only z components (S; = 0-86). The total spins are (Ni)=1-0
and (Cr)=1-11, and the moment values are p(Ni)=2-0 yg: u(Cr)=2-22up. The figures are computed
from neutron diffraction data given by Prince in 1961. An equivalent model (magnetic twin) has

ferrimagnetism along Oy and antiferromagnetic x and z modes. Magnetic interactions are highly
anisotropic.

Introduction

NiCr,0, is a normal cubic spinel (Fd3m-0Oj above
T,=310°K and becomes tetragonal below T, (De-
lorme, 1955; Lotgering, 1956) with ay=5-76, ¢=28-50

A. It is generally admitted that the space group of the
tetragonal phase is I4,/amd-D};, (Prince, 1961) with

4Ni in 4(a): 000 (1); 034 (2); 333 (3); 203 (4)
8Cr in 8(d): 03§ (1); 33 (2); 334 (3); 308 (4)
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plus those noted (5), (6), (7) and (8), resulting from
the translation t=%34 from the preceeding ones. 16
oxygen atoms are in 16 (4) with parameters x=0,
y=0-239, z=0-392. A neutron diffraction study at
77, and 4-2°K by Prince (1961) revealed at the
lower temperature a considerable increase of the cubic
111 or tetragonal 101 line which corresponds to classical
Néel ferrimagnetism, but in addition new lines with
the (tetragonal) indices 100, 111 and 201 appear. No
satisfactory structure model was found however
(Prince, 1961). We thought that representation anal-
ysis of possible magnetic modes as described by one
of the authors (Bertaut, 1968, 1970) should show its
usefulness here. The idea of the method is that the
number of possible magnetic modes in a given symme-
try is limited. These symmetry-compatible modes are
the building stones for the magnetic structure models.
The observed intensities are compared with the calcu-
lated model intensities. As in crystallography, one
starts with the highest possible symmetry. [Only if no
fit is obtained in a given symmetry, one proceeds by a
systematic symmetry descent until a satisfactory agree-
ment is obtained. See, for example, (Fruchart, Bertaut,
Sayetat, Nasr Eddine, Fruchart & Sénateur, 1970).]
Our discussion closely follows Bertaut (1970). The
wave-vectors k, characteristic for the magnetic trans-
lation groups, are taken from the diffraction experi-
ment (§ 2) and the irreducible group representations
are derived for them (§ 3). As an example, the permu-
tation representations induced by point transforma-
tions on the crystallographic sites 4(a) and 8(d) are
completely reduced (§ 4). With this information, the
irreducible representations to which the magnetic
modes belong are simply determined in § 5 and the
basis vectors depicting the magnetic modes are found
by the projection operator technique (§ 6). The general
form of magnetic intensities is expressed and compared
to experimental data in § 7. Two equivalent models
(twins) are constructed and found to be in good agree-
ment with observation (§ 8). Finally the Shubnikov
symmetry (§ 9) and magnetic interactions are briefly
discussed (§ 10).

2. Wave vectors

Magnetic translation lattices are intimately connected
with the concept of wave vectors k. If t is a crystallo-
graphic lattice translation, exp (27ik . t)= +1 means
that it is also a magnetic lattice translation while
exp (2nik . )= —1 means that t is a magnetic anti-
translation. As in ordinary crystallography, the magne-
tic translation lattices and the corresponding wave vec-
tors are found from extinction rules (Bertaut, 1970). In
the present case we have to do with two invariant
wave vectors, namely k, =0 and k,=[001]. k, corre-
sponds to the ferrimagnetic mode for which the indices
hk! of non-zero reflexions are such that A+k+1=2n.
Thus the lattice 7 is conserved, i.e. exp 2nik,; . t=1 for
t=1%11. k,=[001] corresponds to the above mentioned
new lines for which obviously A+k+/=2n+1. One
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has exp 2zik .t)=—1 for k=k, and t=%4}}. The
corresponding anticentred magnetic lattice is noted
I, by Opechowski & Guccione (1965) and P, by Belov,
Neronova & Smirnova (1965).

There are two possibilities to be investigated. The
magnetic structure may be the superposition of a ferri-
magnetic mode and an antiferromagnetic mode (in
which the Ni and Cr sublattices are separately anti-
ferromagnetic). Then, for a given spin, the components
belonging to different representations, i.e. to the ferri-
magnetic and to the antiferromagnetic mode must be
orthogonal.

