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Magnetic states of coupled spin tubes with frustrated geometry
in CsCrF4
Masato Hagihala1, Shohei Hayashida 1, Maxim Avdeev2, Hirotaka Manaka3, Hodaka Kikuchi1 and Takatsugu Masuda 1

When a theoretical model is realized in nature, small perturbation terms play important roles in the selection of the ground state in
geometrically frustrated magnets. In case of a triangular spin tube, the two-dimensional network of the inter-tube interaction forms
characteristic lattices. Among them Kagome-Triangular (KT) lattice is known to exhibit an enriched phase diagram including various
types of non-trivial structures: non-coplanar cuboc structure, coplanar 120° structure with the two-dimensional propagation vector
of k2D = (0, 0),
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structure with k2D = (1/3, 1/3), and incommensurate structure. We investigate the magnetic state in the

model material CsCrF4 by using neutron diffraction technique. Combination of representation analysis and Rietveld refinement
reveals that a very rare structure, i.e., a quasi-120° structure with k2D = (1/2, 0), is realized at the base temperature. The classical
calculation of the phase diagram elucidates that CsCrF4 is the first experimental realization of the KT lattice having ferromagnetic
Kagome bond. A single-ion anisotropy and Dzyaloshinskii-Moriya interaction play key roles in the selection of the ground state.
Furthermore, a successive phase transition having an intermediate state represented by k2D = (1/3, 1/3) is observed. The
intermediate state is a partially ordered 120° structure which is induced by thermal fluctuation.
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INTRODUCTION
Geometrical frustration in a magnetic material prevents the
conventional Néel order and induces a non-trivial magnetic state
at low temperatures. Particularly the two-dimensional (2D)
triangular lattice has been extensively studied since the pioneer-
ing work on the quantum spin liquid in the Heisenberg antiferro-
magnet.1 A consensus is that the ground state is the ordered state
with 120° structure but is very close to quantum criticality.2,3 In
real compounds additional terms or perturbations such as
anisotropy, further neighbor interaction, lattice distortion, etc., lift
the macroscopic degeneracy of the ground state, and they lead to
a variety of magnetic states.4–8 Drastic changes caused by small
perturbations in highly degenerated systems have attracted a lot
of attention in condensed matter physics.
In one-dimensional (1D) systems quantum fluctuation as well as

geometrical frustration induces non-trivial magnetic states. One of
the examples is a frustrated triangular spin tube, where
antiferromagnetic spins on triangular vertices are arrayed in one
dimension. An early work on Heisenberg S= 1/2 spin tube reveals
that the ground state is a dimerized non-magnetic state having a
unit of a two-site rung singlet.9 A finite energy gap in the
magnetic dispersion and the exponential decay in spin correlation
are predicted, and many theoretical studies have been reported so
far.10–16 Similar to the 2D systems, a small perturbation induces
drastic change in the ground state.17 Lattice distortion in the
triangular rung breaks Z2 symmetry, suppresses the spin gap, and
induces a Tomonaga-Luttinger Liquid (TLL) state with vector chiral
order.18,19 In the classical Heisenberg system, on the other hand, a
120° structure is the ground state.
When the triangular spin tube is realized in nature, a geometry

of the inter-tube interactions plays important roles. Particularly in

the absences of frustration along the leg direction, the 2D-spin
Hamiltonian in the plane perpendicular to the leg determines the
spin structure. As an example of the tube configurations,
supertriangular lattice in triangular lattice is shown in Fig. 1a.
Here the triangular plaquettes are the cross sections of the tubes.
The number of inter-triangular interactions of the lattice indicated
by the red lines in Fig. 1a is four, which is the same as the
coordination number in kagome lattice. In fact this supertriangular
lattice can be transformed to Kagome-Triangular (KT) lattice20 by
reducing the length of the red lines as shown in Fig. 1b. Here
nearest neighbor bond is J2, which we will call main Kagome bond
or simply Kagome bond hereafter, and the next-nearest neighbor
(NNN) bond is J1, which we will call Triangular bond. It is noted that
two of four NNN interactions in the kagome lattice are effective.
The lattice exhibits various phases in the J1−J2 phase diagram as
shown in Fig. 1c. The signs of Jis are positive for antiferromagnetic
(AF) and negative for ferromagnetic (F), and the interaction is
isotropic Heisenberg type. The predicted structures are non-
coplanar cuboc, coplanar 120° with k2D= (0, 0), that with k2D= (1/
3, 1/3), and incommensurate structures. Here the cuboc structure
in the region of F-J2 and AF-J1 is a multi- Q structure having a 12-
sublattice with the spins directing along the 12-middle points of a
cube.20–22 As far as we know, the reported magnetic structures of
Kagome magnets in the absence of lattice distortion are threefold:
(i) the 120° structure with k2D= (0, 0) in Fe and Cr-Jarosites,23–28

