

Mn₃O₄ COMMENSURATE AND INCOMMENSURATE MAGNETIC STRUCTURES**B. CHARDON and F. VIGNERON***Laboratoire Léon Brillouin (Laboratoire commun CEA-CNRS), CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France*

Received 30 May 1985

The compound Mn₃O₄ (Hausmannite) was investigated by means of neutron diffraction in the temperature range between 4.2 K and T_C = 43 K, in order to study the commensurate-incommensurate magnetic transition at T_t = 33 K. Below T_t, the commensurate ferrimagnetic structure of Mn₃O₄ is known. Between T_t and T_C, the incommensurate part of the magnetic structure of Mn₃O₄ is found to be sinusoidal, contrary to previous results (helimagnetic solution). The continuity of the magnetic structure at T_t, which is suggested by specific heat measurements, is now confirmed. The thermal variation of the propagation vector $\tau/\|b^*\|$ for the Mn₃O₄ magnetic structure has been obtained below T_C.

1. Introduction*1.1. Crystalline structure*

Mn₃O₄ has a tetragonally distorted spinel structure, with space group I4₁/amd. At room temperature, the lattice parameters are $a = b = 5.763 \text{ \AA}$ [1] and $c = 9.456 \text{ \AA}$ [1], so that $c/a\sqrt{2} = 1.16$. Mn₃O₄ is a normal spinel [2]: the divalent and trivalent manganese ions occupy respectively the tetrahedral (A) and octahedral (B) sites of the spinel structure AB₂O₄. Table 1 gives the values of the crystallographic parameters for Mn²⁺ and Mn³⁺ ions in the crystalline unit cell of I4₁/amd:

Table 1
Crystallographic positions of Mn²⁺ (A) and Mn³⁺ (B) ions in the I4₁/amd unit cell. Mn²⁺ ions occupy sites 4 a and Mn³⁺ are in sites 8 d. Atoms with a label i going from 1 to 6 are indicated below; $i+6$ and $i'(1 < i' < 12)$ are deduced from i after $[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]$ and [0, 1, 0] translations respectively

		x	y	z
Mn ²⁺	T ₁	0	0	0
	T ₂	0	$\frac{1}{2}$	$\frac{1}{4}$
Mn ³⁺	R ₃	0	$\frac{1}{4}$	$\frac{5}{8}$
	R ₄	0	$\frac{3}{4}$	$\frac{5}{8}$
	S ₅	$\frac{1}{4}$	0	$\frac{3}{8}$
	S ₆	$\frac{3}{4}$	0	$\frac{3}{8}$

the atoms are labelled from 1 to 12 and separated into tetrahedral (T) and octahedral (R and S) sites.

1.2. Magnetic properties

Magnetic measurements indicate a ferrimagnetic behaviour for Mn₃O₄ [3,4], with a Curie temperature T_C = 42 K. The spontaneous magnetization below T_C is directed along one of the main crystallographic axes in the (001) plane (b by convention). The T = 0 K extrapolated value of the resultant magnetization is $1.84\mu_B$ per Mn₃O₄, less than $3\mu_B$, as calculated in a collinear model of ferrimagnetism. The asymptotic Curie temperature is T_a = -640 K [4]. S. Srinivasan et al. [5] have analyzed the magnetic response of Mn₃O₄ in the framework of the Lotgering [6] formalism: the exchange constants J_{AA}, J_{AB} and J_{BB} are all anti-ferromagnetic, with predominant B-B interactions. The anomaly observed at T = 39 K in the M versus T data [5] is suggested to correspond to a transition from a non-collinear ($T < 39$ K) to a collinear ($39 \text{ K} < T < 42 \text{ K}$) magnetic structure for Mn₃O₄.