The other possibility is that two magnetic phases are
present, a ferrimagnetic and an antiferromagnetic one.

3. Irreducible representations

We use the elegant method devised by Olbrychski
(1963) considering only relations between generators.
(a|z,) is a space group operation where o is a rotation
(proper or improper) and 7, is the associated transla-
tion, fractional for screw axes and glide planes and
equal to a lattice translation for the other symmetry
elements. We choose the following generators: a
fourfold screw axis 4, in 11z, a twofold rotation axis
2, in x}%, an inversion centre I in 04} and the trans-
lation t=3%11. The group operations can be written

4,=(4,11); 2,=2.I7); I=(Tl7); t=(1lr). (3-1)

Here t=04%; 4,, 2., T and 1 are the 3 x 3 matrices

0 1 0O 1 0 0
4z={—1 0 0}; 2x=l0 -1 0

0 0 1 0 0 -1
-1 0 o0 1 0 0

=1 0-1 of; 1=l0 1 o]. (-2
0 0 -1 0 0 1

Remark—According to the International Tables for
X-ray Crystallography (1969) 4, is here a clockwise
screw axis which sends point xyz to y, ¥+ —x, z+4. This
explains why the matrix 4, above has not the conven-
tional form (which corresponds to an anticlockwise
rotation).

Using the well known relation (alz,) (fltp)=
(aflotg+7,), the following relations between genera-
tors are found:

(4,)*=(1]001); I*=(1]001); (2,)*=(1]000)
(4,2,)*=(2,4,)*=(1]000); 2,I=12,

4,1=(111D)H4, . (3-3)
In these relations the translational parts are 000, 001
and 343. Their matrix representative is the unit matrix
for the wave vector k,=[000]. For the wave vector
k,=[001] the matrix representative is still +1 for the
translations 000 and 001, but —1 for 111. Denoting
the matrix representative of (.|.) by D(.|.), one has
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D((4)*)=D(*)=D((2,)°) = D((4,2.)9) = D(2.:4,)") =1
D(12,) = D(2,Y) (3-4)

as well for k, as for k,.

Only the last relation of (3-3) gives rise to a signi-

ficant difference. One has indeed

D4, .))=D(. 4,) for k; (3-5)
but

D@, .)=-D(1.4,)fork,. (3-6)
The non-commutation of 4, and I in (3-6) implies that
for k,=[001] there cannot be any one-dimensional
irreducible representation. It is also obvious that for
k, =[000] the irreducible representations are the same
as those well known for the point group D4, =4/mmm
we reproduce for convenience in Table 1.

Remark — The operation 4,2,I corresponds to the
glide plane d in the group symbol 74,/amd. One finds
(4,2,1)2=(1]311) and for k,=[001] one has D((4,2,I)%) =
—1. This last relation is however not independent.
One has indeed:

MAGNETIC STRUCTURE OF NICKEL CHROMITE SPINEL

By Olbrychski’s identification procedure, (¢f. Bertaut,
1968) we find matrices for the generators and end up
with the four non-equivalent irreducible representa-
tions shown in Table 2. One checks that there are no
other ones from the rule g=3d2=16=224+22+4+22422

v
where g is the number of elements (translations ex-
cluded) and d, the dimension of the irreducible repre-
sentation. These are of two kinds; in /'{* and Iy the
matrix representatives of 4, and 2, commute; in /5
and Iy they do not.

As a first application we study the reduction of the
permutation representation ™™, induced by the sites
4(a) (Ni) and 8(d) (Cr). The results of this reduction
will be needed later.

4. Permutation representations and their reduction

4(a) positions (Ni)

The fourfold screw axis 4, in 34z sends point 1 in 000
to point 2 in 034, point 2 to point 3 in 4% and so on.
This permutation of points can be represented by a
matrix equation

1] 1 1M1 2

(4,2,1)*=4,2,14,2,1=4,12.4,21 ] ) (41) 97| = (4-1)
= 142,42 T=—1(4,2) 1= —P=—1. 3
3-7 4 4 1
Table 1. Irreducible representations of I4,/amd-D}; for k=[000]

1 41 4% 4% 2x 412x 4%2)( 4%21{
Iy 1 1 1 1 1 1 1 1
I 1 1 1 1 -1 -1 -1 -1 z
I 1 -1 1 -1 1 -1 1 —1
Iy 1 -1 1 -1 -1 1 -1

1 1 x’ y

1
Ts . i . - . —i . . 1 . i . =1 .=
. 1 . i | . i 1 . —i . -1 . i .
Only eight operations are listed. The inversion is represented by +1 for the representations I'jg(j=1, 2, 3, 4, 5) and —1 for

the representations I's(j=1, 2, 3, 4, 5). The translation t=44} is represented by the unit matrix +1. The representation s
can be made real.