the semimetals Mn3Sn, Mn3Ge,
29 and rare-earth tripod kagome,30

(ii) the
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structure with k2D= (1/3, 1/3) in high pressure

phase in herbersmithite ZnCu3(OH)6Cl2,
31 and (iii) the inplane

ferromagnetic structure in V-Jarosite.32 A material having F-J2 and
AF-J1 which would exhibit non-trivial magnetic states has not
been reported so far.
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The rare experimental realization of the equilateral triangular
spin tube having the KT geometry is CsCrF4.

33 The crystal structure
is shown in Figs. 1d, e. Cr3+ (3d3) ions, which are Jahn-Teller
inactive and carry Heisenberg spins, form an equilateral triangular
tube along the crystallographic c direction. The space group is
P6̄2m with a hexagonal structure, and the lattice is free from
distortion down to low temperatures. In the CrF6 octahedron, the
quasi-square of F4 in the ab plane is slightly distorted to an
isosceles trapezoid. The main origin of the magnetic interaction
between Cr3+ ions is a super exchange interaction via F− ion. The
angles of Cr-F-Cr for the rung direction is 148° and that for the
chain direction is 180°, which indicate that both of the interaction
along the leg J0 and that along the rung J1 are antiferromagnetic.
The inter-tube interaction J2 in the ab plane, which corresponds to
the Kagome bond, is depicted by the dotted lines in Fig. 1e. The
geometry is the same as that in Fig. 1a, meaning that the spin
lattice is equivalent to the non-distorted KT lattice in Fig. 1b.22

The magnetic susceptibility of CsCrF4 showed a broad
maximum at T ~ 60 K, suggesting development of a short-range
antiferromagnetic spin correlation.34,35 Heat capacity showed no
lambda-type anomaly above T = 1.5 K, and no clear evidence for a
phase transition has been detected. The magnetic state was
originally discussed in the context of the isolated spin tube. The
heat capacity showed, however, a small bending around T= 3 K.
Furthermore, a slight hysteresis was observed in the magnetic
susceptibility between Zero Field Cooling (ZFC) and Field Cooling
(FC) processes below T= 5 K. Broad peaks were observed for the
linear and non-linear components of the AC susceptibility at 4 K
and 3 K, respectively.36 The details of the magnetic state of CsCrF4
at low temperatures are, thus, complicated and unclear, and the
frustrated two-dimensional geometry may have an important role.
In this paper, we demonstrate that non-trivial magnetic long-

range ordered states are induced in CsCrF4 which is a model
compound of the KT lattice having the ferromagnetic Kagome
bond by using neutron diffraction technique. Combination of the
magnetic structure analysis and the calculation of the phase
diagram reveals that a single-ion anisotropy and DM interaction
select a very rare magnetic structure, i.e., quasi-120° structure with

k2D = (1/2, 0), at the base temperature. Furthermore, a successive
phase transition is observed, and the intermediate temperature
phase is partially ordered 120° structure.

RESULTS
Neutron diffraction
The neutron diffraction profiles at 10 K in Fig. 2a is reasonably
reproduced by the calculation based on the crystal structure of
CsCrF4 previously reported in ref. 33. The refined lattice parameters
and atomic positions are summarized in Supplementary Note 2. As
shown in Fig. 2b a broad peak is observed at 2θ ~ 25°, which
corresponds to Q ~ 1.2 Å, at 10 K. The temperature is much lower
than the maximum temperature (60 K) of the bulk susceptibility,35

and the broad peak is ascribed to the development of magnetic
short-range correlation. At 100 K, in contrast, the broad peaks is
suppressed, and paramagnetic diffuse scattering exists in the
small 2θ.
Figure 3a shows the diffraction profile obtained by subtracting