1.3. Neutron diffraction data

From neutron diffraction data at T = 4.2 K, the commensurate magnetic structure of Mn₃O₄ has

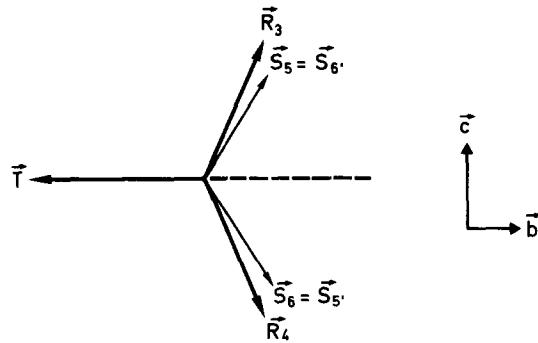


Fig. 1. The commensurate $a, 2a, c$ magnetic structure of Mn_3O_4 at $T < T_c = 33$ K: $T = T_1 = T_2$; $T_{i+6} = T_i$; $T_{i'} = T_i$; $R_{i+6} = R_i$; $R_{i'} = R_i$; $S_{i+6} = S_i$.

been obtained [1,7]. The magnetic cell is $a, 2a, c$. The magnetic structure is depicted in fig. 1 and described as follows:

Mn^{2+} magnetic moments: $T_1 = T_2$; $T_{i+6} = T_i$; $T_{i'} = T_i$ directed along the b -axis, antiparallel to the resultant magnetic moment of the Mn^{3+} ions.

Mn^{3+} magnetic moments: R and S are to be distinguished. The magnetic arrangement is defined by R_3 , R_4 , S_5 and S_6 and $R_{i+6} = R_i$; $R_{i'} = R_i$; $S_{i+6} = S_i$ but $S_{i'} \neq S_i$ (cf. fig. 1). R_3 and R_4 , S_5 and S_6 are lying in the (b, c) plane, in a symmetric way relative to the b -axis, with slightly different values for $\theta_R = (\mathbf{b}, \mathbf{R})$ and $\theta_S = (\mathbf{b}, \mathbf{S})$ angles. S_z is the only magnetic component leading to a doubled magnetic unit cell ($a, 2a, c$).

Small deviations from this basic model are proposed: B. Boucher et al. [1] introduce T_z and S_x components (powder neutron diffraction study), G.B. Jensen et al. [7] introduce R_x components

(single-crystal study). These components do not modify the selection rules for the magnetic Bragg peaks; they only induce small changes in the magnetic intensities and will not be taken into account in our neutron diffraction study.

At $T_c = 33$ K a magnetic phase transition occurs for the cell doubling spin system (S). From the angular shift of the magnetic Bragg peaks, the propagation vector τ varies then from $\tau = \frac{1}{2}\mathbf{b}^*$ below T_c to $\tau = 0.47\mathbf{b}^*$ immediately above T_c [7]. The magnetic structure of the Mn^{3+} S atoms is then conical [8], defined by:

$$S_{ix} = S \cos(2\pi\tau \cdot \mathbf{r}_i + \varphi_0^i)$$

$$S_{iy} = S_{\parallel}$$

$$S_{iz} = S \sin(2\pi\tau \cdot \mathbf{r}_i + \varphi_0^i)$$

and the subsequent relations between the initial phases φ_0^i :

$$\varphi_0^5 = \varphi_0^{11}; \quad \varphi_0^6 = \varphi_0^{12}; \quad \varphi_0^5 - \varphi_0^6 = \pi.$$

Let us notice that these two solutions ($T < T_c$ and $T > T_c$) for the magnetic structure of Mn^{3+} atoms on S sites are not continuously deduced from each other at $T = T_c$. The situation is illustrated in fig. 2: (i) corresponds to the commensurate $a, 2a, c$ magnetic structure below T_c and (ii) to the helimagnetic part (S_{\perp}) of the conical structure observed above T_c and represented here in the case where $\tau = \frac{1}{2}\mathbf{b}^*$. Yet this discontinuity has not been observed for Mn_3O_4 in specific heat measurements [8,9]. We have so reinvestigated Mn_3O_4 by means of neutron diffraction, in