Tee (L) (00 (T2 (7 (e ) (e D))

Table 2. Irreducible representations of I4;/amd for k=[001]
4% 4:{ 2x

[t and 'y~ 1

&

meware (U0 (L)) ) () ) Gy ()
) () () ) ()
) Y ) ) ) )

) o) () )

—

1) ( 1
Here for I'1t n=+1; for I'-n=—1
for It g=+1; for I~ e=—1.

A real representation equivalent to I'y+ and I't~, is found when replacing 4, = (i ) by 4= ( . 1)
. =i -1
The translation t=444 is represented by t= (—1 )
=1
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Thus the matrices (4,) and correspondingly (2,), (1),
(t), (4-2) are the generators of a permutation represen-
tation I'P**™ which has 32 elements, corresponding to
the followmg operatlons e, 41, 42, 41, 2, 412x, 422,,
42,1, 4,1, 41, £1; 2,1, 4,2,1, 42,1, 42,1 plus the
sixteen operations obtamed by multlplymg the pre-
ceeding ones with the translation t (which sends point
1 to 3, point 2 to 4 and vice versa). All the operations
are understood modulo a lattice translation /ja;+
La,+ La, (1, 1, 5 integer numbers).

N R R

@)= 11 s (2)=|1.. : =Q); (t)=

42

From the generating matrices (4-2) the 32 matrices of
I'P™ may be constructed and the characters evaluated
Non-zero characters correspond to points conserved
in the permutation, i.e. to site symmetry elements:

x(&)=x 2D =x(t4) = x(t4i2.1) =4
x(4:2) = x4 1) =x(t4,2) = (¢4, =2
A(42) = x(&1) =1 (t472,) = 1 (t431) =2 . (4-3)
The number of times g, an irreducible representation
I, is contained in '™ is given by

a,= l/ggx‘"’(T Y x(T)

and it is found that the irreducible representations
for both vectors k,=[000] and k,=[001] are needed.
Using Tables 1 and 2 and relations (4-3) one has
TP (Ni) =Ig(ky) + Dok + T (k) - (4-4)
8(d) positions (Cr)
The atoms being numbered as in the introduction,

the generating matrices of '™ of dimension eight
have the following form

W= (42) @~ (59)0=(E2) 0-(25).

4-5)
y y
X X
2 1 1 2
Y11 ¥21
@ (B

Fig. 1. Graphical representations of modes in I'2~. (@) w11z
is maximal: w3;=0. (b) w2 is maximal and y1;=0 [cf.
equation (6-4)].
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Here A, B, C, D, E, O are 4 x4 matrices
1 1.
A= 1.]; B=|. . .1
1 A
1 1
1. ]
c=|. .. .]; D=].1
PR .. .1 4-6)

E is the 4 x 4 unit matrix and O the 4 x4 nul matrix.
The non-zero characters are

2@ =8; x2)=x(D =) =r(4i29 =
() =xt4i2)=4 (47
and the reduction of I""*™™ yields
F""‘m(Cr)=Flg(k1)+F3g(k1)+f5g(k1)+
Iy (ko) + 175 (k) .
According to (4-4) and (4-8) the dimensions of the
present irreducible representations are equally distri-

buted over the wave vectors k; and k,, i.e. over lattice
translations and anti-translations.

(4-8)

5, Representation of magnetic modes

A space group operation 7= {u|7,} acting on a magne-
tic moment, say on an axial vector at point R may be
decomposed into two independent and commuting
operations. A first operation sends point R to another
one R’ giving rise to the already discussed permutation
representation. A second operation « rotates the axial
vector about a fixed point. Thus the representation I”
induced by the operation of space group elements on
magnetic moments is the direct product of the permu-
tation representation I'°™ and the representation I'V
of the x, y, z components of an axial vector,

[=Ivemy [V (5-1)

The same direct product relation holds for the matrix
representatives of a space group operation 7. The
corresponding relation for characters is simply

x"(Dy=xr(T"(T) . (5-2)