the data at 10 K from that at 1.6 K. The details of the background
subtraction are described in Supplementary Note 3. Well-defined
peaks are observed, meaning that a magnetic order is realized. A
spin liquid state that was originally supposed as the ground
state34,35 is, thus, not the case in CsCrF4. Two-dimensional
geometry of the inter-tube interaction is more important than
the quantum nature of one-dimensional spin tube. We, hence,
found that CsCrF4 is an ideal model for the non-distorted KT
lattice, where the main Kagome bond J2 would be smaller than
the Triangular bond J1. The magnetic Bragg peaks are all indexed
by (h k l) with h= half integer, k= integer, and l= half integer. The
propagation vector is identified as k1 ¼ 1

2 ; 0;
1
2

� �
which coincides

with the cuboc structure predicted in the KT lattice. This suggests
that CsCrF4 is a very rare experimental realization of the KT lattice
having ferromagnetic Kagome bond. Figure 3b shows the
subtracted profile measured at 3.0 K. The 2θs of the magnetic
peaks are different from those measured at 1.6 K. The magnetic
propagation vector is identified as k2 ¼ 1

3 ;
1
3 ;

1
2

� �
. The k1 and k2

a

d e f

b c

ZC

ZB

ZA

Fig. 1 Introductory information on coupled spin tubes with frustrated geometry. a Geometry of the two-dimensional network of triangular
spin tubes in the plane perpendicular to the leg: supertriangular lattice in triangular lattice a. b Kagome-Triangular (KT) lattice. J1 is the
Triangular bond and J2 is the Kagome bond. c Phase diagram of the KT lattice [20]. d, e The crystal structure of CsCrF4. Blue and small gray
circles represent Cr3+ and F− ions, respectively. J1 is the Triangular bond and J2 is the Kagome bond. The d1(α,β) is DM vector (α, β= A, B, C). zA,
zB, and zC are the z-axes locally defined on the Cr sites, A, B, and C. Spin tube runs along the c axis in e, and the tubes form the KT lattice in the
a−b plane in d. f High symmetry points in the 1st Brillouin zone of CsCrF4 in the plane of (0 0 1/2)
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coincide with high symmetry points in the first Brillouin zone, L
and H in Fig. 1f, respectively.
The temperature evolution of the neutron profile without

background subtraction in a heating process is shown in Fig. 3c.
The variation of the 2θ positions of the magnetic peaks means a
successive transition. Temperature dependences of the intensities
of the magnetic Bragg peaks at 1

2 1
1
2

� �
and 2

3
2
3
1
2

� �
are shown in

Fig. 4a. The peak at 1
2 1

1
2

� �
disappears at about TN1= 2.8 K. We

define the ordered phase at T ≤ TN1 as the low temperature (LT)
phase. At T ≥ TN1 the peak at 2

3
2
3
1
2

� �
disappears at about TN2= 3.5 K.

We define the ordered phase at TN1 ≤ T ≤ TN2 as the intermediate
temperature (IT) phase. The diffuse scattering is suppressed below
TN1 but still remains even at 1.6 K, which can be seen in Fig. 3c as
well as Fig. 2b. The temperature dependences of the full width at
half maximum (FWHM) of the peak of 1

2 2
1
2

� �
at 2θ= 43.7° and

4
3
1
3
1
2

� �
at 2θ= 31.7° are shown in Fig. 4b. The gray area is the

experimental resolution estimated from the nuclear peak of (0 0 1)
at 10 K. The dashed line is the FWHM of the peak, and the dotted
lines are the errors for the FWHM. The FWHM of the peak at 4

3
1
3
1
2

� �
in the IT phase is wider than the resolution, meaning that the
magnetic order in the IT phase is not truly long-ranged. The
FWHMs at 1

2 2
1
2

� �
in the LT phase are much narrower than those in

the IT phase, and they are resolution limited. Slight broadening at
2.4 K is ascribed to the uncertainty of the fitting. From the
difference between the FWHM of the magnetic peak and the
experimental resolution, the correlation length of the spins is
estimated as a function of the temperature as shown in Fig. 4c.
The maximum limit of the correlation length indicated by the
dashed line is estimated as 800 Å. The correlation length gradually
increases with the decrease of the temperature at TN1 ≤ T ≤ TN2,
and it is beyond the maximum limit at T ≤ TN1. The details of the
estimate of FWHM and correlation length are described in
Supplementary Notes 4 and 5, respectively.