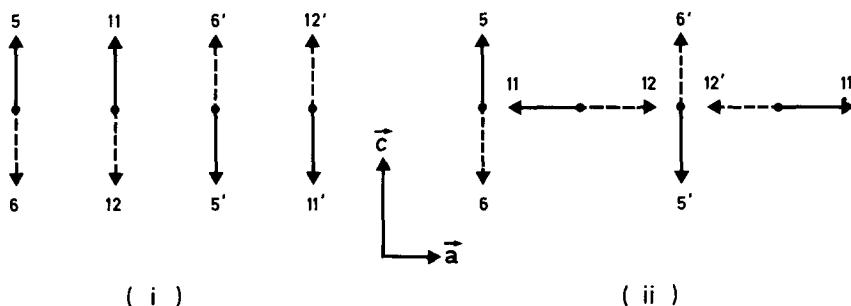


Fig. 2. Discontinuity of the Mn_3O_4 magnetic substructure at $T_c = 33$ K. The Mn^{3+} magnetic moments (S_x and S_z components) are represented in a succession taking into account the y coordinate only (cf. table 1). (i) $a, 2a, c$ commensurate magnetic structure below T_c ; (ii) helimagnetic structure with a propagation vector $\tau = \frac{1}{2}\mathbf{b}^*$.

order to study the commensurate–incommensurate magnetic transition at $T_t = 33$ K.

2. Experimental

A polycrystalline sample of Mn_3O_4 has been obtained [10] from a manganese oxide MnO_x , with $x \sim 1.8$, heated in air for 7 days at 1100°C and some hours at 1250°C.

The neutron diffraction experiments have been mainly performed at the Siloe Reactor in Grenoble (CEN-G), on a two-axis spectrometer ($\lambda = 2.5$ Å) with a Position Sensitive Detector (800 cells over $2\theta = 80^\circ$) [11]. Some complementary results have been obtained at the Orphée Reactor in Saclay (CEN-S), on a classical two-axis spectrometer (Pyrrhias, $\lambda = 2.46$ Å).

The Rietveld profile analysis [12] has been used in a modified version, taking into account an incommensurate part for the magnetic structure. The possibility of simultaneous refinements for commensurate and incommensurate magnetic structure has only been introduced for the case of the isomorphous compounds Mn_3O_4 and $Zn_xMn_{3-x}O_4$.

3. Mn_3O_4 commensurate magnetic structure

3.1. $T = 4.2$ K

Neutron diffraction data at $T = 4.2$ K on polycrystalline Mn_3O_4 have been analyzed, using the Rietveld profile refinement technique [12], with the assumption of the non-collinear magnetic structure described in section 1.3 and fig. 1 (magnetic cell a , $2a$, c).

With $\lambda = 2.5$ Å and 2θ running from 20 to 90° , the refined value for the magnetic moments \mathbf{T} , \mathbf{R}_3 and \mathbf{S}_5 are:

$$T_y = -4.57(15)\mu_B$$

$$R_y = 1.38(16)\mu_B$$

$$R_z = 3.23(11)\mu_B$$

$$S_y = 1.30(20)\mu_B$$

$$S_z = 2.85(10)\mu_B$$

with reliability factors [12] $R_N = 0.8$ and $R_M = 2.6$ (N = nuclear, M = magnetic).

From the above values, the resultant magnetic moment per Mn_3O_4 can be deduced: $1.89(50)\mu_B$. This result is in good agreement with the result ($1.84\mu_B$) of O.V. Nielsen [4], which has been obtained from magnetization measurements.

The oxygen positional parameters (16 h site) have been obtained at $T = 4.2$ K: $x = 0.2225$ (20) and $x = 0.3844$ (12).

3.2. Thermal variation of the Mn_3O_4 commensurate magnetic structure

The commensurate a , $2a$, c magnetic structure is obtained for Mn_3O_4 up to $T_t = 33$ K, where a sudden shift is observed for the angular positions of the Bragg peaks associated with the cell doubling spin system (S atoms, S_z components).