In uniaxial crystals I'V splits into a one-dimensional
representation I'Y for the z component and a two-di-
mensional representation I ¥ ,for the x,y components,
In the present case I is clearly I3, (k;) and Iy , is
I;, (ky) so that I’ sphts already into subspace repre—
sentations
I=r,,+7T, (5-3)

with

L,=T7"" % Iyy(Ky); Loy =17 x Tso(ky) . 54

Thus we get for the z components of magnetic mo-
ments
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rz(Ni)=F29+F3u+rl_

MAGNETIC STRUCTURE OF

NICKEL CHROMITE SPINEL

It can be shown that y{y with j fixed and i=1,2,...d,

LCr)=Tyy+ Tyy+ Ty + I + T (5-5) (d,=dimension of the irreducible representation I"®"?)
d for th ¢ transforms according to the representation I'™ or is a

an or the X, y componen S_ basis vector of '™,
Iy (N)=Ts,+ 5, + 15 +1; The following part of a table illustrates in the first
Lo (Cr)=T g+ Dyt Tag+ Ty + 205, + T + line the symmetry operations 7T and in the second line
ItT+It+Ty . (5-6) the effect, say Ty in the case of Ni with w=%,,

T: 1. 4, . & . 4& .2 .42 . 42, .42 et

TW: eylx . —yZy . _‘Spax . +'5p4.v . ny . _yiiy . _y4x . +'5p1y (6_2)

In the last relations we have used
I (k) x Is(ky) =15 (ky) + I5 (k)

5 (k) X Fsg(ky) = I (k) + I (ky) . (5-7)
We are now in a position to survey the distribution of
permitted magnetic modes over the different represen-
tations. This is done in Table 3. For the k; modes it is
seen that coupling of the magnetic lattices of Ni and Cr
is only possible in I',; and in [s,. One of these modes is
expected to give rise to the observed ferrimagnetism.
In the k,-modes coupling of Ni and Cr modes is pos-
sible in I'r, 15" and 5.

Table 3. Irreducible representations and couplings

Representations (k) Positions 4(a) Positions 8(d)
X,y z X, ¥y z

Flg - - Cr -
I - Ni Cr Cr
I3 - - Cr -
T4g - - Cr Cr
sy Ni - Cr Cr
I3 - Ni - -
FSu Ni - — -

Representations I'(k;)
I+ - - Cr -
Iy - Ni Cr Cr
I+ Ni - Cr -
- Ni - Cr Cr

6. Magnetic modes

We use the so called projection operator technique:
let  be a component or a linear combination of com-
ponents of a magnetic moment or spin. In most cases
it is sufficient to take y =%, with a=x, y, z. Let Ty
be the result of the action of the space group element T
on y and multiply Ty by D*(T)*;, element of the
matrix D¥(T)* representative of T in the irreducible
representation /", The asterisk indicates complex con-

jugation. The sum over group elements T of such
products is noted

= Z DTy . (6-1)
T

For the k;-modes one has &, =%; and &,=%, while
for the k,-modes one has &, = —F;; &,= -F,.

With the help of relations (6-1) and Tables 1 and 2
it is easy to construct the basis vectors. The only non-
zero basis vectors belong to the representations of
relations (5-5) and (5-6).

Ni k, modes
(29) (‘901 + 'SpZ)z s G0 = (yl - ‘902)z;

VIO 1+ S (1 70y =y
V(1= S A= 0 =

Ni k, modes

yulT)=(L1—iF ). yn=ivi;
l//u(r2+)=(y1+5p2)x+(y1_‘SpZ)y s
l//21(1"2+)=(5ﬁ1+y2)x_(5ﬂ1_yz)y;
yull3)=(L1— L= (L1 + S, »
Yul7)=—(L1= L )= (L1 + L), - (6-4)

These relations can be illustrated by graphs or ‘modes’.
As an example let us assume that a magnetic structure
belongs to [ . This means that basis vectors belong-
ing to other representations, say to I," disappear
identically whence &, = — &, and &, = + &,,. If we
make &, = —F,, W (I57) is maximum with y,, =0.
If we make &, =+, v, (I5) is maximum with
w1, =0. Fig. 1 illustrates these findings.
One proceeds as above for the Cr modes

(6-3)

Cr k, modes

Y=L 1x—= Ly~ L3xt+ Ly

W§2g)=y1y+y2x_y3y_y4x’ ‘//;zg)_
(F1+ S+ L3+ L)