Magnetic structure analysis

The propagation vector of the LT phase is k1 ¼ 1
2 ; 0;

1
2

� �
, and the

scaler of the k1 coincides with that of the propagation vectors of
the triple-k cuboc structure, k1

1 ¼ 1
2 ; 0;

1
2

� �
, k2

1 ¼ 0;� 1
2 ;

1
2

� �
, and

k31 ¼ � 1
2 ;

1
2 ;

1
2

� �
. Since the cuboc structure is predicted in

Heisenberg KT lattice,20 we simulate the neutron diffraction
profile as shown in Fig. 2c. The calculated intensity at q ¼ 1

2 1
1
2

� �
which corresponds to 2θ= 23.5° is zero. In contrast, the magnetic
peak is clearly observed. This means that the cuboc structure is
not realized in CsCrF4, suggesting that some additional perturba-
tion terms are necessary. The detail of the cuboc structure is
described in the Supplementary Note 6.
Next we construct spin models of single k structures. Irreducible

representations (IRs) and their basis vectors that satisfy the space
group P6̄2m and the propagation vector k1 ¼ 1

2 ; 0;
1
2

� �
are listed in

Table 1. Because k1 breaks three-fold rotational symmetry of the
hexagonal system, all the three Cr sites are not equivalent; the A
and B sites are equivalent, but the C site is inequivalent. We
assume that the magnetic structure in the LT phase is associated
to a single IR.37 We also assume that the magnitude of the
moments on the Cr ions are the same. The candidates of the

Fig. 2 Neutron diffraction profiles. a Nuclear peak profile and the
fitting to the data at 10 K. b Diffraction profiles at 100 K, 10 K, 3 K,
and 1.6 K in the range of 2θ= 10°–55°

Fig. 3 Magnetic neutron diffraction profiles. a, b The magnetic
diffraction profile at 1.6 K for a and that at 3.0 K for b. Fitting curve in
a is based on the quasi-120° structure in Fig. 5a, and that in b is
based on the partially ordered 120° structure in Fig. 5d. c The
temperature variation of diffraction profiles in the range of 2θ=
18°–33°
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magnetic structures are, then, linear combinations of ψ2, ψ3, and
ψ7 for Γ2, those of ψ4 and ψ8 for Γ3, and those of ψ5, ψ6, and ψ9 for
Γ4. In order to consider a high-symmetry structure, we first pick up
14 structures where the angles between the neighboring spins are
fixed as 0°, 60°, 120° and 180° as listed in Table 2. The magnetic
moments are expressed as follows;

m ¼ 1
2

X
i

½Ciψiexpð�ið2πk � l þ ϕÞÞ þ c:c:� (1)

Rietveld analyses were performed on the models A1–A14, and
the results are presented. The parameters of the crystal structure
are fixed to those at 10 K. Furthermore, the angles between the
spins are fixed, meaning that the ratios among Ci are fixed, and
the number of the free parameters in the refinement is one. The
reasonable agreement to the data was obtained for four 120°
structures; A2, A5, A10 and A14. To distinguish these 120° structures,
we define vector chirality κ as follows;

κ ¼
X
ijk

2

3
ffiffiffi
3

p ϵijkðbmi ´ bmjÞ; (2)

where i, j and k are assigned A, B or C, εijk means Levi-Civita
symbol, and bm i is a magnetic moment normalized to 1. For the A2

and A10 models κc= 1, and for the A5 and A14 models κc=−1.
Here κc is the c component of κ. Next, we release the constraint of
the angles between the neighboring spins, and we refined the
coefficients of basis vectors for these four models. The results and
the obtained models B1–B4 are shown in the lower panel in Table
2. The fitting indexes χ2 and Rwp are improved, and among the
models the B1 and B4 are better. For example the fitting curve for
the model B1 is indicated by the solid black curve in Fig. 3a. The fit
to the data is good. ξ, ζ, and η in Table 2 are the angles of the
moments on A and B sites, B and C sites, and C and A sites,
respectively. We found that the models B1 in Fig. 5a and B4 in Fig.
5b, both of which are quasi-120° structures, are the final
candidates of the magnetic structure in the LT phase in CsCrF4.
The moment sizes are about 1.4~1.5 μB for both candidates and
they are considerably smaller than 3 μB, the full moment of Cr3+