We report in fig. 3 the thermal variation of T_y , R_y and R_z , S_y and S_z magnetic components below T_t . The thermal variation of the magnetic

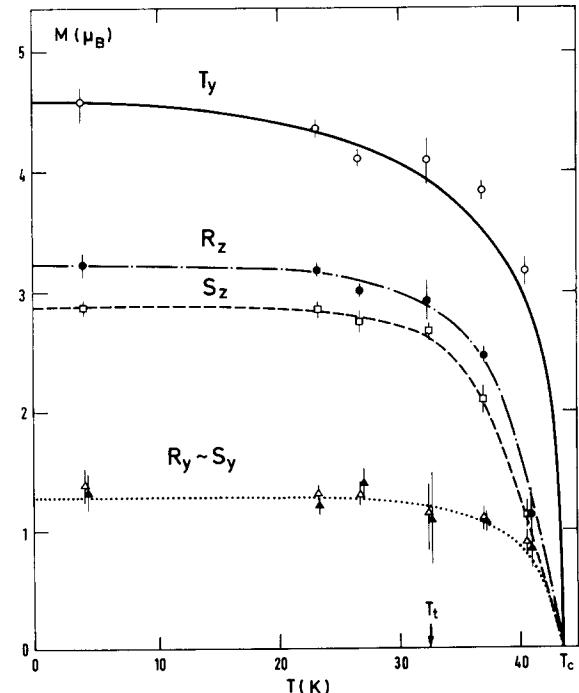


Fig. 3. Thermal variation of the Mn_3O_4 commensurate magnetic structure: T_y , R_y and R_z , S_y and S_z components of the magnetic moments \mathbf{T} , \mathbf{R}_3 and \mathbf{S}_5 (see table 1 and fig. 1).

structure of Mn_3O_4 in the temperature range between T_t and T_C is studied in the next section.

4. Mn_3O_4 magnetic structure for $T_t < T < T_C$

4.1. $T = 37\text{ K}$

Neutron diffraction data on Mn_3O_4 in the temperature range between T_t and T_C are reported in fig. 4 ($T = 37\text{ K}$ data measured on the two-axis spectrometer at Siloe, with $\lambda = 2.5\text{ \AA}$). Two types of magnetic Bragg peaks are obtained, all indexed in the a, a, c quadratic crystalline unit cell: hkl_M and hkl^\pm .

hkl_M Bragg peaks (selection rule: $h+k+l$ even) correspond to the magnetic components T_y , R_y , R_z and S_y , as described in the commensurate structure in fig. 1.

hkl^\pm Bragg peaks are observed only for reciprocal lattice points $\mathbf{G} = ha^* + kb^* + lc^*$ with $h+k+l$ even and h odd. The propagation vector τ , as deduced from the angular positions of the satellites $\mathbf{K} = \mathbf{G} \pm \tau$, is equal to $0.44b^*$ at $T = 37\text{ K}$. The incommensurate part of the magnetic structure of Mn_3O_4 is obtained from the intensity analysis of these satellites. Two types of solutions have been tried: a helimagnetic structure, as described in section 1.3 (S_x and S_z magnetic components) and a sinusoidal modulation [S_z component only: $S_{iz} = S \sin(2\pi\tau \cdot \mathbf{r}_i + \varphi_0^i)$]. In each case, the magnetic intensity for $\mathbf{K} = \mathbf{G} \pm \tau$ is proportional to:

$$A(\mathbf{K}) \left| \sum_{i=5,6,11,12} \mu \exp i(2\pi\mathbf{G} \cdot \mathbf{r}_i + \varphi_0^i) \right|^2$$

with $\mu = S_\perp f(\mathbf{K})$ [$f(\mathbf{K})$ is the Mn^{3+} magnetic form factor].

$A(\mathbf{K}) = 1 + \cos^2(\mathbf{K}, \mathbf{b})/4$ for a helimagnetic structure with \mathbf{b} -axis, and $A(\mathbf{K}) = \frac{1}{4} \sin^2(\mathbf{K}, \mathbf{c})$ for a sinusoidal modulation in the \mathbf{c} direction.

The selection rules ($h+k+l$ even, h odd) yield there $\varphi_0^{i+6} = \varphi_0^i$ ($i = 5, 6$) and $\varphi_0^5 - \varphi_0^6 = \pi$, as obtained by Fricou [8] in the helimagnetic case.