(3g) e501.’: + yZy y.’;x - yt‘y >
;49) = ‘Sp 1y ‘sz.x ‘5,)3,\: + y4xs W?g) =
(1= F 3= S

ViR =(L1+ L) Hi(L 2+ L), y52 =y
Vily =(L1+ L), —i(F 2+ Lo ¥ =¥

E

Y2 =1~ L)~ (L= L) WS =y (2*. (6-5)
Cr k, modes

Wll(rl+)=(y1+y3)x+i(y2+'Sp‘t)y, Ya=wi;

YU T)=(L1+ L), —i(L 2+ L s Wary= — Wy

V(U 1T)=(L1—F3),—i(L 2= LD, Warz= — Viizs
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Y1) =(L1— L)~ (L2~ s y s
Y5 =(L1— L)+ (L 2= Sy
Y1l 7)=(L1—= L)y +(L2—FLa)x »
Vou,(I5)=(L 1= L)y = (L= L b)x;
Y1::(I7) = (L 1+ L3). H (L2 + L)

Vo (I5)= (L 1+ L), — (L2 + F); - (6-6)

We have not listed the basis vectors (yy,, ¥,,) because
they are (except for changes of sign) identical with the
basis vectors (3, ¥21).

For practical purposes it is useful to write the rela-
tions (6-3) to (6-6) in Table 3 on the lines to which
they belong.

It can be checked that the number of basis vectors is
identical to 3#, if # is the number of equivalent points.

7. Intensity calculations

In straightforward notation, the magnetic structure
factor is defined by the vector sum

Fh)=> & ,fh)exp 2nih.r)).
The magnetic intensity is given by
I(h)=[F(h)|>— [F(h) . h|*/|h?
7-1. Antiferromagnetic lines

From the calculations of F(h) one sees that the
magnetic moments of chromium only occur in the
combinations &1 +F5, L+ L, F1—F5 and &F,—
&,. We have found it convenient to define vectors S;
and s; for the Cr moments as follows

L1=8,+58,; &,=8,+s,

&L3=S,—58,; F4=S,—5,. (7-3)
In a powder diagram, reflexions for which |h| has the
same length coincide. The averaged intensities are
noted {/{h}). Thus {/{111}) means the average of the
intensities of the eight reflexions 111, 111, 111, 111,
ITT, TIT, T11, TI1. The evaluation of {Z{h}) is tedious,
but straightforward. The result may be written as
follows

{I{h})={L{h})+Interference term.
{Lo{b})=lch}) +<hah})

where (I..y and {Iy;) are the averaged intensities for
the separate sublattices of Cr and Ni respectively,
calculated according to (7-2). For completeness these
intensities are summarized in the Appendix. One has
for the antiferromagnetic reflexions

{1}y =(R{111}) -8 2d2,,4
{T{102}) =<I,{102} )+ 16d%,4
with the abbreviations
A= b1b3[(y 1+ S 2)2N1S1yCr - (y 1~ & 2)zNiS2xCr
+(F 1+ 2)yNiSIzCr —(&1— & DsniS2zci]
b=a"'; by=c!

(7-1)

(7-2)

(7-4)
Here
(7-5)

(7-6)

(7-7
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and also
{I{100})=<1,{100}»+8(B,+ B,)
{I{001}>=<1,{001})—8)/2(B.+ B,)
{I{201})=<1p{201})+16)/2(— B, + B,) . (7-8)
Here we have abbreviated
B, =510c{F 1+ L Dani — S25c{L 1 — S 2)ani (7-9)

with the following conventions: if a=x, f=y;
ifa=y, f=xand if a=z, f=z.

Discussion of intensities

Some remarkable facts for the magnetic structure
under discussion emerge here already. The interfer-
ence term noted A(7-7) occurs with opposite sign in
the intensities of 111 and 102 and thus is expected to
strengthen the 111 reflexion which is observed strongand
to weaken the 102 reflexion which is observed weak. The
existence of a non-zero term A implies anisotropic
exchange between the Cr and Ni atoms, for it links z
components to x and (or) y components of moments.
Another consequence is the impossibility of ferri-
magnetism along Oz. Indeed ferrimagnetism along Oz
would not be compatible with antiferromagnetism
along the same axis, for equivalent atoms must have
equal moments. On the other hand it is seen that if
there is no antiferromagnetic component along Oz
the interference term A disappears. Thus antiferro-
magnetism along Oz in one sublattice and in the Oxy
plane in the other sublattice appears to be necessary.