ion. They are strongly fluctuated due to the geometrical
frustration and the low dimensionality of the system. The details
of the model fitting is described in Supplementary Note 3.
For the IT phase, due to broad widths of the magnetic Bragg

peaks and large diffuse scattering, the peak profile could not be
refined very accurately. Nevertheless, we performed Rietveld fit
to the subtracted profile at 3 K on the basis of two models. One
is
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structure shown in Fig. 5c. The fit to the data is

shown in the supplementary note, and it is reasonable. The
estimated moment size is m= 1.62(2) μB and the fitting quality
are χ2= 2.15 and Rwp= 42.6. It should be noted that the model
is represented by 2 different IRs, Γ2 and Γ4 in Table 3. Another
model is modulated all-in all-out structure as shown in Fig. 5d.
This structure belongs to a single IR Γ2 in Table 3. The fit to the
data is shown by the solid black curve in Fig. 3b and it is
reasonable. The magnitude of the estimated moment size is
2.49(3)μB, and the fitting quality are χ2= 1.72 and Rwp = 38.0.
The moment sizes of neighboring spins are expressed as m
cosϕ, m cos(ϕ + 2/3π), m cos(ϕ + 4/3π)… Here the phase ϕ is
arbitrary, and it cannot be determined by powder neutron
diffraction.

Phase diagram
CsCrF4 is originally a model material of the triangular spin tube,
but the observation of the magnetic order in the present study
reveals that the physics of the Kagome-Triangular (KT) lattice
formed by the inter-tube interaction is important. Our analysis
concluded that the LT phase is the quasi-120° structure at the L
point in the first Brillouin zone, and the IT phase is

ffiffiffi
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´

ffiffiffi
3

p
structure or modulated 120° structure at the H point. The LT
structure is, however, different from the ground states expected in
the Heisenberg KT lattice.20 The expected cuboc structure and
120° structure with k= 0 do not break three-fold rotational
symmetry of the crystal. In contrast, the realized magnetic
structure with k ¼ 1

2 ; 0;
1
2

� �
, which corresponds to k2D ¼ 1

2 ; 0
� �

,
breaks the symmetry. Perturbation terms that induce the
anisotropy, including DM interaction and/or single-ion anisotropy,
are necessary. It is also noted that these terms stabilize a coplanar
structure rather than a non-coplanar one. The magnitude of the
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Fig. 4 Temperature variations of magnetic Bragg peaks. a Tempera-
ture dependences of the intensities at (1/2 1̄ 1/2) (black circles) and
(2/3 2/3 1/2) (red squares). b Temperature dependences of the full
width at half maximum at (1/2 2 1/2) (black circles) and (4/3 1/3 1/2)
(red squares). The gray area is the experimental resolution.
c Temperature dependences of the correlation length of the IT
phase estimated from the magnetic Bragg peaks at (4/3 1/3 1/2) (red
squares). The dashed line is the maximum limit of the correlation
length. The correlation lengths in the LT phase are beyond the limit,
and the data are indicated by the black crosses

Table 1. The irreducible representations (IRs) and associated basis
vectors (BVs) for the space group P6̄2m with k1 on each Cr site

IR BV A site B site IR BV C site

Γ1 ψ1 (0, 0, −1) (0, 0, 1)

Γ2 ψ2 (−1, −1, 0) (1, 0, 0) Γ2 ψ7 (0, −1, 0)

ψ3 (0, 1, 0) (0, 1, 0)

Γ3 ψ4 (0, 0, 1) (0, 0, 1) Γ3 ψ8 (0, 0, 1)

Γ4 ψ5 (1, 1, 0) (1, 0, 0) Γ4 ψ9
2ffiffi
3

p ; 1ffiffi
3

p ; 0
� �

ψ6 (0, −1, 0) (0, 1, 0)
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DM vectors for both tube’s leg and rung are expected to be as
small as 1–2% of the exchange interaction.36 Nevertheless, the
main kagome bond J2, which has the exchange path of
Cr3+−F−−F−−Cr3+, is also small, and the perturbation terms

can be comparable to J2. The perturbation terms as well as J2 are,
thus, important for the selection of the ground state.
We classically calculated phase diagrams of the ground state of