The results of the profile analysis of the neutron diagram (Mn_3O_4 , $T = 37\text{ K}$) are shown in fig. 4(a) (helimagnetic) and (b) (sinusoidal). The dis-

crepancies in the hkl^\pm intensities for the helimagnetic structure are evident. The reliability factors are respectively equal to:

$$R = 5.5 \quad (R_N = 2.8 \text{ and } R_M = 10.4) \quad (\text{a})$$

and

$$R = 2.55 \quad (R_N = 1.7 \text{ and } R_M = 4.2) \quad (\text{b})$$

In the later case (sinusoidal incommensurate magnetic structure) the subsequent values have been obtained for the Mn^{2+} and Mn^{3+} magnetic moments:

$$T_y = -3.85 (7) \mu_B$$

$$R_y = 1.11 (8) \mu_B$$

$$R_z = 2.47 (6) \mu_B$$

$$S_y = 1.05 (10) \mu_B$$

$$\text{and } S_\perp = 1.97 (20) \mu_B.$$

All these results (T_y , R_y , R_z , S_y and $S_\perp/\sqrt{2}$) are reported in fig. 3 ($T > T_t$).

4.2. Thermal variation of the Mn_3O_4 commensurate and incommensurate magnetic structures ($33\text{ K} < T < 43\text{ K}$)

The thermal variation of one of the hkl^\pm magnetic Bragg peaks of fig. 4, 110^+ , is shown in fig. 5. A shift in position is observed between $T_t = 33$ and 33.4 K , without any discontinuity in intensity. Below T_t , 110^+ becomes 130 , when indexed in the orthorhombic $a, 2a, c$ magnetic unit cell.

From the thermal variation of the angular position of $110^+/130$, the evolution of the propagation vector $\tau \parallel \mathbf{b}^*$ for the S_z magnetic component is obtained. The results are reported in fig. 6: τ as a function of T . They are in good agreement with the results of Jensen and Nielsen [7]: q as a function of T , with $\tau = \frac{1}{2}q$.

Let us notice that the sinusoidal solution:

$$S_{i,z} = S_\perp \sin(2\pi\tau \cdot \mathbf{r}_i + \varphi_0^i)$$

yields continuous magnetic intensities for the $\mathbf{K} = \mathbf{G} \pm \tau$ Bragg peaks. Above T_t , these intensities are