In the expression for the intensities 100, 001 and
201, interference terms, labelled B and corresponding
to isotropic interactions, appear in such a way that
001 and 201 should become negligible.

However a discussion of possible antiferromagnetic
modes, guided only by the intensity expressions,
would be rather hopeless in view of the great number
of parameters involved.

7-2. Ferrimagnetic lines

From the structure factor calculations of the re-
flexions 110, 170 and 002 which are not observed and
from the above mentioned impossibility of ferrimag-
netism along Oz, one must draw the following con-
clusions for the ferrimagnetic components (denoted by
the subscript )

ylfNi=y2fNi; ylfCr':ySfCr; nyCr=y4fCr;

L1 2F2rcr > (1-10)

i.e. an equal contribution of all the chromium moments

to the ferrimagnetic mode.

8. Model construction

Ferrimagnetism in the Oxy plane can be realized in
1-'5go
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8-1. Ferrimagnetism along Ox ,
Let us assume a ferrimagnetism along Oux, say

S1xs(Ni) = Sz, /(Ni); Sle(Cr) =83:4(Cr);
S2xs(Cr) =S4 (Cr)  (8-1)

which gives rise to non-zero basis vectors in [,.

Components of the same spin but belonging to
different representations must be orthogonal. Thus for
the construction of the antiferromagnetic moments we
are only allowed to take y and z components. The
representation which from the point of view of the
physicist is the most probable is the representation
offering the greatest number of possible couplings.
This is /5. We read then from the basis vectors in
(64) and (6-6) that we shall have the following model
to deal with

&1,(Ni) = &5,(Ni); 51,(Cr) = —53,(Cr);

S2(Cr) = +84,(Cr); S1:(Cr) = +85:(Cr) . (8-2)

which gives rise to the following intensities
A(111)) =8[t? +2u2 — d2, (bt + V/ 2b5u)?
+2wi (1 —d},63)]
I(102)) = 8[u? + v? + 1* — dfoy(bt — 2bsu)?
+wi(1 —4di,03)]

{I1(001)) =8(z— )/ 2v)?
I(100)) =8[( +v)* +u* + w7

{I(201)) =8[12 + 202 — 2d20,bX(t + V20)7] . (8-3)
Here we have abbreviated

&1, (Ni)fui(h) =1; 51,(Cr)fc(B) =v;

SiACr)fei(W =u; Sx(COfc(W)=w . (8-4)

Of course ¢, u, v, w in (8-3) are functions of the diffu-
sion vector h. The above equations (8-3) already pro-
vide a qualitative picture of the observed intensities.
Indeed, if ¢ and u have opposite signs, J/(111) will be
strengthened and 7(102) weakened. If # and v have the
same sign, 7(001) can be made to disappear, /(201)
will be weakened and 7(100) strengthened as is ob-
served.

8:2 Ferrimagnetism along Oy
It can be easily checked that one has in I,

Slyf(Ni) = Slyf(Ni) ; Siys(Cr)= SSyI(Cr) >

Sny(Cr) = S4yf(Cr) (8‘5)
and in I's

ylx(Nl) = ny(Nl); st(Cr) = s4x(cr)

SZz(Cr) = S4z(Cr) 5 Slz(Cr) = SSZ(Cr) . (8_6)

It is seen that in this model the role of the chromium
moments 1 and 3 is taken over by those of 2 and 4 and
vice versa. The two models as shown in Fig. 2 behave
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like twins and give rise to the same intensities. For
completeness we show this by direct calculation. With
the abbreviations

S 1(Ni)fni(h)=1t"; s2:(Cr)fulB) = — v’
Sz (Cr)fedh) = —u'; Su(Cr)fu(h)=w' &-7)

one finds exactly the same equations (8-3), primed
letters having replaced the unprimed ones.

To see the twin relation between the upper and
lower parts of Fig. 2, rotate the upper part around
the fourfold screw axis marked by a cross and change
the signs of all the spin components. One obtains
exactly the lower part of Fig. 2. It is remarkable that
the z components do not change in either model.