CsCrF4 using Luttinger-Tisza method.38,39 The Hamiltonian is as

Table 2. Summary of Rietveld analyses

Upper three panels show the results of Rietveld analyses for high-symmetry models A1–A14, where the constraint is imposed on the angle between the spins.
The models A2, A5, A10, and A14 give better χ2 and Rwp. The Re of all the models are 30.4. Lower panel shows the results of the refinement of the better four
models. The Ci is a coefficient value of the basis vector described in Eq. (2). The ξ, ζ and η in the lower panel are the angles between the spins on A and B-sites,
those on B and C-sites, and those on C and A-sites, respectively

M. Hagihala et al.
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follows;

H ¼ P
lα;lβ ;l

0
β

�
J0SðlαÞ � Sðlα þ cÞ þ J1SðlαÞ � SðlβÞ:

þJ2SðlαÞ � Sðl0βÞ þ d1ðα;βÞ � SðlαÞ ´ SðlβÞ þ DðSzαðlαÞÞ2
�
:

(3)

Here lα is the position vector at α-site (α= A, B, and C) in the
lattice l, and c is the unit vector of the crystal lattice along the c

direction. zα is the local z-axis defined at the α-site as shown in
Fig. 1e. The sum is taken for lα, lβ, and l0β all over the crystal, where
α ≠ β and l ≠ l′. The schematic exchange pathways are shown in
Figs. 1d, e. J0 and J1 are the exchange interactions of the tube’s leg
and rung, respectively. J2 is the inter-tube interaction. The DM
vector in the middle of the rung is d1, and it is along the c axis.36

The directions of the d1s are not determined but they are all up or
all down. The DM vector in the middle of the leg d0 is also allowed
in the crystallographic symmetry. d0, however, induces an
incommensurate spin correlation along the c direction, which is
not the case in CsCrF4. We, hence, ignore d0 in our calculation.
Another additional term, single-ion anisotropy D, is also con-
sidered. The easy axes are assumed as the locally defined zα-axes
(α= A, B, C) as shown in Fig. 1d so that the anisotropy terms
preserve three-fold rotational symmetry in the ab plane. The fixed
values of J0 and J1 are used; J1= 0.5 and J0= 1.40 In the calculation
the J2, d1 and D are much smaller than J0 and J1, since Cr3+ ion is
isotropic and the bond length of J2 is long. The Hamiltonian in
Eq. (3) is transformed into the wave vector space, and the
eigenstates and eigenenergies are obtained by the diagonaliza-
tion. The propagation vector of the ground state is obtained as the
wave vector k that gives the minimum eigenenergy. The magnetic
structure is obtained from the corresponding eigenstate.38,39 A
constraint that the magnitude of the spins are the same was
imposed.
Figure 6a shows the d1−J2 phase diagram in the absence of the

single-ion anisotropy D. When J2 is AF, i.e., J2 > 0, the ground state
is 120° structure with k ¼ 0; 0; 12

� �
, which we call the A′ structure

(red symbols). The propagation vector corresponds to k2D= (0, 0)
in the ab plane. On the other hand, when J2 is FM the cuboc

Table 3. The irreducible representations (IRs) and associated basis
vectors (BVs) for the space group P6̄2m with k2 on each Cr site

IR BV A site B site C site

Γ2 ψ1 (−1, −1, 0) (1, 0, 0) (0, 1, 0)

Γ3 ψ2 (0, 0, 1) (0, 0, 1) (0, 0, 1)

Γ4 ψ3
1ffiffi
3

p ;� 1ffiffi
3

p ; 0
� �

1ffiffi
3

p ;� 2ffiffi
3

p ; 0
� �

� 2ffiffi
3

p ;� 1ffiffi
3

p ; 0
� �

Γ5 ψ4 0; 0 �1þ ffiffiffi
3i

p
2

� �
(0, 0, 1) 0; 0; �1� ffiffi

3
p

i
2

� �

ψ5 0; 0; 1þ
ffiffi
3

p
i

2

� �
0; 0; 1þ

ffiffi
3

p
i

2

� �
(0, 0, −1)