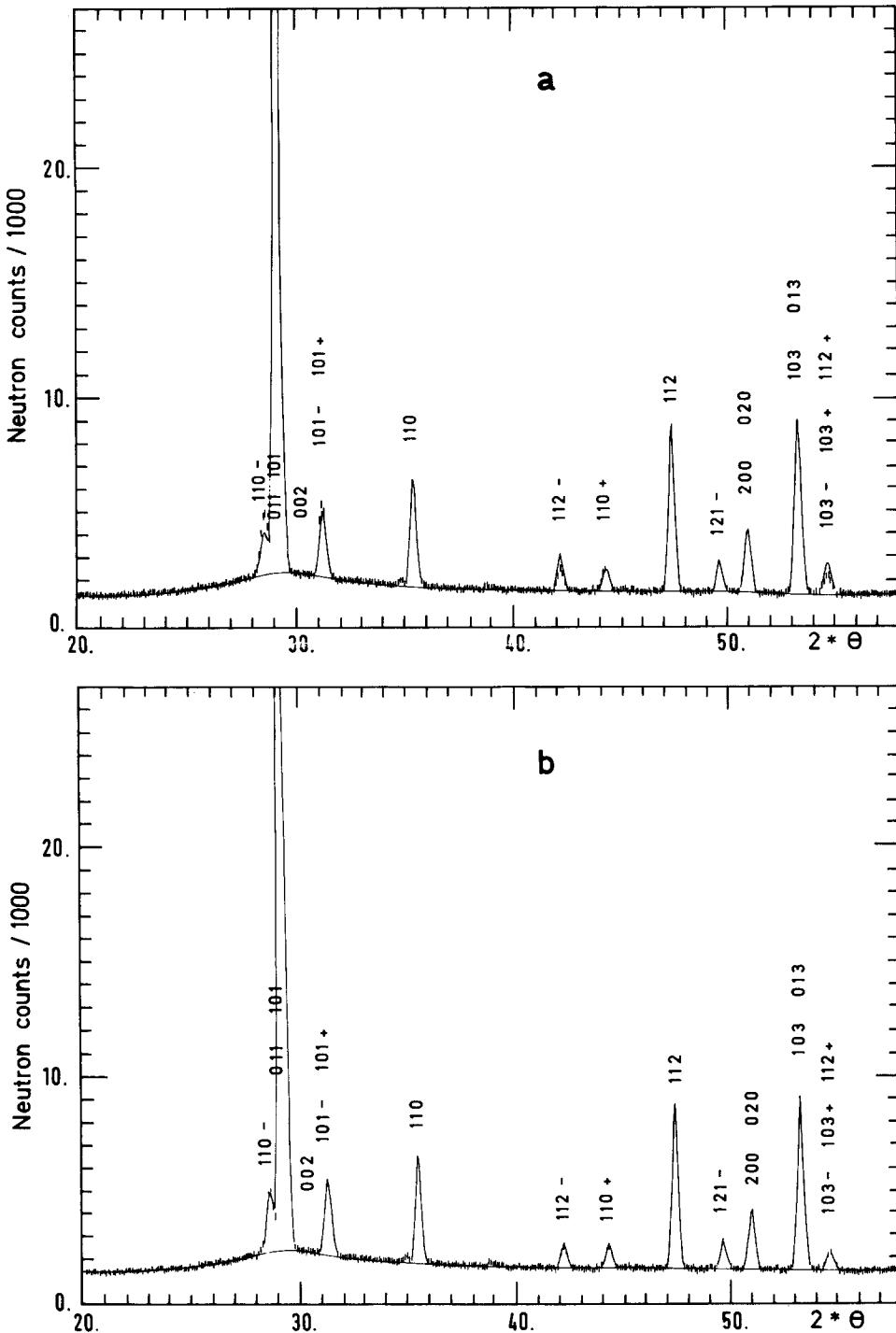


Fig. 4. Mn_3O_4 neutron diffraction data at $T = 37$ K ($T > T_i$). Experimental neutron counts with their accuracies are represented by vertical lines. The calculated profile (Rietveld analysis) is represented by a continuous line, corresponding for the incommensurate part of the magnetic structure (propagation vector $\tau \parallel b^*$) either to a helimagnetic structure (S_x and S_z components: fig. 4a) or to a sinusoidal modulation (S_z component: fig. 4b).