Fig. 2. Structure models. Upper part: Ferrimagnetism along
Ox. Tetrahedral sites are marked by squares, octahedral
sites by circles. Heights are indicated in eights of the ¢ par-
ameter: 0, 2, 4, 6 for the tetrahedral, I, 3, 5, 7 for the
octahedral sites. Thus the numbering of chromium atoms
1, 2, 3, 4 of the text corresponds to the heights 5, 7, 1, 3
respectively around the cross x which shows the location
of the fourfold clock-wise crystallographic screw axis. Spin
directions in the Oxy plane are indicated by arrows and in
the Oz direction by + and — signs. Lower part: Ferrimag-
netism along Oy: Same conventions as above.
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8-3. Spin components

We used a multiplicative scaling factor of 3-699 to
bring the data taken by Prince (1961, Table I) at 77
and 4-2°K to an absolute scale. From the reflexions
1124200 and 101 we deduce the ferrimagnetic spin
components

Sy r(Ni)=0-82; S, (Cr)=S5,,(Cr)=070 (8-8)
and from the antiferromagnetic reflexions '
&, (Ni)=0-58; S,(Cry)= —0-45;
5,(Cry)=+0-73; S,(Cr,)=0-86 . 8-9
In the evaluation we have supposed that 7(001) is
strictly zero [¢(001)=}/2 . »(001)]; that 7(111) is maxi-
mal [u(111)= —c/a)/2¢(111)] and that the two chro-
mium species have the same total spin values. The
total spins are thus &%, (Ni)=1-0 and &,,,(Cr)=1-11

and the moment values p(Ni)=2-Ouz+0-24; and
MCr)=2-22pug +0-2p,.

9. Shubnikov symmetry

It is easy to read from Fig. 2 those symmetry elements
which leave the magnetic structure invariant.

Consider first the ferrimagnetic component along
Ox which is invariant under the translation t, the in-
version I, a twofold axis 2, and antiaxes 2, in %, y, %
and 2; in %, 4, z. The Shubnikov group would be
Imm'a’.

The antiferromagnetic component is invariant under
an antitranslation t’, under the srew axis 2,, in 11z
and under the anti-axes 2, and 2,. The inversion
centre is lost and the Shubnikov group would be
1,2'2'2,.

The overall symmetry is the intersection of Imm'a’
and [,2'2'2, so that we are left with P2;. Considering
in the same way the case of ferrimagnetism along
Oy we arrive at the equivalent symmetry P2.. We doubt
that a conventional symmetry descent through Shub-
nikov groups would have given rise to the rather
straightforward derivation of the magnetic structure
as did the present representation analysis.

10. Invariants and magnetic interactions

One of the essential advantages of representation anal-
ysis is the possibility of getting insight into magnetic
interactions. Indeed from the knowledge of basis
vectors, one constructs invariants which may enter a
‘classical spin Hamiltonian’. Such invariants are in
the case of two-dimensional representations |y,,|*+
|w,.|? for interactions between the same kind of atoms
and (wy1) (W1)*+(wa) (w31)* +c.c.q. for interactions
between different species or different directions.

Considering the interactions in the antiferromagne-
tic I'2~(k,)-modes, the ferrimagnetism being along
Ox, one finds the following invariants and interactions:

Ni sublattice. - %,,%,, positive interaction
through super-super exchange;
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Cr sublattice. - (@) —%1,F3,=F1,5 7, Here we
have replaced &, by the equivalent antitranslated
spin &5, with Cr(7) in 03§ which is the nearest neigh-
bour of Cr(l) in 04§. The interaction corresponds to
positive exchange along Oy.

(b) #1: 3+ L 2L 4e=—F1:F 7.~ F 2.5, This cor-
responds to negative exchange along Oz.

Remark. — In the right-angle interaction Cr3+ —X —

Cr3*, negative direct exchange interactions Cr—Cr are
competing with positive super-exchange interactions
through the anion X. The resulting interaction is
negative for small Cr—Cr distances (small anion X, O
for instance) and positive for big ones (Te for instance).
In the present case one has for the same magnetic
link Cr—X-Cr a positive interaction along Oy and a
negative interaction along Oz so that here interactions
are strongly direction dependent.
(C) - (yly'splz—ys‘yy:&z)'*'(ylyyh_ylzyb)' ThJS
invariant splits into a crystal field — or ‘one ion an-
isotropy’ — invariant and an antisymmetric exchange
(Dzialoshinski-Moriya) invariant. Both of them may
justify the non colinear y—z coupling.

Ni-Cr interactions

- Zunid yer isotropic negative exchange
- & 1y,ni 120 anisotropic exchange

Our symmetry considerations show the possibilities of
coupling. The next step should be a quantum mecha-
nical treatment, evaluating the strength of possible
couplings.

A more complete experimental analysis using vari-
able temperatures and applied magnetic fields is in
progress.