Γ6 ψ6
1� ffiffi

3
p

i
2 ; 1�

ffiffi
3

p
i

2 ; 0
� �

(1, 0, 0) 0; �1� ffiffi
3

p
i

2 ; 0
� �

ψ7
�1þ ffiffi

3
p

i
2 ; 0; 0

� �
(0, 1, 0) 1þ ffiffi

3
p

i
2 ; 1þ

ffiffi
3

p
i

2 ; 0
� �

ψ8
1� ffiffi

3
p

i
2 ; 1�

ffiffi
3

p
i

2 ; 0
� �
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Fig. 5 Candidates of the magnetic structures of CsCrF4. The blue circles are F ions and the arrows are the spins on Cr ions. a, b The magnetic
structures in the LT phase proposed from the analysis. The structure in b is rejected after the discussion on the phase diagram in Fig. 4. c, d
Candidates in the IT phase
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structure (green squares) exists even at very small J2 for |d1|= 0.
The DM interaction stabilizes a coplanar structure in the ab plane
and destabilizes the cuboc structure. Indeed, at large |d1| coplanarffiffiffi
3

p
´

ffiffiffi
3

p
structures with k ¼ 1

3 ;
1
3 ;

1
2

� �
or k2D ¼ 1

3 ;
1
3

� �
, which we call

the H structures (blue symbols), appears. Positive d1 induces
negative chirality and negative d1 induces positive chirality for
both A′ and H structures. In this phase diagram, the single-k 120°
structure with k ¼ 1

2 ; 0;
1
2

� �
which is realized in CsCrF4, does not

exist.
Introduction of the single-ion anisotropy suppresses the non-

coplanar cuboc structure and induces the single-k quasi-120°
structure (orange symbols) in the range of J2 < 0, which we call the
L structure, as shown in the D−J2 phase diagrams for d1= 0 and
−0.01 (Figs. 6b, c). The propagation vector is k ¼ 1

2 ; 0;
1
2

� �
or

k2D ¼ 1
2 ; 0
� �

, and the magnetic unit cell in the ab plane is doubled
along the a direction. Because of the geometry of the easy axis, all-
in all-out structure with the positive chirality, which is one of the
candidates of the magnetic structure in the LT phase in Fig. 5a, is
realized. In Fig. 6c the H structure with positive chirality, which

coincides with a candidate in the IT phase in Fig. 5c, exists at small
D. For d1= 0.01, the DM interaction favoring negative chirality and
the single-ion anisotropy favoring positive chirality compete to
each other. The H structure with negative chirality exists in wide
region, and the strong single-ion anisotropy induces the L
structure indicated by the model A5 in Table 2. This magnetic
structure is different from another candidate having negative
chirality in the LT phase proposed by the experiment shown in Fig.
5b. For both cases where d1= ±0.01, 120° structure with
k2D= (0, 0) is stable.
The triangle in the L structures in Figs. 6b–d is distorted due to

J2. It is, however, small; the most distorted case in the range of our
calculation is that the angles between the neighboring spins are
ζ= η= 117° and ξ= 127° at J2=−0.03, D=−0.02, and d1=
−0.01.

DISCUSSION
One of the candidates for the magnetic structure of CsCrF4 in the
LT phase is the L structure with positive chirality as shown in
Fig. 5a. The appearance of the structure requires ferromagnetic
Kagome bond J2 and single-ion anisotropy, and the DM
interaction enhances the region of the structure in the D − J2
phase diagrams as shown in Figs. 6b, c. Another candidate, the L
structure having negative chirality, is shown in Fig. 5b. The
structure is, however, does not exist in our phase diagram. We,
therefore, reject the candidate, and conclude that the all-in all-out
structure in Fig. 5a is realized in the LT phase. The conclusion
means that CsCrF4 is a rare experimental realization of the
distortion free KT lattice having ferromagnetic Kagome bond.
Here we discuss the origin of the successive transition and the