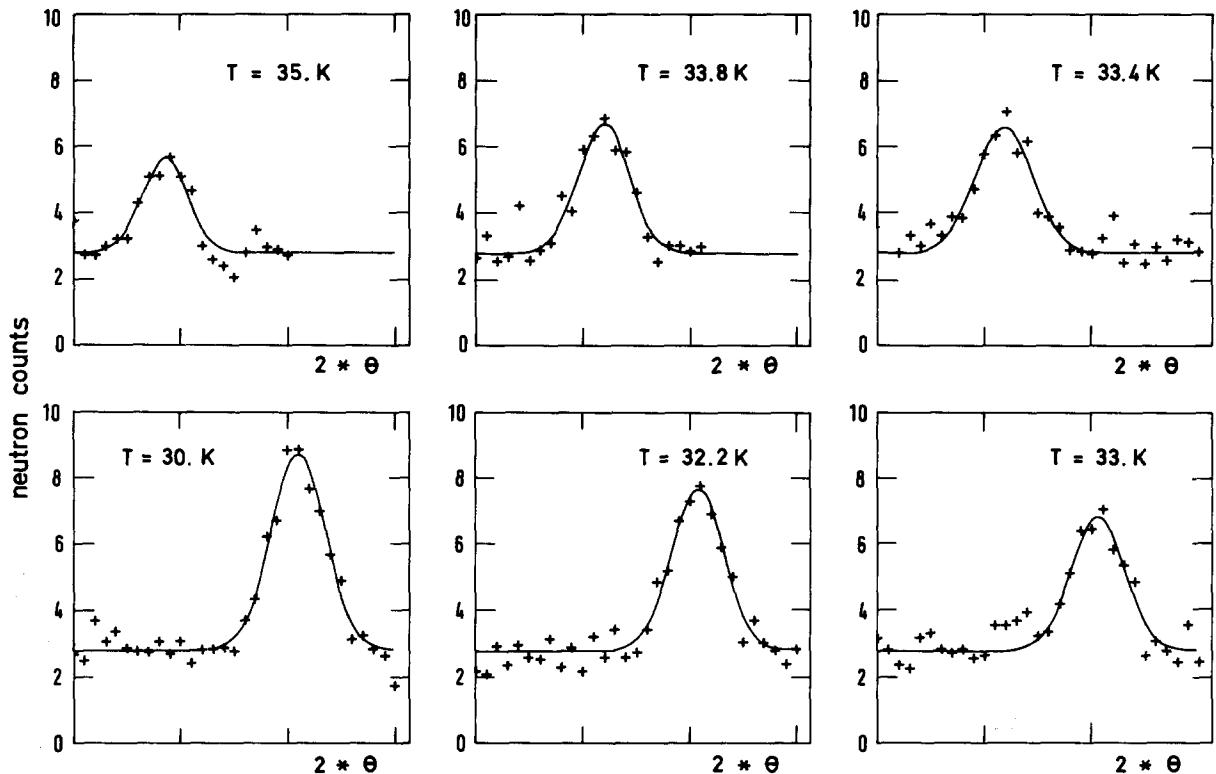


Fig. 5. Thermal variation of the 130 ($T \leq T_i$: a, 2a, c magnetic cell) or 110⁺ ($T_i < T < T_C$) magnetic Bragg peak of Mn_3O_4 . Neutron counts (arbitrary units) have been obtained for 2θ varying from 43° to 46° ($\lambda = 2.46 \text{ \AA}$), the continuous lines in the diagrams are the calculated profiles (Gaussian form). A shift in the angular position of the peak is observed at $T_i = 33 \text{ K}$, without any discontinuity in the intensity.

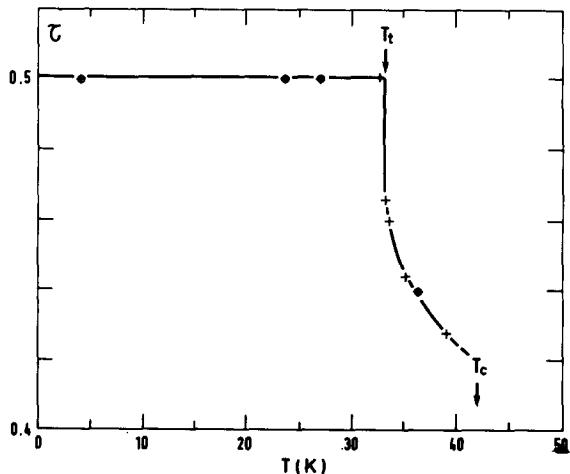


Fig. 6. Thermal variation of the propagation vector $\tau \parallel b^*$ for the magnetic structure of Mn_3O_4 .

proportional to:

$$\frac{1}{4} \sin^2(\mathbf{K}, \mathbf{c}) \left| \sum_{i=5,6,11,12} S_{\perp} \exp i(2\pi \mathbf{G} \cdot \mathbf{r}_i + \varphi_0^i) \right|^2$$

$$= \frac{1}{4} \sin^2(\mathbf{K}, \mathbf{c}) (4S_{\perp})^2$$

for $h+k+l=2n$ and $h=2n+1$.