APPENDIX
Sublattice intensities
Cr

{111}y =163{S? - df,,[b*(S3+ S3) + b3SE]}
Uee{102}) =8{3(S?+5%) — dio,[b*(ST, + S +53x+ 53,)

+4b33(S7+ 571}
(Ier{100}) =8{ST, + 83, + 57, + 5%+ 2(S7+ SD)}
Uerf201}) =163 {5% — d30,[207(s3 + 57) + b3s2]}
{001} =16{ 2 (sz+53)}

> =summation over Cr; and Cr,.

Ni
<INi{l 11 }> = 4Z{y2m - dfu[bz(yi + 'Spi)Ni + b%yﬂ}
(hai{102}) =45{F %} — B0 {207 2(F 3+ F73)

+ 2SS 2y~ S 125 2]+ 1663553}
{100} =2[3(Fi+ SN+ 2ASL 1,5 2y~ L 15L 2]

+4>592
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{Ini{201}) =45{ S — 3o [207(SF 5+ F73) + B3 71}
(Ini{001})=43(F2+ &5)
> =summation over Ni; and Ni,.
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The Dynamical Scattering Amplitude of an Imperfect Crystal. I1. A Relation Between
Takagi’s Dynamical Equation and a More Exact Dynamical Equation

By Masao KURIYAMA
National Bureau of Standards, Institute for Materials Research, Washington, D.C. 20234, U.S. 4.
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A basic equation of dynamical diffraction for an imperfect crystal is derived based on a general dynami-
cal theory of diffraction. This equation is given in the form of a differential equation, and therefore can
be considered to describe the diffraction processes locally inside a crystal. A phenomenological inter-
pretation of this equation helps to fill in the gap between modern quantum mechanical treatments and
ordinary treatments by dynamical theory of diffraction for a perfect crystal. In the approximation of
poor resolution the more exact equation reduces to Takagi’s equation. A necessary condition which
makes Takagi’s equation valid leads to the concept of local reciprocal lattice vectors.

1. Introduction

A general dynamical theory of diffraction for an imper-
fect crystal has been formulated previously by use of
a quantum field theoretical technique* (Ashkin & Ku-
riyama, 1966 ; Kuriyama, 1967a,b, 1968). The validity of
this theory is not restricted by the magnitudes of
strains (atomic displacements), and types of imperfec-
tions, nor by the state of the incident beam. This
theory is constructed from an atomistic point of view:
the generalized polarizability for X-rays or the gene-
ralized crystal potential for incoming electrons does
not possess periodic translational invariance in imper-
fect crystals.

Much of the physics involved in diffraction from im-
perfect crystals has been discussed in a previous paper
(Kuriyama, 1969) where a standard iteration technique
is applied to this new formulation; the effects of crystal
imperfections on dynamical diffraction have been
treated correctly by properly accounting for the phase
modulation of the diffracted beams, and not as a
result of the assumption of modified Bloch waves.

* The dynamical theory of diffraction has also been for-
mulated for a perfect crystal, using quantum field theoretical
techniques, by Ohtsuki & Yanagawa (1966) and Hannon &
Trammell (1968, 1969).

Using this new formulation, a dynamical expression for
the scattering amplitude of an imperfect crystal has
been derived in a compact form (Kuriyama, 1970; here-
after this paper will be referred to as 1).

On the other hand there have appeared a number of
works on the dynamical theory of diffraction in im-
perfect crystals (Penning & Polder, 1961, 1964; Kato,
1963a,b,c, 1964a,b; Bonse, 1964; Kambe, 1965; Wil-
kens, 1966; Takagi, 1962, 1969; Balibar & Authier,
1967; Taupin, 1964; Chukhovskii & Shtolberg, 1970;
Afanas’ev & Kohn, 1971; Howie & Whelan, 1961;
Dederichs, 1966, 1967; and probably others). All but
Dederich’s work appear to be phenomcnological ex-
tensions of classical (Ewald-Laue-Bethe) perfect crys-
tal theory to imperfect crystals and, hence, only find
applications in those cases in which distortions are
small.

Recent developments using such a phenomenologi-
cal approach have led to equations such as Takagi’s
(1962, 1969). In this paper, therefore, the aim is to study
the relation between Takagi’s equation and the more
exact dynamical equation.

2. Dynamical scattering amplitude

The scattering amplitude for an X-ray beam striking a
crystal at position R with initial momentum k and