IT phase. The phase of the H structure and that of the L structure
phase are adjacent in Fig. 6c. Suppose that CsCrF4 is in the H
structure and in the vicinity of the phase boundary. Since the H
structure covers the region of |D| < |d1| in the phase diagram of the
ground state, at finite temperatures of |D| < kBT < |d1|, the L
structure is suppressed due to the thermal fluctuation, and the H
structure is enhanced. This is a possible explanation for the
appearance of the IT phase and the successive transition in CsCrF4.
The

ffiffiffi
3

p
´

ffiffiffi
3

p
structure in the H structure is, however,

represented by two different IRs, Γ2 and Γ4, and its realization
contradicts conventional Landau theory for second order phase
transition. In this sense, the modulated all-in all-out structure in
Fig. 5d is represented by the single IR Γ2 in Table 3, and its
realization is more reasonable. This modulated structure is
regarded that the spins component of the easy-axis direction in
the

ffiffiffi
3

p
´

ffiffiffi
3

p
structure in Fig. 5c is statically ordered. The partially

ordered 120° structure is, thus, more reasonable for the IT phase in
the successive transition.
We discuss the reason why lambda-type anomaly was not

observed in the heat capacity,34 even though the magnetic
ordered state is realized. As shown in Fig. 2b, the strong magnetic
diffuse scattering was observed at 10 K. This suggests that the
short-range correlation of the spins is developed, and consider-
able amount of the magnetic entropy is consumed already at
T > TN2. At T ≤ TN2 in the IT phase, the magnetic diffuse scattering
still remains. The result means that the entropy change at TN2 is
small. At TN1 ≤ T ≤ TN2 the spin correlation is not long-ranged, and
the correlation length gradually changes with the decrease of the
temperature. The change of the entropy is, thus, smeared in wide
temperature range in CsCrF4, and the sharp anomaly was not
detected in the heat capacity measurement.
Finally it should be noted that the threshold for the long-range

order is determined by the experimental resolution, and, there-
fore, the possibility of short-range order with the correlation
length longer than 800 Å cannot be excluded for the LT phase at
T ≤ TN1. In addition the dynamical spin correlation is not measured
in the present neutron diffraction experiment. Possible short-

Fig. 6 The phase diagram of CsCrF4 calculated by Luttinger-Tisza
method. d1 is the magnitude of the DM interaction, D is the single-
ion anisotropy on the Cr-site, and J2 is the inter-tube interaction.
a d1−J2 phase diagram in the absence of D. b–d D−J2 phase
diagrams for d1= 0, −0.01, and 0.01

M. Hagihala et al.

7

Published in partnership with Nanjing University npj Quantum Materials (2019)    14 



range correlations in space and time in the LT phase also smears
the change of the entropy.
In summary, we identified the magnetic states at low

temperatures in a model material of triangular spin tubes coupled
by the inter-tube interaction having KT geometry CsCrF4.
Magnetically ordered state was observed in contrast with previous
studies. The quasi-120° structure with k2D = (1/2, 0), which has not
been predicted in theory in the category of the kagome lattice
magnets, was experimentally identified. Single-ion anisotropy and
DM interaction play important role for the selection of the
magnetic structure. A successive phase transition was observed,
and the magnetic structure in the IT phase is partially ordered 120°
structure represented by k2D = (1/3, 1/3). The IT phase is
reasonably explained under the assumption that CsCrF4 is in the
vicinity of the phase boundary in the D− J2 phase diagram. Since
the key parameters, J2, D, and d1, are small in CsCrF4, they can be
controlled by, for example, pressure in extensive scales. In the
system where a perturbation term has a casting vote for the
selection of the state, external parameters including temperature,
pressure, and magnetic field can induce various types of magnetic
states. Further study in the wide range in the phase space will
open a new window for the search of novel state of matter.

METHODS
High quality polycrystalline sample with the mass of 10 g was prepared by
the solid state reaction method.34,35 The quality of the sample is discussed
in the Supplementary Note 1. Lambda-type anomaly was not observed in
the heat capacity measurement on the sample with the same quality as
that used for neutron scattering experiment. Neutron diffraction experi-
ments were carried out by the use of the powder neutron spectrometer
ECHIDNA installed in the research reactor OPAL at ANSTO. Ge(331)
monochromator was used and the neutron wavelength was λ= 2.4395 Å.
The coverage of the scattering angle was 6° ≤ 2θ ≤ 165°. The measurement
temperatures were T= 1.6 K, 1.75 K–3.5 K at intervals of 0.25 K, 4 K, 10 K
and 100 K. A conventional liquid He cryostat was used to achieve the low
temperatures. The Rietveld analysis was performed using the FULLPROF
software package.41 To consider the candidates for the magnetic structure
on the basis of the crystallographic space group and the magnetic
propagation vector, the group theory method was used. Irreducible
representations (IRs) were calculated using BasIreps in FullProf Suite.
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