This result is independent of the value of φ_0^5 . Below T_i , they are proportional (with the same proportionality factor) to:

$$2 \sin^2(\mathbf{K}, \mathbf{S}_5 - \mathbf{S}_6) \|\mathbf{S}_5 - \mathbf{S}_6\|^2$$

$$= 2 \sin^2(\mathbf{K}, \mathbf{c}) (2 S_z)^2 \text{ with } \mathbf{S}_5 \text{ and } \mathbf{S}_6 \text{ arranged as in fig. 1 (Mn}_3\text{O}_4 \text{ commensurate magnetic structure).}$$

From the comparison of these two quantities,

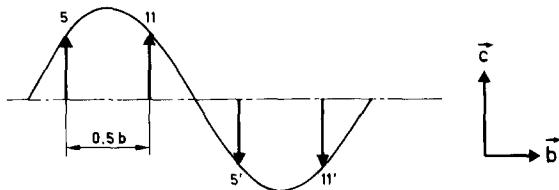


Fig. 7. Description of the Mn_3O_4 magnetic supers below T_1 as a sinusoidal modulation, with $\tau = \frac{1}{2}\mathbf{b}^*$ and $\phi_0^5 = \pi/4$.

the relation $S_z = S_{\perp}(\sqrt{2}/2)$ is deduced at T_1 . Continuous curves (fig. 3) are then obtained between the low ($T < T_1$) and high ($T_1 < T < T_C$) temperature values for Mn^{2+} and Mn^{3+} magnetic moments.

The sinusoidal solution: $S_{i,z} = S_{\perp} \sin(2\pi \tau \cdot r_i + \phi_0^i)$ is shown in fig. 7, with $\tau = \frac{1}{2}\mathbf{b}^*$ and $\phi_0^5 = \pi/4$, as deduced from $S_{5,z} = S_{11,z}$. When compared with the a , $2a$, c commensurate $S_{i,z}$ arrangement depicted in fig. 2(i), the continuity of the magnetic structure at T_1 is evident. (This continuity is also suggested by specific heat measurements [8,9].) The magnetic transition at T_1 (commensurate-incommensurate) consists there in a lock-in of the propagation vector $\tau \parallel \mathbf{b}^*$ to the commensurate value $\frac{1}{2}\mathbf{b}^*$. This phenomenon has already been observed in many cases of commensurate-incommensurate magnetic phase transitions, and is due to the growing influence of the anisotropy as the temperature of the sample is lowered.

When studying the magnetic structure of Mn_3O_4 , we also obtained neutron diffraction data at $T = 40$ K. The results of the profile refinement

are given in fig. 3: a non-zero value is obtained for R_z , leading to a non-collinear magnetic structure, in disagreement with a previous study [5].

Acknowledgements

The authors would like to thank M. Perrin (CEN-Saclay) for the preparation of the Mn_3O_4 sample. They would also like to thank E. Roudaut and M. Pailly (CEN-Grenoble), Y. Allain (CEN-Saclay) for their cooperation in the neutron diffraction experiments. They are grateful to P. Mériel (CEN-Saclay) for helpful discussions.

References

- [1] B. Boucher, R. Buhl and M. Perrin, *J. Phys. Chem. Solids* 32 (1971) 2429.
- [2] J.B. Goodenough and A.L. Loeb, *Phys. Rev.* 98 (1954) 391.
- [3] K. Dwight and N. Menyuk, *Phys. Rev.* 119 (1960) 1470.
- [4] O.V. Nielsen, *J. Phys. Coll.* 32, Suppl. C1 (1971) 51.
- [5] G. Srinivasan and M.S. Sheera, *Phys. Rev.* B28 (1983) 1.
- [6] F.K. Lotgering, *Philips Res. Rep.* 11 (1956) 190.
- [7] G.B. Jensen and O.V. Nielsen, *J. Phys.* C7 (1974) 409.
- [8] B. Fricou, Thesis, Université Paris VI (1977).
- [9] C. Pommier, K. Chhor and B. Chardon, *J. Chem Thermodyn.* (submitted).
- [10] B. Chardon, Thèse Docteur Ingénieur, Université Paris VI (1984).
- [11] E. Roudaut, in: *Position Sensitive Detection of Thermal Neutrons*, eds. P. Convert and J.B. Forsyth (Academic Press, New York, 1983) p. 294.
- [12] H.M. Rietveld, *J. Appl. Cryst.* 2 (1969) 65.